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Improving the crop traits is highly required for the development of superior

crop varieties to deal with climate change and the associated abiotic and biotic

stress challenges. Climate change-driven global warming can trigger higher

insect pest pressures and plant diseases thus affecting crop production sternly.

The traits controlling genes for stress or disease tolerance are economically

imperative in crop plants. In this scenario, the extensive exploration of

available wild, resistant or susceptible germplasms and unraveling the genetic

diversity remains vital for breeding programs. The dawn of next-generation

sequencing technologies and omics approaches has accelerated plant

breeding by providing the genome sequences and transcriptomes of several

plants. The availability of decoded plant genomes offers an opportunity at a

glance to identify candidate genes, quantitative trait loci (QTLs), molecular

markers, and genome-wide association studies that can potentially aid in high

throughput marker-assisted breeding. In recent years genomics is coupled

with marker-assisted breeding to unravel the mechanisms to harness better

better crop yield and quality. In this review, we discuss the aspects of marker-

assisted breeding and recent perspectives of breeding approaches in the era

of genomics, bioinformatics, high-tech phonemics, genome editing, and new

plant breeding technologies for crop improvement. In nutshell, the smart

breeding toolkit in the post-genomics era can steadily help in developing

climate-smart future food crops.
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Climate change scenario and its
effect on agriculture and food
security

The world’s population is gradually up-surging and the
biggest challenge is food security. The other challenges include
climate change and population growth (Abberton et al.,
2016). The increasing population demands more food and
exerts an extra burden on agricultural resources (Ray et al.,
2013). Climate change is one of the biggest challenges in
the sustainable production of agricultural crops. It is defined
as “the significant changes in the different elements of
metrology such as temperature and precipitation, for which
averages have been computed over a long period” (Malhi
et al., 2021). For the past few decades, the major cause
of devastating climate change is the human activities that
altered the global atmospheric composition. In the troposphere
where life exists, the atmospheric greenhouse effect occurs.
Other causes involve rapid industrialization, urbanization,
scorching of farming wastes, deforestation, and use of non-
degradable merchandises, which pose a serious threat to the
sustainable environment. Climate change has evoked variations
in temperature, rainfall, and atmospheric conditions that
adversely affect the developmental, morphological, cellular,
and molecular mechanisms in plants. It can affect the crop
production by direct, indirect, and socio-economic means. For
example, direct effects such as morphological, physiological, and
phenotypic changes in the plant productivity. Indirect effects
include soil fertility, rise in the sea level, pest pressure, and
availability of irrigation whereas the socio-economic effects
consist of food demand, costs, trading, and unequal distribution.
These factors can severely influence the agricultural production.

Since 1750, the concentration of greenhouse gases such
as nitrous oxide (N2O), carbon dioxide (CO2), and methane
(CH4) have been significantly increased by 20, 40, and 150%,
respectively. The mainly contributing greenhouse gas is CO2

which has a positive effect on the plant growth through CO2

fertilization (Wang S. et al., 2020). Enhanced CO2 directly
influences the photosynthesis, exchange of gases, and numerous
other developmental processes in plants (Gray and Brady,
2016). Simultaneously, the nutritional value, as well as the
quality of food decreases in response to sharp CO2 in the
atmosphere that is caused by various other environmental
factors. However, long-term exposure of plants to elevated
CO2 can decrease the photosynthesis because of photosynthetic
acclimation, ultimately affecting the vegetable quality in plants
(Dong et al., 2018). Recently, Parvin et al. (2019) identified the
reduced concentration of Fe, Zn, S, and P in lentil and faba bean
crops upon high CO2 conditions. It has been observed that over
the past 30 years, there is a decline in CO2 fertilization due to the
lower availability of water and shifting nutrient concentrations
(Wang S. et al., 2020).

Several biotic and abiotic stresses hit the crops’ productivity
(Figure 1), which are becoming severe due to climate change.
Due to extreme temperature, wheat production is heavily
affected in various countries and may reduce the crop yield by
6% for every ◦C rise in temperature. In cereal crops like wheat,
drought and high temperature are the key factors with a high
impact on yield and Rubisco, the main photosynthetic enzyme. If
the temperature increases from 35◦C, it stops the photosynthetic
process (Barnabás et al., 2008).

The combined impact of drought and high temperature
has been observed to result in more damaging outcomes as
compared to the individual stress (Wang and Huang, 2004).
The global yield of important crops like wheat and maize
has been decreased from 1981 to 2010 relative to the prior
years (Iizumi et al., 2018). It is estimated that atmospheric
CO2 will increase up to ∼730–1000 ppm by the end of
21st century which is allied with the peaked mean global
temperature that will ultimately bring the significant changes
in global climate (Balasooriya et al., 2018). Elevation of
temperature accelerates the metabolic activities of insect pests
and enhances their crop damage frequency. Besides it, the
preeminent levels of CO2 make the food crops vulnerable to
insects and different pathogens. Overall, the effect of climate
change on crops remains detrimental. The dilemma becomes
worse because of the fluctuations in annual rainfall, temperature,
and various environmental factors which are directly associated
with climate change.

Conventional and modern
molecular breeding for crop
improvement

Humans have used an artificial selection of plants for the
past 10,000 years to select the crop plants for desired traits
via breeding. Conventional agricultural procedures are intended
to improve the plants yield and their nutritional composition
but recent modern methods offer a vast choice of options and
innovations in the breeding methods. These newly developed
methods can be used to cope with the devastating plant biotic
as well as abiotic stresses and to combat the growing demand for
food commodities (Supplementary Table 1).

Crop breeding revolutionized when Mendelian laws were
announced. With the invention of new cutting-edge genomics
tools, crop development is modified greatly. In this decade,
novel techniques, e.g., genomic selection, modern speed
breeding, and high-throughput crop phenotyping (HTTP) have
been shown to speed up the plant breeding mechanism.
Biotechnological interventions for instance genetic engineering
tools (gene transformation) have also played an important role
in the development of crops having desirable traits. Besides this,
other techniques such as whole genome sequencing (WGS),
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FIGURE 1

Different types of various stresses in crop plants.

genomics, gene identification, gene isolation, and fast molecular
markers are opted to be a good strategy for improving cisgenesis,
intragenesis, mutation, and polyploidy breeding (Muth et al.,
2008; Murovec et al., 2017).

Crop breeding is a decision-making process at all its
stages of breeding program such as testing, mapping, and
introgression of traits, where breeders select the individual
plants from large segregating populations harboring the
best traits (Kaiser et al., 2020). But these conventional
breeding practices mostly remain very slow and inadequate
to enhance the development of crop varieties. Conventionally
once the crosses are made among two parent plants, the
successive generations are achieved for the identification
of superior individual. The whole process involves the
plants multi-years testing in replicated field trials at
multiple locations for the detection of genetic potentional
of candidate genotype across a wide range of conditions
(Voss-Fels et al., 2019).

For ease in breeding, since the 1990s, molecular markers are
used to identify and for the selection of hybrid lines (Dreher
et al., 2000; Gupta et al., 2010). Artificial selection can be
done by a plant breeder for refining plant’s phenotype for
a precise looked-for trait. Breeders also focus on crops that
achieve multiple generations within a year which ultimately
leads to gaining the desired phenotype faster (Van Bueren et al.,
2011; Kandemir and Saygili, 2015). Molecular markers were
employed to identify seven Yr genes for stripe rust resistance in
synthetic wheat (Farrakh et al., 2016). Several markers including
RFLP, AFLP, SSR, and SNP have been used to identify QTLs in
rice and other crops (Oladosu et al., 2019). Single nucleotide
polymorphism (SNP), a DNA marker of choice is ubiquitously
present in the crop genome and is quite easy and cost-efficient
(Liakos et al., 2018).

The rate of annual yield improvement for major crops
ranges between 0.8 and 1.2% which must be doubled to meet
the exceedingly augmented future call of plant-based goods (Li
et al., 2018). With the use of new approaches, we can help
boosting up the staple food crops production by improving
the genetics of the crops otherwise global food security will be
severely compromised in the coming two to three decades. One
of the major bottlenecks in plant breeding is the time it takes
to develop an improved crop variety. Molecular breeding with
advanced genomic studies increases the efficiency of breeding
practices and also saves time. Equated with other kingdoms,
the plants are straightforwardly manipulated with a desirable
trait by crossbreeding, selfing, or both because of their short-
generation time and larger population size that is available for
studies (Stetter et al., 2016). Recently, Lee Hickey and colleagues
described the idea of “speed breeding,” which is a non-GMO
approach enabling the scientists and researchers to turn over
many generations in a single year and select plants with desirable
traits between thousands of variations (Watson et al., 2018;
Voss-Fels et al., 2019). In speed breeding technique, controlled
environmental settings and extended photoperiods are achieved
leading to four to six generations of crops, i.e., wheat, canola,
barley, etc., in a year.

Advances in DNA sequencing platforms and high
throughput phenotyping have revolutionized the crop breeding
and research opening up the genomics era of crop improvement.
It has given the concept of new generation genotyping and
phenotyping for crop breeding (Figures 2A,B). With the rapid
advancement of next-generation sequencing (NGS) platforms,
the complex genomes of many important crop species such as
sorghum (730 Mbp) (Paterson et al., 2009), soybean (1115 Mbp)
(Schmutz et al., 2010), barley (5100 Mbp) (Mayer et al., 2012),
potato (850 Mbp) (Xu et al., 2011), and rapeseed (1200 Mbp)
(Chalhoub et al., 2014) have been sequenced. Even the huge
hexaploid genome of bread wheat (17000 Mbp) has been
mapped with the combination of flow cytometry and synthetic
mapping and next-generation sequencing technologies by
enabling the chromosome-based draft genome sequence
available (Mayer et al., 2014).

Harnessing the potential of wild
crop relatives for genetic diversity

Wild crop relatives (CWRs) related to the agricultural
crops can enhance the adaptive capacity of the agricultural
systems worldwide. They represent a pool of genetic diversity
that can be used to draw new allelic variations required
in breeding programs. These crop wild relatives have been
extremely valuable in adapting crop varieties to changing
farming practices, disease pressures, market demands, and
climate conditions. The annual contribution of CWRs to the
world economy is estimated to be approximately 186.3 billion
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FIGURE 2

Modern breeding for crop improvement under climate change scenario. (A) Climate-smart breeding is the combination of (a) genomics assisted
breeding, (b) speed breeding, (c) phenomics and artificial intelligence (AI), and (d) genome editing. (B) Next generation breeding and
phenotyping tools including breeding with genomics, next-generation sequencing (NGS) and Pan genomics while phenotyping includes 3D
LIDAR, satellite-based sensing, UAV-based remote sensing, cloud-based sensing, and Infrared thermal prediction. All these breeding techniques
and tools help in the sustainable production of crops as well as the selecting the high yield crops.

USD (Tyack et al., 2020). For instance, the genes from the
wild tomato increased the content of soluble solids with a
worth of approximately 250 million USD.1 Over the past few
decades, the number has significantly increased in introducing
traits from the wild species into the cultivated crops mainly
for overcoming the biotic and abiotic stresses. For instance,
the introduction of late blight (fungal disease caused by
Phytophthora infestans) resistance from the wild potato Solanum
demissum and stem rust (fungal disease caused by Puccinia
graminis ssp. graminis) resistance from the wild wheat Aegilops

1 www.cropwildrelatives.org/resources/in situ-conservation-manual/

tauschii (Kilian et al., 2010). Generally, the primary strategy
for crop improvement is a recurrent selection of wild species
as a source of novel material to broaden the genetic bases of
crops (Cooper et al., 2001; Moore, 2015). Wild relatives’ diversity
can be classified into two major avenues; (a) “Choose first”-
In this class wild species, based on phenotype and genotype
for a particular trait is selected and used for crosses, while
in the second class (b) “Cross first”-wide range of crosses
are performed with wild species and progeny is screened for
desired traits in domesticated background (Thormann et al.,
2014). So, once the trait of interest has been identified in the
wild genotype or individual, they need to be transferred into
the crop backgrounds. Alternatively, crosses between wild and
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cultivated taxa are made first and their progeny, either F1 or later
generation are screened for desired traits.

The subsequent genetic improvement led to the
development of high-yielding crop varieties, many with
resistance to abiotic stresses as well as pests and disease stress.
The FAO estimates that approximately 75% of the genetic
diversity harbored in traditional agricultural crop varieties
has been lost over the past century.2 This important genetic
loss caused by the migration of crops from their origins or
modern breeding should be known as post-domestication
or breeding bottlenecks (Abbo et al., 2014). There are some
crucial challenges in the expansion of cultivated gene pool by
using CWRs and ancestral landraces that include biological
barriers to compatibility and crossability, F1 generation and
backcross (BC1) sterility, reduced recombination between elite
and CWR genomes, and infertility of offspring (Zamir, 2001).
Careful consideration of these obstacles has opened the novel
opportunities for managing the male and female sterility in
the production of hybrid crops. For instance, male sterility
due to the disharmony of cytoplasmic (wild) and nuclear
(cultivated) genomes in interspecific crosses of vast crop species
has proved to be a boon for the hybrid industry worldwide
(Bohra et al., 2021).

Wild crop relatives generally express poor adaptation
beyond their natural distribution range such as photoperiod
sensitivity, phenological differences, and asynchronous
flowering can all contribute to maladaptation to the artificial
agricultural environments (Cowling, 2013; Wang et al., 2017).
One of the examples here is chickpea CWRs that are collected
from temperate regions show poor adaptability in tropical and
subtropical regions owing to large phenological differences
(Warschefsky et al., 2014). However, the perception of
agronomic potential may be deceptive because an agronomically
inferior CWR may contain valuable alleles for a specific trait(s).
Using appropriate screening procedures, these beneficial alleles
can be readily discovered in segregating population derived
from wild× elite crosses (Dempewolf et al., 2017).

Genetic diversity in landraces provides a great opportunity
for sustainable and improved crops. Different germplasm banks
in the world play a crucial role in maintaining and sustaining the
accessions of crops gathered over centuries that could be helpful
in conserving the genetic resources. For instance, International
Maize and Wheat Improvement Center (CIMMYT) established
in 1966 runs a genetic resource program that conserves the
global maize and wheat germplasm. CIMMYT holds around
150,000 wheat seeds sampled from almost 100 countries and
28,000 samples are present in the maize bank. CIMMYT
launched its wheat breeding program for biofortification in
2006 and crosses among goat grass, a wild relative and wheat
achieved improved disease resistance, agronomic traits, and

2 http://www.cropwildrelatives.org/cwr/threats/

higher zinc in wheat grains. This biofortification program is
underway in different countries and hopefully will play a major
role in releasing biofortified wheat that could fulfill the demand
for nutrient-rich wheat in southeast Asia and other parts of
the world (Singh et al., 2017). Pearl millet and its wild relative
accessions have also been collected and conserved in ten gene
banks in eight different countries (Sharma et al., 2021).

Next generation sequencing and
omics approaches for breeder’s
arsenal

The Sequencing of more complex genomes required
more effort. High content of repetitive element and ploidy
level in complex genomes are the key challenges for plant
sequencing projects. The availability of reference genome
enables identification of large number of genes involved in biotic
and abiotic stresses and also molecular markers. Re-sequencing
projects are more appropriate to pre-breeding activities to
identifying genomic variations and gathering information about
useful polymorphisms. Various important plant species have
been sequenced and their draft genomes have become available
(Mosa et al., 2017). NGS based techniques have provided
with the opportunity for enhanced resolution of QTLs and
identification of genetic variations. High-throughput NGS in
different formats have been used for crop population mapping.
Some such studies have been highlighted in Table 1. With the
advent of modern NGS technologies, following techniques are
efficiently used for gene and QTLs discovery in crop plants.

Genome-wide association studies (GWAS) lead to high
resolution mapping in a larger population by offering the
detection of statistically significant phenotype-genotype
association based on linkage disequilibrium (LD).

Restriction site-associated DNA sequencing (RADSeq)
employs NGS to scoring of several genetic markers from
individuals of a population. Its more advanced and cost-
effective method is GBS.

Genotyping-by-sequencing (GBS) is an efficient, cost-
effective, and robust tool for implementing GWAS in crops. It
also allows breeders to study genetic linage, marker detection,
genomic diversity, and genomic selection in different crop
breeding programs.

Bulk-segregant analysis sequencing (BSA-Seq) provides the
modern combination of Bulk-segregant analysis with NGS that
helps in precise identification of markers for a particular trait
within a breeding population.

TILLING by Sequencing harbors both Tilling and Eco tilling
approaches where NGS aids to fast discovery of induced or
natural genetic variation, respectively. This technique helps in
the identification of rare and novel mutations.
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TABLE 1 Bioinformatics tools utilized in modern crop breeding.

Tools and platforms used in NGS analysis for crop breeding

Tool/Platform Language Characteristics Weblinks

AutoSNP Perl SNP identification https://biokeanos.com/source/autoSNPdb

Blast2GO Linux/Windows Genome/transcriptome annotation http://www.blast2go.de/

CNVKit Python/Linux Variant Discovery in NGS data https://cnvkit.readthedocs.io/en/stable/

DAVID Set of annotation tools Data annotation https://david.ncifcrf.gov/

Galaxy Cloud platform NGS Data analysis https://usegalaxy.org/

GATK Linux Variant Discovery in NGS data https://gatk.broadinstitute.org/hc/en-us

InterPro Scan Online/Linux Domain and motif analysis https://www.ebi.ac.uk/interpro/about/
interproscan/

KEGG Web interface/Linux Pathway analysis http://bioinfo.org/kobas

MapMaker Windows QTL analysis https://www.softpedia.com/get/Science-
CAD/MapMaker.shtml

MapQTL Windows QTL mapping http://www.mapqtl.nl

MISA Perl SSR detection https://biokeanos.com/source/autoSNPdb

QTLcartographer Windows Composite interval QTL mapping http://statgen.ncsu.edu/

Qu-gene Windows Simulation for quantitative genetics http://www.uq.edu.au/lcafs/index.html

SnpEff Java/Linux SNP calling https://pcingola.github.io/SnpEff/

SNPpipeline C++, Perl, and Python SNP detection http://www.icrisat.org/gt-bt/softwares_
downloads.htm

SnpSift Java/Linux SNP filtering https://snpeff.blob.core.windows.net/

Tassel Windows/Linux Association mapping http://sourceforge.net/projects/tassel

TROLL C++ SSR occurrence locator http://sourceforge.net/projects/finder

Pan-genomics

PanGP Linux/Windows Profiling analysis for the development of
core genome

https://pangp.zhaopage.com/

RPAN Linux Rice pan-genome analysis http://cgm.sjtu.edu.cn/3kricedb/

SplitMem Linux de Bruijn graph-based visualization
algorithm

http://splitmem.sourceforge.net/

PanViz Linux Pan-genome visualization https://github.com/thomasp85/PanViz

PGAPPGAP-X Linux Pan-genome cluster and evolution analysis http://pgap.sf.net/

Pantools Linux/Windows Genome mapping https://git.wur.nl/bioinformatics/pantools

Crop databases

Databases Species Contents Weblink

MaizeGDB Maize Genetic and phenotypic data http://www.maizegdb.org/

Gramene Arabidopsis, rye, millet, wheat, sorghum,
rice, and maize

Genomic data http://www.gramene.org/

Cottongen Cotton Genomic and marker information
resource

https://www.cottongen.org/

Sol Genomics Solanaceae Network/database https://solgenomics.net/

Soybase Soybean Genomic and genetic data http://soybase.agron.iastate.edu/

TAIR Arabidopsis Arabidopsis genomic and transcriptomic
information resource

http://www.arabidopsis.org/

plantTFDB 22 plants Transcription factors database http://planttfdb.gao-lab.org/
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Mutmap exploits whole genome resequencing of different
DNA pools in the segregating populations for SNP genotyping
in the mutant population.

The trend to utilize robust genomics assisted breeding
with the help of NGS approaches for crop breeding has been
amplified over the last few decades (Table 2) and will continue
with dropping costs of sequencing and increased efficiency of
sequencing platforms.

Bioinformatics databases and tools
for the data analysis in crop
breeding

Next-generation sequencing produces loads of data from a
breeding population that can be through GWAS or GBS, etc.;
therefore, after sequencing the data is analyzed using big-data
handling of bioinformatics. Moreover, bioinformatics offer the
tools both for forward and reverse genetics (Das, 2019).

The available user-friendly bioinformatics databases for
nucleotide sequences are GenBank at NCBI, DNA Databank of
Japan (DDBJ) and European Nucleotide Archive (ENA). For
plants the database with genomics information is Ensemble
Plants. Important tools of the data analysis for gene ontology
and similarity searches are NCBI, GOA, BLAST, UniProtKB,
GO, and KEGG. Data acquired from NGS sequencing
platforms is handled by different bioinformatics tools which
help in inferring information from the sequencing data.
This information leads to establish a connection with plant
phenotype and genotype for gene or marker identification
(Kersey, 2019).

The tools, platforms, databases, and software often used in
the data analysis in crop breeding are listed in Table 1.

Post-genomic era in crop breeding

Since the dawn of civilization agriculture has always
remained one of the topmost priorities of humans for the
sustained growth and to meet the financial needs. Throughout
this time different techniques have been in practice to improve
the quality of food crops (Mendel, 1865; Stadler, 1928; Crabb,
1947; Welsh and McClelland, 1990; Xu, 2010; Jinek et al.,
2012; Figure 3). Sustained production of crops is liable to
many environmental factors; be it the biotic or abiotic stresses
both negatively impact on the yield in multiple ways and is
a major predicament to meet the challenge of feeding world’s
increasing population which is estimated to reach at ten billion
over the next three decades (Hickey et al., 2019; Varshney
et al., 2021). Increasing world population combined with climate
change has put scientists in a challenging position and there
is a pressing need to come up with new technologies for

developing climate resilient crop varieties for a sustained food
production (Hickey et al., 2019). Over the last 10–15 years
significant progress has been made to improve crop plants
including high-throughput phenotyping system enabling us to
screen large number of populations (Araus et al., 2018) and
advancement of sequencing technologies made the job much
easier to discover new genes for particular traits and simplified
the selection criteria and to design new selection markers apart
from the traditional ones (Bassi et al., 2016). One of the major
quandaries in developing new crop varieties is the slow process
of trait fixing and generation enhancement due to the long
generation time but with the advent of “speed breeding” this
problem has been alleviated by following specialized protocols
and has successfully been applied on the number of crop
specie including wheat barley Hordeum vulgare, canola (Brassica
napus), chick pea (Cicer arietinum) (Ghosh et al., 2018; Watson
et al., 2018).

Genomic assisted breeding (GAB) assisted breeders in
successfully identifying allelic variation in large number of
plants including the orphan and wild species followed by
successful characterization and integration in the breeding
programs for the crop improvement. The importance and
effectiveness of genomics can be gauged from the fact that
the last few years have seen a tremendous increase in
its use (Varshney et al., 2021; Figure 4). This technology
has been used to create countless products that not only
provide protection against the biotic and abiotic factors but
have also been instrumental in improving quality traits. For
example, rice products including “Improved Sambha Mashuri
ISM,” “Pusa Basmati” “Pusa Basmati 1121,” “Pusa Basmati
6” against bacterial blight disease (Xanthomonas oryzae pv.
oryzae), “Swarna” against abiotic stress including drought and
salinity (Sundaram et al., 2008; Khanna et al., 2015; Ratna
Madhavi et al., 2016); Wheat products “Overlay” and “Jagger”
(Kuraparthy et al., 2009); In pearl millet, “HHB 67 improved”
against downy mildew disease (Rai et al., 2008); Pulse product
“Pusa 10216” having drought tolerant traits. “Farnum Somerse
VR 1128” were developed in United States, Canada, and
Australia respectively using GAB for “grain protein content”
(Mitrofanova and Khakimova, 2017).

Improving agronomic traits/quantitative traits is a difficult
process because they are under control of multiple quantitative
trait nucleotides (QTNs). Efficient breeding methods are
required for the improvement of quantitative traits. With the
advancement of genome sequencing and editing technologies
the discovery and accumulation of these traits in a single
genotype can now be done more easily. Due to multiple reason
including climate change, insect pests resistance, a continuous
surge in population, crop scientists/breeders may face serious
challenges. Innovative technologies such as genome sequencing,
pangenomes, genome engineering would be instrumental for
the better understanding of genome structures and underlying
trait architectures for precise improvement.
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TABLE 2 SNP and marker gene identification in crop plants by utilizing NGS (Khalid et al., 2021; Khan et al., 2021).

Crop Targeted traits Method No. of SNPs/Genes

Barley Six-rowed spring barley GWAS 9K SNP, 3072 SNP

Plant growth under drought GWAS 9 K iSelect SNPs

Hulls adherence to caryopsis GWAS 7864 SNPs

14 main agronomic traits GWAS 9680 SNPs

Seed aging and longevity GWAS 107 SSRs

Brassica Earliness traits GWAS 201,817 SNPs

Oil content GWAS 385,692 SNPs

Salt tolerance GWAS 60K SNPs

Seven yield-determining traits GWAS Brassica 60K

Quantity of fatty acids GWAS 60K SNPs

Harvest index GWAS 35,791 SNPs

Seed germination and vigor GWAS 60K SNPs

Maize Stalk lodging resistance GWAS 48,193 SNPs

Seedling root architecture traits GWAS 681,257 SNPs

Southern leaf blight resistance GWAS 25000 SNPs

Kernel oil concentration fatty acid composition GWAS 1.03 m SNPs

Cotton Salt tolerance GWAS CottonSNP80K

Fiber quality traits and yield components GWAS 4729 SNP markers

Oil content GWAS 15,369 SNPs

Drought stress GWAS 55,060 SNPs

Fiber quality traits GWAS 53,848 SNPs

Rice Agronomic traits GWAS 32,655 SNPs

Cooked rice texture GWAS 147,692 SNPs

Agronomic traits GWAS ∼3.6 m SNPs

Salinity tolerance GWAS 6000 SNPs

Low phytic acid TILLING ITPK

Salt tolerance TILLING OsAKT1, OsHKT6, OsNSCC2, OsHAK11, and OsSOS1

Arsenic tolerance TILLING ATT1

Sorghum Forage quality-related traits GWAS 85,885

Plant height and architecture GWAS ∼26,500 SNPs

Soybean Plant height and the number of nodes GWAS 62,423 SNPs

Protein content GWAS SoySNP660k

Photosynthetic response to low P stress GWAS 292,035 SNPs

Sugarcane Cane weight tillers/plant GWAS 20 SSRs

Wheat Wheat quality and yield-related traits GWAS 10,172 SNPs

Karnal bunt resistance GWAS 13,098 SNPs

Flour yield and alveograph quality traits GWAS 10,802 SNPs

Vernalization TILLING VRN-A1

Karnal Hardness TILLING Pin a, Pin b

Powdery mildew disease resistance TILLING TaMlo

Double haploid approach for
climate resilience crop breeding

Haploid plants are produced naturally through
parthenogenesis or elimination of the unstable genome
from sperm. For the evolution of plants mixing of the genome
is a key component during sexual reproduction for the success
of breeding. Once the desirable genetic combination is obtained

to retain this, embryos are allowed to develop from one parent
followed by a doubling of chromosomes this phenomenon
is called double haploid induction leads to the production
of homozygous plant lines (Jacquier et al., 2020). Haploid
induction in crops practically stops genetic combinations in
embryos. So, when a certain genetic combination for a desirable
trait is obtained it can be propagated in the next generations
by producing homozygous plants. Haploid induction is done
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FIGURE 3

A timeline of major plant breeding discoveries for crop improvement over the years.

FIGURE 4

Recent trends in plant genome sequencing (Varshney et al., 2021).

in this regard by crossing a haploid inducer line with a plant
whose genetic combination is required. The genome sequence
of the inducer line is not transferred to homozygous embryos.
The double Haploid approach can be utilized for climate-
resilient crop breeding. The induction of double haploidy
in crops with favorable characters eases the passage of these
characters to offspring because of the absence of dominant trait
effects and new pleiotropic or gene epistasis (Prasanna et al.,
2013). Various studies have been done on the incorporation of
desirable genes and genetic combinations for the production
of homozygous lines through the double haploid approach.
In a recent study for the development of eyespot resistant
lines, double haploid induction was utilized in wheat. Two
wheat varieties that were highly resistant to eyespot due to
the presence of the Pch1 gene were crossed with elite wheat
genotypes. Wheat varieties were crossed with maize for haploid
induction and treated with colchicine solution to double the
chromosome number. A total of 604 haploid plants were
developed from cross combinations while 458 double haploid
lines were developed after chromosome doubling. Homozygous
plants were analyzed for the presence of the Pch1 gene along

with some markers associated with that gene. The eyespot
resistance gene Pch1 was detected in 65 doubled haploid lines
of winter wheat, in the second year of the study field trials
also confirmed the incorporation of the gene (Wiśniewska
et al., 2019). In another study, DH lines of winter barley
developed through androgenesis showed enhanced tolerance
to drought and cold stress than their parental genotypes. Also,
the transcriptomic and proteomic study of these homozygous
tolerant lines showed a better picture of ongoing indigenous
molecular mechanisms. The genes which were not previously
associated with the drought and cold stress were identified for
their function. Based on this approach breeding for drought
and cold resilient barley will be easy (Wójcik-Jagła et al., 2020).
Double haploid lines also helped in mapping of QTLs better
than heterozygous lines. While evaluation DH wheat lines
against strip rust resistance seven new QTLs associated with
APR genes were identified. APR genes are linked to pathogen
identification and triggering immune response, identification
of these associated QTLs can be helpful in determining better
gene stacking (Tehseen et al., 2022). International Rice Research
Institute developed rice DH line, AC-1 for the salinity tolerance
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that is commercialized in the Philippines and Bangladesh. Some
other examples of DH rice with higher yield, commercialized
in different countries are Dama (Hungry), Tanghuo 2, Tanfeng
1, Shanhua 7706 (China), Hirohikari, Kibinohana (Japan),
Phalguni, Satyakrishna (India) (Samantaray et al., 2021). Also,
in DH wheat lines under salinity stress QTL mapping was
done and novel QTLs regarding potassium and sodium ions
accumulation were detected. For the first time a novel shoot ion-
independent tolerance QTL was also detected (Asif et al., 2018).
In another study in Africa double haploid maize varieties were
derived from commercially available hybrid maize varieties.
The double haploid varieties showed remarkable improvement
in yield and various other agronomically important traits.
The DH hybrids also performed well under drought stress.
One DH maize hybrid line showed 44.2% improved yield
under drought stress and 23% improved yield under optimal
water conditions as compared to best performing commercial
hybrids. This superior performance of DH offspring can be
marked with fixation and additive effects of favorable genes
due to homozygosity of offspring (Sserumaga et al., 2018). The
homozygosity in double haploid lines not only give a better
picture about trait to gene function but it also enhances the
action of desirable genes. Double Haploid approach along with
the utilization of modern tools like speed breeding can be a
key component for the development of better and sustainable
agriculture.

Exploration of pan-genomics and
machine learning for
understanding the crop
improvement

Pan genomics

Radical breakthroughs in high-throughput sequencing
technology have unfolded new possibilities for studying genome
diversity and evolution over the last two decades. Previously
limited to a few reference genomes, modern technologies
now allow for the analysis as well as sequencing of multiple
genomes from closely related species. Undoubtedly, for many
years, genomic studies were primarily based on the expensive
and low-throughput Sanger sequencing, which limited large-
scale population studies to a few markers and loci like
simple sequence repeats (SSRs) (Zhang and Hewitt, 2003;
Schmid et al., 2005). Researchers’ focus has shifted from single-
genome analysis to multiple-genome analysis and population
studies since the emergence of next-generation sequencing
(NGS) technologies (Redon et al., 2006). As more genome
sequence data become available, it becomes clear that the
genomic information from a single plant species does not
properly reflect the species’ diversity [4]. Since the publication

of the first plant genome sequence (Kaul et al., 2000),
comparative genomic studies have primarily concentrated on
single nucleotide polymorphisms (SNPs) in various plant species
(Zuckerkandl and Pauling, 1965; McNally et al., 2009; Lai
et al., 2015). Plants have a dynamic genome as a result of
various duplications for instance gene tandem duplications,
rearrangement of genome, transposons activity, deletions,
and recombination within populations (McClintock, 1956;
Bennetzen, 2000; Yu et al., 2014; Chen et al., 2015; Gabur et al.,
2019). While SNPs are frequently the focus of genomic diversity
analysis, structural variation in the genome is increasingly being
viewed as an essential element of genomic diversity (Zhao et al.,
2018). Significant structural variations such as presence-absence
variants (PAV) and copy number variants (CNV) are common
in crops and play key roles in the genetic characterization of
agronomical traits (Springer et al., 2009; Li et al., 2014; Lu et al.,
2015).

A pan-genome is the whole set of genes found in a biological
clade, as in a species. The pan-genome is further subdivided
into the core genome and the variable genome (Tettelin et al.,
2005). The core genome is a set of sequences or genes found in
all organisms within a species, and it is the minimum genome
that an individual requires for survival and basic functions
(Segerman, 2012; Gordon et al., 2017; Wang et al., 2018) whereas
the dispensable/variable genome is a set of dispensable genes
that are either partially shared or unique to each individual
(Tettelin et al., 2005). The dispensable genome, in particular, has
been discovered to contain genes involved in crop growth and
survival against a variety of biotic and abiotic environments such
as phosphorus deficiency in rice (Gamuyao et al., 2012), head
smut resistance in maize (Zuo et al., 2015), and temperature
extremes (Tao et al., 2019). As a result, pangenome studies will
aid in dissecting the genetics of these important agronomic traits
for crop improvement (Zhao et al., 2018; Danilevicz et al., 2020).

To date, pangenomes in crop species have been generated
using a variety of methodologies, such as a comparative de novo
approach (Li et al., 2014; Schatz et al., 2014; Gordon et al., 2017;
Zhao et al., 2018), an iterative assembly approach (Golicz et al.,
2016b; Montenegro et al., 2017; Hurgobin et al., 2018), and the
“map-to-pan” approach (Wang et al., 2018). In recent years,
crop pangenomes for soybean (Li et al., 2014), maize (Hirsch
et al., 2014), Brassica (Lin et al., 2014), and rice (Schatz et al.,
2014) have been published. The trend toward crop pangenomes
for molecular breeding instead of single sample reference
genomes, will lessen sampling errors and allow for a better
diversity representation (Golicz et al., 2016a). The dispensable
genome of crops is found to be linked with agronomic traits,
i.e., disease resistance, flowering time (Golicz et al., 2016a;
Bayer et al., 2019), and environmental stress response (Hardigan
et al., 2016; Hoopes et al., 2019). Graph-based pangenome
was exploited to detect the missing heritability in different
tomato accessions which helped it recovering 24% increase in
the previously measured heritability, thus making graph-based
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pangenome as a suitable technique to elucidate heritability of
complex traits in crop breeding (Zhou et al., 2022). CRISPR-Cas
(Cong et al., 2013) technology has revolutionized plant breeding
approaches by integrating them with genome editing (Scheben
and Edwards, 2017, 2018; Scheben et al., 2017).

All in all, a better knowledge of the genetic diversity
of the gene pool can enable trait dissection to pinpoint
beneficial genetic mutations, allowing breeding programs
to acquire a wide range of genetic resources to develop
best breeding strategies, and eventually strengthening crop
improvement to cultivate varieties with stable high yield under
stressful conditions.

Machine learning

Recent technological advancements and high throughput
techniques made it possible to have ample data on plant
genotypes and phenotypes which demands an extra effort to
obtain meaning from these measurements and incorporate
different data sets. Concurrently, machine learning has
advanced rapidly and is now extensively employed in plant
genotyping as well as phenotyping (van Dijk et al., 2021). More
importantly, genomics does not only involve the acquisition
of molecular phenotypes, but also the use of effective data
mining tools to predict and describe them (Wang H. et al.,
2020). Machine learning, an evolving multidisciplinary field
that proposes computational and analytical elucidation for the
integrative analysis of heterogeneous, large, and unstructured
datasets on a Big Data scale, is becoming an important tool in
biology (Ma et al., 2014; Jordan and Mitchell, 2015). Machine
Learning refers to a class of computerized modeling approaches
that imitate patterns from the data and make automated
decisions without programming explicit rules. The chief
idea behind ML is to efficiently use experiences to find core
structures, similarities and dissimilarities in data to describe
or categorize a new experience accurately (Singh et al., 2016).
Machine learning–based algorithms are effective enough to
manage enormous data sets that display high amounts of
noise, dimensionality, and/or incompleteness (Liu et al., 2020;
Mahood et al., 2020).

Machine learning reads the algorithms that computers use
to execute tasks by learning from data rather than trailing
explicit instructions (Liu et al., 2020). There are three basic
approaches: supervised learning, unsupervised learning, and
semi-supervised learning. The most frequently used machine
learning is supervised learning, in which each example in
the data set is categorized (Liu et al., 2020). Its goal is to
develop a model that maps its predictors (such as DNA
sequences) to target variables (such as histone marks). Some
examples of supervised learning applications are: prediction of
regulatory and non-regulatory regions in the maize genome
(Mejía-Guerra and Buckler, 2019), predicting level of mRNA

expression (Washburn et al., 2019), sequence tagging in rice
(Do et al., 2018), plant stress phenotyping, prediction of
polyadenylation site in Arabidopsis (Gao et al., 2018), and
prediction of macronutrient deficiencies in tomato (Tran et al.,
2019). Whereas, unsupervised Machine learning is based on an
algorithm that does not need tags, as in case of a clustering
algorithm (Libbrecht and Noble, 2015). And a semi-supervised
machine-learning approach needs labels but also uses unlabeled
examples (Libbrecht and Noble, 2015). Furthermore, ML based
digital image have been successfully employed for assessment
of diseases in crop plants. Such examples include the detection
of bacterial blight disease incidence in rice (Lu et al., 2017),
maize (Dechant et al., 2017), soybean (Ghosal et al., 2018),
and tomato (Prabhakar et al., 2020). Similarly, digital imaging
with python based ML programs was employed to assess the
mosaic, spots, brown streak, mites, and nutrient deficiency
in cassava (Ramcharan et al., 2019). Hyperspectral imaging
technique was utilized for the detection of yellow rust in
wheat (Zhang et al., 2019) and potato Y virus in potato
(Polder et al., 2019).

In reality, gene-finding systems are frequently trained by
utilizing a semi-supervised approach with a set of annotated
genes and an unlabeled whole-genome sequence as an input.
The kind of algorithm chosen by data scientists relies upon
what sort of data they desire to predict. Deep learning
has been employed to solve complicated biological problems
in metabolomics, genomics, proteomics, transcriptomics, and
systems biology, among other areas of large-scale data analysis
(Xu and Jackson, 2019). One of the chief advantages of
employing ML methodologies by physiologists, plant breeders,
biologists, and pathologists, is the capacity to search large
datasets for patterns and govern discovery by simultaneously
looking at a combination of factors rather than evaluating each
feature individually. ML will accelerate the development of
resilient crops by identifying crucial associations that regulate
biological process (Esposito et al., 2019). Deep learning is
being applied in genomics at DNA, RNA, and protein level.
At the DNA level, research associated with the promoter,
enhancer, non-coding DNA, methylation states, TSS position,
replication, cis-regulatory, and interaction is possible through
Deep learning. At the RNA level, deep learning has been
utilized to explore alternative splicing, IncRNA, microRNA,
messenger RNA, and expression. Deep learning also studies
DNA binding proteins, transcription factors, RNA binding
proteins, and generation of protein sequence at the protein
level. A Generative Adversarial Network has also been used
for clarifying biological queries at various molecular levels, as
discussed in Liu et al. (2020). Machine learning can be used
to gain new biological insights by predicting gene function
and interactions among various cellular components (Mahood
et al., 2020). ML provides well-defined benefits to analyze the
complicated role of gene activity in response to environmental
fluctuation and in determining plant phenotypes.
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Several strategies have been introduced to identify essential
genes for agronomically important characters, for example,
utilizing gene functions (Bargsten et al., 2014), exploiting
protein interactions (Liu et al., 2017), or employing gene
annotation, and sequence variation (Lin et al., 2019).
Furthermore, machine learning approaches will gain more
popularity for predicting crop yield, high-throughput crop
stress phenotyping, and assessment of the impact of climate
change (Singh et al., 2016; Crane-Droesch, 2018; Esposito et al.,
2019; Tong and Nikoloski, 2021).

New plant breeding technologies
as a revolutionary toolkit for smart
agriculture

In the present day, tackling total climate change, meeting
human nutritional requirements, and ensuring adequate energy
supplies remain resilient problems for humanity (Bevan and
Waugh, 2007; Scheben et al., 2016; Hendre et al., 2019; Hunter
et al., 2019). Plant breeding has always been important in
human history, revolutionizing agriculture to feed the world’s
continuously increasing population (Hill and Mackay, 2004).
The key purpose of plant breeding is to create a genetically
superior genotype that is suitable for both specific and general
cultivation for increased production. In conventional breeding,
farmers and crop breeders used to develop crop varieties by
means of basic procedures, i.e., the presence of desired traits
in plants for selection to propagate. Plant breeding evolved
as an important approach for plant domestication and crop
improvement around 10,000 years ago, utilizing the selection of
desirable characteristics through a consistent selection process
in many generations (Purugganan and Fuller, 2009).

However, crop production was inadequate to satisfy future
demand, so a novel agricultural model is required, which
includes cohesive systems of modern molecular breeding,
various agronomic practices, and analysis of plant-microbiome
interaction. As a result, climate-smart agriculture is getting
prominence for developing climate-resilient crop varieties
through the use of next-generation breeding strategies that
can resist multidimensional stresses. And these climate-
resilient crops are a crucial component concerning food and
nutritional security.

Recognizing the significance of genomic resources in plant
breeding programs, a massive amount of genetic data related to
genes and QTLs (Quantitative Trait Loci) is obtained after the
emergence of molecular biology and biotechnology (Wang and
Pfeiffer, 2007). Genomics provides tools to tackle the challenges
regarding food yield, quality and stability of production via
advanced breeding techniques. Innovations in plant genomics
enhance the knowledge of crop diversity at gene and species

level, and an understanding of DNA markers for genetic
improvement (Muthamilarasan et al., 2013, 2014).

These are some of the next-generation breeding tools
that can be employed in marker-assisted selection to develop
climate-resilient superior traits, combating problems of
global food security.

Genomic-assisted breeding

The use of genomics tools to improve the efficacy of
plant breeding is known as GAB (Varshney et al., 2005). The
GAB strategies include Marker-Assisted Backcrossing (MABC);
backcrossing for beneficial alleles within elite germplasm,
Marker-Assisted Recurrent Selection (MARS), and Genomic
Selection (GS) that are being used in breeding programs. MABC
is the most commonly used technique for improving elite
varieties by introducing a few loci or Major QTLs. GAB has
accelerated breeding progress across a wide range of crop species
over the last 15 years, developing more than 130 publicly bred
cultivars of various crops (Vogel, 2014).

Genetic mapping and QTL analysis using bi-parental or
Association Mapping (AM) populations have advanced the
analysis of genetic control of agricultural traits, potentially
permitting MAS, QTL, and AM studies, as well as direct
calculation and GS of high value genotypes for breeding
programs (Kole et al., 2015). NGS combined with GWAS
improves mapping resolution for accurate gene/allele/QTL
location (Liu et al., 2013; Varshney et al., 2014; Kole
et al., 2015). Next-generation breeding can be driven
by the integration of advanced genomic technologies
such as NGS and comprehensive phenotyping (Varshney
et al., 2005). Genomic selection (GS) is another powerful
tool for facilitating the selection of superior genotypes,
speeding up the breeding cycle, and lowering the budget of
breeding line development (Crossa et al., 2017). Genome-
Wide Association Studies explore marker-trait build
upon the large nucleotide variation found in association
mapping populations.

Genome editing

Plant breeding strategies can be revitalized by genome
editing. Evidently, genome editing is creating new opportunities
for accurate and faster crop modification to increase yields and
guard them against diseases, pests, and abiotic stresses. The great
promise of genome editing techniques is making crop breeding
faster, more effective, and at a reduced cost. CRISPR genome-
editing technology opens new opportunities to engineer disease
resistance traits. CRISPR is expected to solve major crop
improvement challenges through precise genome engineering
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and transgene-free applications. The introduction of next-
generation CRISPR-associated (CRISPR/Cas) systems for
example base editing, prime editing and de novo domestication,
consumes the notion towards the potential of genome editing as
repurposed for the improvement in crops.

Genome editing employs site-specific nucleases (SSNs)
that are premeditated to bind and create a break in a
particular nucleic acid site, generating double-stranded breaks
(DSBs) at or close to the target site (Pickar-Oliver and
Gersbach, 2019). The DNA DSBs are then repaired naturally
either through homologous recombination (HR) or error-
prone non-homologous end joining (NHEJ) (Miglani, 2017;
Wright et al., 2018; Jun et al., 2019). These DSBs repair
can be governed to obtain the ideal modifications in a
sequence for instance insertions or deletions of large transgene
arrays [160]. These SSNs have substantial plant breeding
potential, as they present multidimensional approaches for
modulating genome structure as well as function of host, such
as targeted mutagenesis, gene knock-out, stacking, knock-in,
and translation modulation. Browning-resistant mushrooms
(Waltz, 2016b), high-amylopectin waxy corn (Zea mays) (Waltz,
2016a), and false flax (Camelina sativa) with enhanced omega-
3 oil (Waltz, 2018) are recent examples of such products
which were created utilizing CRISPR and authorized by the
US Department of Agriculture (USDA) in quick time. As a
result, CRISPR-Cas9 technology has been broadly utilized to
create nutrition-improved as well as climate-resilient cereal
crop cultivars (Xu et al., 2016; Shi et al., 2017; Kim et al.,
2018; Razzaq et al., 2019; Raza et al., 2021). Potato is an
important food crop in different countries of the world and
faces challenges like drought, heat, nitrogen deficiency, bacterial
diseases, insect pests, and their mediated viruses (Tiwari et al.,
2022b). Solanum genus harboring genetic diversity has been
explored through conventional potato breeding and can be
further enriched with latest NGS based transcriptomics studies
(Tiwari et al., 2020a,b,c) that would ultimately lead to the
specific gene target identification for CRISPR-based genome
editing (Tiwari et al., 2022a,c) providing new insights in
crop improvement.

Pan genomes

Crop pan genomics focuses on distinct genetic factors
such as SNPs, mutations, and genes comprising structural
variants (SVs) that govern crucial traits of interest within
population. Crop pan-genome studies allow us to recover genes
vanished in the reference genomes through the course of crop
domestication. The accessibility of a crop’s pan-genome, which
includes its CWRs, cultivated varieties and landraces, provides
a well-defined scheme for collecting all information round the
variations present at genotypic and phenotypic levels which
allows the detection of missing, common and unique genes

in the reference crop genomes (Danilevicz et al., 2020). The
information of dispensable genome aids in selection of the elite
crop cultivars against stresses possessing stress-responsive gene
regulation (Bayer et al., 2019).

Artificial intelligence/machine learning

Crop improvement for food security relies upon the
capability to detect advantageous agricultural traits in a
timely and cost-effective manner. Traditional phenotyping
techniques are expensive and time consuming, so the use
of high-throughput plant phenotyping (HTTP) has increased
in recent years. Machine learning is basically a budding
application of Artificial Intelligence, which can be characterized
as cutting-edge computer-based systems which enables the
machine to learn automatically and enhance its potential
without being rigorously computed (Singh et al., 2016).
Genomic selection allows for rapid screening of elite germplasm
and accelerates crop breeding cycles (Crossa et al., 2017).
Presently, genomic selection relies on advances in machine
learning tools and the recovering of huge genotyping data
sets associated with agronomically important phenotypic
characteristics (Tong and Nikoloski, 2021).

Speed breeding

The most intriguing technology, called as speed breeding
has captured the attention of the entire world. NASA prompted
a scientist from the University of Queensland to grow wheat
plants in space. Speed breeding is an effective tactic for reducing
crop-generation time and accelerating breeding programs for
crop improvement. Speed breeding has been a revolutionary
technology in agriculture and could be used to speed up crop
breeding tasks for example swift gene identification, crossing,
mapping populations, backcrossing, and trait pyramiding
(Bhatta et al., 2021). Off-season nursery/shuttle breeding,
in vitro/embryo culture, and double haploid technology have
all been used to decrease generational interval time in various
crops. Speed breeding enables speedy generation advancement
by manipulating the major parameters required by the plants
including, temperature, day length, and light intensity, which
leads to the reduction in generation time from 2.5 to 5 as
compared to the normal greenhouse and field conditions. In
case of barely, chickpea, canola, and wheat 2–3 generations are
usually achieved in a controlled greenhouse, however, speed
breeding allows you to achieve 4–6 crop generations within
a year, providing a great opportunity to develop varieties
in a short duration. Other crops where speed breeding has
been successfully employed are rice, soybean, sorghum, millets,
rapeseed, sugarcane, tomato, and potato which is encouraging
to deal with challenging food security (Hickey et al., 2019).
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Future outlook

Expanding population around the globe poses a great
challenge to mankind by challenging food security issues. The
major factor that is affecting the global food supply from
field to product remains climate change. It throws multiple
stresses on the crops including drought, salinity, pests, diseases,
and other yield-related pressures. Furthermore, the inflation
in food prices in recent years with the threatening economic
upshot of the COVID-19 pandemic and the man-intended wars
have led to disrupting the food supply chain and magnifying
poverty, malnutrition, and hunger, entailing sustainable food
security globally. In this scenario, Improved agriculture is the
key to mitigating these concerns; therefore; biotechnology offers
modern smart breeding tools for producing future smart crops.
These tools have been successfully employed to run successful
breeding programs; however; there is a dire need to utilize
smart breeding approaches on underutilized, complex, and
orphan food crops.

Crop wild relatives, already available germplasm, and
landraces are potential candidates for the transfer of disease or
stress-related gene pools to cultivated crops. Yield stagnancy
and increased use of fertilizers in the crops might also be
overcome by utilizing the CWRs, and germplasm available

across the world. However, the identification of target trait
genes and transferring them to cultivated crops could be very
time-consuming if conventional breeding is employed alone,
therefore latest gadgets of MAS, NGS, bioinformatics data
processing, speed breeding, and high throughput phenomics
will aid in accelerating this overall process. For instance,
among cereals, Pearl millet is one of the resilient and
hardiest crops that is cultivated in warm climatic regions
of the world, thus has the features of climate resilience,
adaptation to different ecological conditions, high nutritional
value, better growth rate, and less utilization of fertilizers
and irrigation. Therefore, millets can be crops of choice to
transfer these beneficial attributes to other crop relatives.
Moreover, the wild relatives of the millets are Pennisetum,
which also has great potential to provide genetic diversity
for millet and other cultivated cereals. With the advent of
high throughput genomics and phenomics, now it would be
possible to explore such genetic resources extensively and
identify syntenic genes/QTLs in millets which can help in
producing climate-smart crops to overcome food security
challenges in the future.

High throughput phenomics-based smart agriculture
enables the increased quantity and quality of crops with the
help of artificial intelligence, machine learning algorithms, and

FIGURE 5

Cutting edge new plant breeding innovative technologies having the potential to turnaround the problems of food security.
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remote sensing to explore and record the cultivation area in
terms of salt, moisture levels, pH, soil quality, disease, pest or
stress, and yield-related metadata. This could be very helpful
in identifying the wild relatives or germplasm with target traits
grown in large areas as well as for the precise selection of
phenotypes among the crossed population. Genomic-assisted
breeding combined with high throughput phenomics is the need
of the hour for GS in less time. If a CWR or germplasm, is found
harboring several good traits like disease resistance and well-
adapted to hot weather, but its yield is stagnant or vice versa,
then CRISPR offers the best opportunity to silence the unwanted
genes in the crops.

Malnutrition is another challenge being faced by humanity,
particularly in low-income countries where people are living
below-standard life. Biofortified food crops could be the finest
source of enriched Zn, Iron, nutrients, and vitamins. Efforts
are underway to develop and commercialize biofortified wheat
through breeding and it has been executed in a few countries.
Nonetheless, breeding takes a long time so, as an alternative,
genetically modified crops, called GMOs have been launched for
crop improvement, which is not very much adored worldwide
in the case of food crops because of the presence of foreign
genes in plant DNA. One of the very famous illustrations is
vitamin A-enriched golden rice produced in 1999 and remained
under debate for two decades. It passed a rigorous process of
risk assessment and got approval in the Philippines as safe rice
in 2019. In this era, the new plant breeding technology tool
CRISPR can aid in the deletion or insertion of the target gene for
enhancing the nutritional value of staple food crops. However,
the issues of complex regulatory processing, risk assessment,
and public acceptance must timely be resolved, so that they
could not hinder the timely crop availability to the farmers.
Automated ML software and artificial intelligence programs
with data analysis could potentially provide support in reducing
the complicated and repeated risk assessments of the food crops.

Next-generation sequencing plays a crucial role to identify
important genes and markers involved in a trait, for that,
training of the manpower is very imperative because biological
data is expanding extremely day by day. Likewise, the availability
of pan-genomes of crops will aid in running improved breeding
schemes, particularly in complex genome crops to elucidate
the common or unique gene combinations for different traits.
Nevertheless, all these technologies demand efficient computing

machines and parallelization for keeping pace with growing
data. The deployment of genome editing with speed breeding
and phenomics can help in fast-track crop breeding. Overall,
NGS-based multi-omics, genotyping techniques, genome
editing, QTLome of the crop, SNP detection, plant-microbe
engineering, epigenetic analysis, precision breeding, generation
turnaround tools, and directed evolution are the innovative
technologies as shown in Figure 5 will potentially keep helping
us in designing future climate-smart food crops.
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