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Smart Buildings in the Smart Grid:

Contract-Based Design of an Integrated Energy

Management System

Mehdi Maasoumy, Pierluigi Nuzzo and Alberto Sangiovanni-Vincentelli

Abstract In a supply-following “smart” grid scenario, buildings can exploit re-

motely controllable thermostats and “smart” meters to communicate with energy

providers, trade energy in real-time and offer frequency regulation services, by

leveraging the flexibility in the energy consumption of their heating, ventilation and

air conditioning (HVAC) systems. The realization of such a scenario is, however,

strongly dependent on our ability to radically re-think the way both the grid and the

building control algorithms are designed. In this work, we regard the grid as an inte-

grated, distributed, cyber-physical system, and propose a compositional framework

for the deployment of an optimal supply-following strategy. We use the concept of

assume-guarantee contracts to formalize the requirements of the grid and the build-

ing subsystem as well as their interface. At the building level, such formalization

leads to the development of an optimal control mechanism to determine the HVAC

energy flexibility while maximizing the monetary incentive for it. At the grid level,

it allows formulating a model predictive control scheme to optimally control the

ancillary service power flow from buildings, while integrating constraints such as

ramping rates of ancillary service providers, maximum available ancillary power,

and load forecast information. Simulation results illustrate the effectiveness of the

proposed design methodology and the improvements brought by the proposed con-

trol strategy with respect to the state of the art.
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1 Introduction

Energy consumers do not usually pay enough attention to when they use energy.

Demand for electricity tends to rise especially at times when it seems natural to use

it; so natural, in fact, that we all tend to use energy at the same time and in similar

ways. Such a common practice can easily lead to peaks in electricity demand that

are traditionally met by operating extra power plants for limited portions of time, a

solution which is generally expensive and environmentally unfriendly.

A more environmentally-friendly alternative to such a demand-following strategy

is offered by supply-following (SF) programs, where utilities provide incentives to

encourage consumers to reduce their demand during peak periods and use electric-

ity at a less congested time. Another solution would be to significantly increase the

penetration of Renewable Energy Sources (RESs), thus avoiding the introduction of

expensive power plants. Several states in the United States and countries around the

world have set ambitious targets for penetration of RESs by the next few years. The

State of California, as an example, has targeted a 33% RES portfolio by 2020 [9].

However, a large-scale power grid requires continuous power balance between sup-

ply and demand; the power flows through individual transmission lines and facilities

should also be controlled by continuously adjusting generation or load. Such an in-

stantaneous matching becomes challenging due to the volatility, uncertainty, and

intermittency of RESs, and makes their integration into the grid extremely difficult.

The situation is even worsened by the uncertainties and randomness in the demand,

due to short-term random switching of millions of individual loads, or longer-term

(e.g. daily or seasonal) fluctuations in load and weather patterns.

While electricity storage is widely believed to be a solution to these problems

by partially absorbing the variability associated with RESs and providing the extra

power required at the peak energy demand hours, it is considered as an expensive

and not environmentally-friendly solution. On the other hand, there is an emerg-

ing consensus that the transition from a demand-following strategy to a supply-

following one will finally be enabled by the deployment of advanced metering in-

frastructure (AMI) devices in the smart grids. In a smart grid, new functions, de-

noted as ancillary services, are performed by the entities that generate, control, and

transmit electricity in support of the basic services of generating capacity, energy

supply, and power delivery. In this context, smart buildings can play a significant

role. Buildings have inherent flexibility in the way their heating, ventilation and air

conditioning (HVAC) systems consume electricity while respecting the occupants’

comfort. This flexibility could be used to reduce costs if the electricity price is time-

varying, or could be traded (i.e., sold to the utility) to be used for ancillary services.

Such flexible loads with thermal storage capabilities, also denoted as Thermo-

statically Controlled Loads (TCLs), are deemed to play an important role in regulat-

ing the grid frequency and, consequently, in enabling deep penetration of RESs.

It has been reported that about 20% of the total electricity consumption in the

United States is used by residential TCLs such as air conditioners, heat pumps,

water heaters, and refrigerators [1, 2]. Recently, [20, 21] have shown that flexible

loads such as TCLs are good candidates for providing ancillary services since their
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aggregate flexibility can be controlled very fast, and sums up to tens of Gigawatts of

power, only in the United States. Modeling, estimation, and control of aggregated

heterogeneous TCLs for ancillary services have been discussed in [12]. TCLs are

particularly well-suited for Direct Load Control and Demand Response programs

that require loads to both decrease and increase power consumption because they

are capable of storing thermal energy, much like a battery stores chemical energy.

Despite several challenges in using loads for system services, key advantages in-

clude: (i) reduction in the overall grid emissions [32]; (ii) instantaneous response of

loads to operator requests, versus slow response of generators to significant output

changes [11]; and (iii) less variability associated to a very large number of small

loads with respect to that of a small number of large generators [11]. Therefore,

while ancillary services have been conventionally supplied by generation units, the

increasing need for more energy storage capacity for frequency regulation, as well

as more agile sources of ancillary services, makes it attractive to also use energy

reserves on the demand side. It may soon be the case that the only technical im-

pediment to reliable utilization of loads for system services is the development of

the necessary models and control strategies and the development of inexpensive and

scalable communication and sensing infrastructure [36].

To fully exploit the potential of buildings as service providers, we need to fun-

damentally re-design the way both the building HVAC system and the grid are con-

trolled. This chapter addresses the problem of developing models and control algo-

rithms for the deployment of a supply-following strategy in a smart grid, from the

perspective of a hierarchical, distributed, cyber-physical system. The smart grid is

intrinsically distributed, since different control algorithms must be executed in par-

allel on different components (e.g. buildings, energy providers) to achieve a com-

mon goal. On the other hand, the buildings can be abstracted as a load for the grid,

which highlights the hierarchical nature of the system, where the designer is al-

lowed to define the global behavior (via the grid controller) together with the local

behavior of the “plant” (via the building controller).

Historically, very few, high-capacity reserves, such as industrial plants [33], have

been used to provide ancillary services on the demand side. However, when a

“swarm” of widespread and smaller capacity reserves are available, these service

providers are better managed by intermediate entities called aggregators. The role

of an aggregator is to provide appropriate incentives for a swarm of buildings at the

right time, bundle the resulting capacity, and sell it in the wholesale market for fre-

quency regulation. In this chapter, to simplify, we abstract into one grid agent all the

players beyond the aggregator, such as the wholesale market players and the gen-

eration units, and denote as buildings the demand-side service providers that deal

with the aggregator. We then focus on grid and buildings as the two sides of the

supply-demand spectrum, by abstracting all the intermediate entities involved in the

chain from power generation to power consumption.

To address the challenges originating from this distributed and hierarchical sys-

tem, we resort to a Contract-Based Design (CBD) methodology. CBD has recently

emerged as a compositional paradigm for the design of complex systems, empha-

sizing the concept of interface and requirement formalization to facilitate system
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integration and provide formal support to the whole design flow [25, 31]. We use

assume-guarantee contracts to formalize the requirements of the buildings, the grid,

and their interface. Based on this formalization, we build on top of the supply-

following scenario introduced in [20] and [21]. However, while in [20] and [21]

the grid and building control schemes are derived and investigated separately, in

this chapter, we provide an integrated design framework for Model Predictive Con-

trol (MPC) synthesis, which can combine and subsume both the approaches in [20]

and [21]. At the building level, we develop an optimal control mechanism to de-

termine the HVAC flexibility while maximizing the monetary incentive for it in a

receding horizon fashion. At the grid level, we formulate a model predictive control

scheme to optimally control the ancillary service power flow from buildings, while

integrating constraints such as ramping rates of ancillary service providers, max-

imum available ancillary power, and load forecast. We use MPC as a convenient

framework that allows optimizing a desired cost-function over a finite time horizon

while, at the same time, satisfying a set of constraints.

The advantage of our contract-based methodology with respect to previous works

is threefold: (i) it enables compositional design of the building and the grid MPC

schemes, so that they can be independently implemented, while still guarantee-

ing that their integration is correct; (ii) it allows extending the approaches in [20]

and [21] to highly distributed architectures, including a large number of control

areas and buildings, in a scalable way; (iii) it supports automatic synthesis of em-

bedded control software directly from assume-guarantee specifications.

The remainder of the chapter is organized as follows. Section 2 and Section 3

provide background information on the supply-following scenario of interest, and

on our contract-based design methodology, thus setting the stage for our formula-

tions. Section 4, Section 5 and Section 6 detail the main steps of our methodology,

i.e. contract-based requirement formalization, generation of the model library, and

MPC synthesis. Simulation results, in Section 7, illustrate the effectiveness of our

design methodology and the improvements brought by the proposed control strategy

with respect to the state of the art. Finally, Section 8 draws some conclusions.

2 A Supply-Following Scenario for Smart Buildings

In this section, we provide an overview of the Supply Following (SF) scenario con-

sidered in this chapter, by focusing on commercial buildings. Compared to residen-

tial buildings, commercial buildings typically have larger HVAC systems and there-

fore consume more electricity. In fact, commercial buildings account for more than

35% of electricity consumption in the US. Moreover, more than 30% of them have

adopted a Building Energy Management System (BEMS) technology which facili-

tates the communication with the grid operators to provide flexibility. The majority

of these buildings are also equipped with variable frequency drives, which in co-

ordination with the BEMS, can modulate the HVAC system power consumption at

intervals of the order of seconds. About 15% of electricity consumption in commer-
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cial buildings is related to the fans of the HVAC systems. Fans are the main drivers,

moving the conditioned air from the air handling units (AHU) to the rooms for cli-

mate control. For instance, the main supply fans that feed one of the buildings on

the U.C. Berkeley campus, Sutardja Dai Hall, can spin at variable speeds, with the

maximum rated power of 134 kW, proportional to the cube of the fan speed, which

is about 14% of the maximum power consumed in the whole building. Moreover,

the power consumed by the fans can be directly controlled upward or downward,

thus making it an ideal candidate for ancillary services.

We refer to [15, 16, 18, 22, 28] for more information about the physics and con-

trol of HVAC systems. Moreover, we refer to [20, 21] for at-scale experiments on a

real building, and a discussion on the feasibility of the proposed SF approach. We

only observe here that modulating the fan speed of HVAC systems for extended pe-

riods of time with the existing control algorithms can lead to discomfort and does

not allow optimizing the amount of flexibility provided by a building [19]. Hence,

we propose to re-design the control algorithm, and consider commercial buildings

whose HVAC systems are controlled by a Model Predictive Control (MPC) scheme

running an optimal control problem at each time step k. Typically, the MPC aims

at minimizing the total energy cost (in dollars). In an SF scenario, such cost must

account for the reward received from the utility because of the building flexibility in

energy consumption [20]. We refer to Table 1 and Table 2, later in the chapter, for a

summary of the variables and parameters used in the description below.

To quantify the building flexibility, we adopt as a natural metric the difference be-

tween the upper and lower power envelopes that can be consumed without violating

any constraints, i.e., at each time step k,

Flexibility(k), Pf (e
u
k)−Pf (e

l
k) (1)

where eu
k and el

k are, respectively, the upper and lower bounds on the air mass flow

of a building, and Pf (.) returns the power consumption as a function of the air mass

flow. Moreover, following the approach of [20], we assume that a commercial con-

tract is stipulated between the utility and the building manager, whose duration,

in terms of time steps, is tce − tcs = Hc, where tcs and tce are the commercial con-

tract start and end times, respectively. The commercial contract has a limited du-

ration because of the limited accuracy of the predicted flexibility by the building

far ahead in time. Based on such commercial contract, the BEMS declares a lower

envelope el = [el
tcs
, . . . ,el

tce
], an upper envelope eu = [eu

tcs
, . . . ,eu

tce
] and a baseline

u∗ = [u∗tcs
, . . . ,u∗tce

] air mass flow profiles for the duration of the contract. The utility

is then allowed to select any power trajectory Pf (u) = [Pf (utcs), . . . ,Pf (utce)] such

that, for all k ∈ {tcs, . . . , tce}, Pf (e
l
k) ≤ Pf (uk) ≤ Pf (e

u
k). However, the SF contract

is deterministic, since the utility and the building operator both know how much

money they have to pay or they receive from the beginning of the commercial con-

tract. The utility charges the building operator for the baseline power consumption

Pf (u
∗), irrespective of the deviations due to flexibility signals, at a rate πππe. On the

other hand, the utility rewards the building operator for its declared flexibility, by
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Fig. 1 Schematic of the proposed grid architecture and contractual framework.

providing both a downward flexibility rate βββ and an upward flexibility rate βββ with

respect to the baseline power.

Clearly, by obeying the utility power consumption signals, the building may con-

sume more or be in a worse state at the end of the Hc time slots with respect to

a conventional demand-following protocol. The flexibility declared by the building

operator would then be significant only if: (i) it is enough to be effectively exploited

for frequency regulation services [21], and (ii) the reward from the utility is appro-

priate for the building. The schematic of the entire system architecture is shown in

Fig. 1. The solid-line arrows correspond to the baseline power flow. The ancillary

power flow is represented by a dashed-line arrow. For the architecture in Fig. 1 and

the commercial contract summarized above, we can state our energy management

integrated control problem as follows:

Integrated Energy Management Problem Statement. Given the real-time

state of the buildings (e.g. indoor temperature, occupancy, internal heat, out-

side weather condition), a set of building temperature and control require-

ments, the real-time state of the grid (e.g. frequency deviation, generation

and load forecast), a set of frequency regulation requirements, the per-unit

energy price, the upward and downward flexibility rewards, and the duration

of the commercial contract, design an optimal control strategy to determine

the baseline power consumption, downward and upward building power en-

velopes, and grid flexibility signals for the buildings, while satisfying both the

building and grid requirements.
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In our scenario, the grid essentially controls the building consumption for the

next Hc time slots, by sending flexibility signals (similar to frequency regulation

signals) to be tracked by the HVAC fans as frequently as every few seconds.

In the next sections, after an overview of Contract-Based Design (CBD), we

present a design framework that leverages a formalization of the control goals above

and a library of models to generate the MPC schemes at both the building and the

grid levels.

3 Contract-Based Design of Cyber-Physical Systems

The notion of formal contracts originates in the context of assume-guarantee rea-

soning. Informally, a contract is a pair C = (A,G) of properties, assumptions and

guarantees, respectively representing the assumptions on the environment and the

promises of the system under these assumptions. The essence of contracts is a com-

positional approach, where design and verification complexity is reduced by de-

composing system-level tasks into more manageable subproblems at the component

level, under a set of assumptions. System properties can then be inferred or proved

based on component properties.

Compositional reasoning has been known for a long time, but it has mostly been

used as a verification mean for the design of software. Rigorous contract theories

have then been developed over the years, including assume-guarantee (A/G) con-

tracts [4] and interface theories [7]. However, their concrete adoption in CPS design

is still in its infancy [25]. Examples of application of A/G contracts have only been

recently demonstrated in the automotive [5] and consumer electronics [26] domains.

The use of A/G contracts for control design in combination with platform-based de-

sign (PBD) [30] was advocated in [25, 31], while in [27, 24, 10], a methodology

was introduced that used contracts to integrate heterogeneous modeling and anal-

ysis frameworks for synthesis and optimization of CPS architectures and control

protocols. The design flow was demonstrated on a real-life example of industrial

interest, namely the design of system topology and supervisory control for aircraft

electric power systems (EPS).

3.1 Contracts

We summarize the main concepts behind our methodology by presenting a simple

contract model centered on the notion of platform component. A platform compo-

nent M can be seen as an abstraction representing an element of a design, character-

ized by a set of attributes, including: variables (input, output and internal), config-

uration parameters, and ports (input, output and bidirectional); a behavioral model,

uniquely determining the values of the output and internal variables given the val-

ues of the input variables and configuration parameters, and a set of non-functional
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models, i.e. maps that allow computing non-functional attributes of a component,

corresponding to particular valuations of its input variables and configuration pa-

rameters. Components can be connected together by sharing certain ports under

constraints on the values of certain variables. In what follows, we use variables to

denote both component variables and ports. A component may be associated with

both implementations and contracts. An implementation M is an instantiation of a

component M for a given set of configuration parameters. In the following, we also

use M to denote the set of behaviors of an implementation, which assign a history

of “values” to ports. Behaviors are generic and abstract. For instance, they could be

continuous functions that result from solving differential equations, or sequences of

values or events recognized by an automata model.

A contract C for a component M is a pair of assertions (A,G), called the as-

sumptions and the guarantees, each representing a specific set of behaviors over the

component variables [4]. An implementation M satisfies an assertion B whenever

M and B are defined over the same set of variables and all the behaviors of M sat-

isfy the assertion, i.e. when M ⊆ B. An implementation of a component satisfies

a contract whenever it satisfies its guarantee, subject to the assumption. Formally,

M ∩A ⊆ G, where M and C have the same variables. We denote such a satisfac-

tion relation by writing M |= C. An implementation E is a legal environment for

C, i.e. E |=E C, whenever E ⊆ A. Two contracts C and C
′ with identical variables,

identical assumptions, and such that G′ ∪¬A = G∪¬A, where ¬A is the comple-

ment of A, possess identical sets of environments and implementations. Such two

contracts are then equivalent. In particular, any contract C= (A,G) is equivalent to

a contract in saturated form (A,G′), obtained by taking G′ = G∪¬A. Therefore, in

what follows, we assume that all contracts are in saturated form. A contract is con-

sistent when the set of implementations satisfying it is not empty, i.e. it is feasible

to develop implementations for it. For contracts in saturated form, this amounts to

verify that G 6= /0. Let M be any implementation, i.e. M |= C, then C is compatible, if

there exists a legal environment E for M, i.e. if and only if A 6= /0. The intent is that

a component satisfying contract C can only be used in the context of a compatible

environment.

Contracts associated to different components can be combined according to dif-

ferent rules. Similar to parallel composition of components, parallel composition

(⊗) of contracts can be used to construct composite contracts out of simpler ones.

Let M1 and M2 two components that are composable to obtain M1 ×M2 and satisfy,

respectively, contracts C1 and C2. Then, M1 ×M2 is a valid composition if M1 and

M2 are compatible. This can be checked by first computing the contract composition

C12 = C1 ⊗C2 and then checking whether C12 is compatible. To compose multiple

views of the same component that need to be satisfied simultaneously, the conjunc-

tion (∧) of contracts can also be defined so that if M |= C1 ∧C2, then M |= C1 and

M |= C2. Contract conjunction can be computed by defining a preorder on contracts,

which formalizes a notion of refinement. We say that C refines C′, written C� C
′ if

and only if A ⊇ A′ and G ⊆ G′. Refinement amounts to relaxing assumptions and

reinforcing guarantees, therefore strengthening the contract. Clearly, if M |= C and

C � C
′, then M |= C

′. On the other hand, if E |=E C
′, then E |=E C. Mathemati-
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cal expressions for computing contract composition and conjunction can be found

in [4].

3.2 Design Flow

In [27, 24], we introduced a design methodology that addresses the complexity and

heterogeneity of cyber-physical systems by using assume-guarantee contracts to for-

malize the design process and enable realization of control protocols in a hierarchi-

cal and compositional manner. Given the architecture of the physical plant to be

controlled, the design is carried out as a sequence of refinement steps from an initial

specification to a final implementation, including synthesis from requirements and

mapping of higher-level functional and non-functional models into a set of candi-

date solutions built out of a library of components at the lower level. Initial top-level

requirements are captured as contracts and expressed using linear temporal logic

(LTL) [29] and signal temporal logic (STL) [23] formulas to enable requirement

analysis and early detection of inconsistencies. Requirements are then refined into

a controller architecture by combining reactive synthesis steps from LTL specifica-

tions with simulation-based design space exploration steps. We have demonstrated

our approach on the design of embedded controllers for aircraft electric power dis-

tribution. In this work, we adapt and extend our methodology to the design of MPC

algorithms. In our design flow, pictorially represented in Fig. 2, platform component

design and characterization is completely orthogonalized from system specification

and algorithm design.

Requirement Formalization. In the top-down phase of the design process, top-

level system requirements are formalized as contracts. Responsibilities of achieving

requirements are split into those to be established by a system (guarantees) and those

characterizing admissible environments (assumptions). In a distributed control set-
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ting as in our application, the requirements of a controller C can be expressed as a

contract CC = (AC,GC), where AC encodes the allowable behaviors (i.e. trajectories,

or sequences of valuations over a set of variables) of the environment (e.g. physical

plant, or other controllers) and GC encodes the required behaviors of C. To define

CC, as shown Fig. 2, we can leverage a discrete time abstraction of the continu-

ous behaviors of the components. We then express AC and GC as either first order

difference equations involving the component variables and parameters (time vary-

ing properties), or arithmetic constraints on real variables that must hold at each

time step (time invariant properties). The algebra of contracts can then be imple-

mented by simply combining constraints via conjunction or disjunction to express,

respectively, intersections or unions of behaviors. Examples of this approach will be

provided in Section 4.

Platform and Contract Library Generation. In the bottom-up phase of the de-

sign process, a library of components (and contracts) is generated to model (or spec-

ify) both the plant architecture (e.g. the power system or the building) and the con-

trollers. Components can be hierarchically organized to represent the system at dif-

ferent levels of abstraction, e.g. steady-state (static), discrete-event (DE), and hybrid

levels. At each level of abstraction, components are also capable of exposing mul-

tiple, complementary views, associated with different design concerns (e.g. safety,

performance, reliability) and with models that can be expressed via different for-

malisms (e.g. graphs, linear temporal logic, differential equations), and analyzed by

different tools. Such models include non-functional (performance) metrics, such as

timing, energy and cost. As detailed in Section 5, in this work, we model our plat-

form components by adopting the same discrete-time abstractions and formalisms

we use for requirements. System behavioral models are expressed using difference

equations, while performance and cost models are polynomial functions of the com-

ponent variables and parameters.

Mapping Functions to Implementations. System design (synthesis) is cast as a

set of problems mapping functionality (specifications or requirements) over imple-

mentations. A mapping problem can be solved by casting an optimization problem

that uses information from both the system and the component levels to evaluate

global tradeoffs among components or minimize a cost function.

For an MPC scenario, let CMPC be the contract formalizing the requirements of

the closed loop architecture in Fig. 3, where M is the controller and P the plant, and

let H be the MPC horizon. We assume that the system dynamics are described by

the following difference equation at each time step t:

xt+1 = p(xt ,ut ,dt) ∀ t ∈ N, (2)

where xt is the system state, ut the control input, and dt an external uncontrolled

input (disturbance). We denote as s = (x,u,d) the set of system variables. A system

behavior or trajectory σ = s0,s1,s2, . . . is a sequence of valuations over s, for all t ∈
N. We also assume that the assumptions and guarantees in CMPC can be represented

as follows:
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AMPC = {σ |αt(st)≤ 0 ∀ t ∈ N} GMPC = {σ |γt(st)≤ 0 ∀ t ∈ N}, (3)

where αt(.), γt(.) are generic real functions (constraints) parameterized by t. Finally,

let C(u,x) be a real function providing the system cost in terms of system state and

control. Then the optimal control problem aiming at minimizing the cost over time

horizon H while satisfying the system dynamics and contract can be formulated as

follows:

min
ut

H−1

∑
k=0

C(ut+k,xt+k) (4a)

subject to: xt+k+1 = p(xt+k,ut+k,dt+k), ∀ k ∈ {0, ...,H −1} (4b)

γt+k(xt+k,ut+k,dt+k)≤ 0, ∀ k ∈ {0, ...,H −1} (4c)

αt+k(xt+k,ut+k,dt+k)≤ 0, ∀ k ∈ {0, ...,H −1} (4d)

where ut = (ut ,ut+1, . . . ,ut+H−1). Both contract assumptions and guarantees are

captured as optimization constraints. The resulting optimal control algorithm exe-

cutes the optimization problem (4) in a receding horizon fashion, and is returned as

the final design.

4 System Requirement Formalization

We consider a control area network as the one shown in Fig. 4. In particular, for the

sake of illustration, we use a simplified two-area model, and abstract the complex-

ity of the full power transmission and distribution subsystem. Commercial build-

ings have HVAC systems controlled by an MPC scheme, while the grid utilizes a

hierarchical control scheme composed of a high-level MPC framework on top of

the low-level classical automatic generation control (AGC), detailed in Section 5.2.

The MPC schemes are based on discrete-time models of the system dynamics. Let

τG and τB be the sampling times for the grid and building dynamics, respectively.
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Fig. 4 A two-area model of the system architecture considered in this chapter.

Generally, τG is much smaller than τB since the grid must be able to send control

signals as fast as every second, while τB may range from 15 min to 1 h.

We also assume that Hm and H are the time horizons of the MPC scheme

adopted, respectively by the building subsystem (B-MPC) and the grid (G-MPC),

with Hm ≫ Hc ≫ H, where Hc is the length of the commercial contract. The choice

of Hm depends on how far in the future the predicted values of the building model

parameters have an acceptable accuracy and the inputs to B-MPC (e.g. cost of en-

ergy) are available. Typical values for Hm range from a few hours to a few days. For

instance, by assuming τB = 1 h for the building dynamics, Hm may range from 3 to

72 time slots. Similarly, the choice of H depends on the accuracy of the grid model

and grid load forecast. Finally, typical values for Hc can range from one to a few

building time slots τB. In particular, we pick the contract start time tcs and end time

tce such that tce− tcs = Hc, tcs ≥ 1 and tcs+1 ≤ tce, in units of τB. In our simulations,

we use Hm = 24 h, Hc = τB = 1 h, τG = 1 s and H = 60 s.

A summary of all the variables and parameters used to formalize the requirements

and generate the MPC schemes is provided in Table 1 and Table 2. The overall set

of requirements for the integrated energy management system can be formalized in

terms of contracts as follows.

4.1 Building Contract

The building contract CB can be expressed as follows.

Assumptions. Each building receives from the grid the vector of electric energy

prices πππ = [πe
t , . . . ,π

e
t+Hm−1] as well as the prices of non-electric cooling and heat-

ing energy, πne,c and πne,h, respectively, every Hc time slots. Similarly, it receives
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Table 1 Building and Building/Grid interface variables

Variable Definition

Building Requirements

Hm Prediction horizon for the building MPC
Xt Set of permissible states at time t

Ut Set of permissible inputs at time t

Building Model

τB Sampling time for discretizing the building continuous dynamics
dt Disturbance at time t (e.g. outside temperature, occupancy, solar radiation)
T out

t Outside air temperature at time t

T s Supply air temperature exiting air handling unit (AHU)
COPh Coefficient of performance of heating system
COPc Coefficient of performance of cooling system
xt State of the system at time t

ut Input to the system at time t

wt Grid control uncertainty variable for the building control problem
Pf ,Ph,Pc Power consumption of fan, heating and cooling systems

Building/Grid Interface Variables

Hc Horizon (length) of the commercial contract
πe

t Per-unit price of electric energy at time t [$/kWh]
πne,c Per-unit price of non-electric cooling energy [$/kWh]

πne,h Per-unit price of non-electric heating energy [$/kWh]
tcs Commercial contract start time
tce Commercial contract end time

{β t ,β t
} Reward paid from the grid to the building for upward flexibility (β t ) and

downward flexibility (β
t
) at time t [$/kWh]

eu
t Upper envelope for safe air mass flow

el
t Lower envelope for safe air mass flow
{ϕ t ,ϕ t

} Upward (ϕ) and downward (ϕ) flexibility of the building at time t (in air
flow)

{ψ t ,ψ t
} Upward (ψ), and downward (ψ) flexibility of building at time t (in power)

Chvac(ut ,π
e
t ) Total HVAC energy consumption cost at time t

R(Φ ,B) Total reward from the grid to the building for flexibility

a pair of rewards vectors for providing upward flexibility (βββ t ) and downward flex-

ibility (βββ
t
). Finally, the building receives air flow control signals wt from the grid,

with the only assumption that they are bounded by the air flow flexibility as defined

below, i.e. at each time t, we have ϕ
t
≤ wt ≤ ϕ t .

Guarantees. The building must satisfy a set of temperature requirements, ex-

pressed as predicates on the building states of the form “xt+k should be in Xt+k

for all times t + k where k ∈ {1, . . . ,Hm}”. Similarly, air mass flow requirements

can be formalized as a set of constraints Ut+k on the building inputs for all

k ∈ {0, . . . ,Hm −1}, where

Xt := {x | T t ≤ x ≤ T t} (5)

Ut := {u | U t ≤ u ≤U t}, (6)
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Table 2 Power system variables

Variable Definition

H Prediction horizon for the grid MPC
λ Bound on the rate of change of the power supplied by the buildings
τG Sampling time for discretizing the grid continuous dynamics
PM Mechanical power input
Po

M Desired real power generation
PG Generated real electric power
δPG Increase in demand (at rated generator MVA)
Vt Terminal voltage
PD Load (power demand)
δPD Input disturbance due to load changes
δPC Speed changer position feedback control signal
ω Angular speed and frequency
ωo Rated (desired) frequency
D Damping coefficient. Range: 0.01 - 0.1
M Machine inertia constant. Range: 100 - 1000 [MW s]
R Speed regulation constant. Range: 0.05 [p.u.]
Ti Time constant for power system components. Range: {0,0.01-10} [s]
Ki Fraction of total mechanical power outputs associated with different operat-

ing points of the turbine. Range: {0,0.1-1}

T t and T t are the upper and lower temperature limits, and U t and U t are the upper

and lower feasible air mass flow rates at time t.

We say that the building offers a flexibility Ψ := {ψψψ,ψψψ} in fan power or equiva-

lently a flexibility Φ := {ϕϕϕ,ϕϕϕ} in air mass flow, including downward flexibility ϕϕϕ
and upward flexibility ϕϕϕ , from the contract start time tcs to the contract end time tce

if there exist two trajectories el = u+ϕϕϕ and eu = u+ϕϕϕ , that satisfy:

ϕ
k
≤ 0, ϕk ≥ 0 ∀k ∈ {tcs, . . . , tce} (7)

f (xk,uk +ϕ
k
,dk) ∈ Xk+1 ∀k ∈ {tcs −1, . . . , tce −1} (8)

f (xk,uk +ϕk,dk) ∈ Xk+1 ∀k ∈ {tcs −1, . . . , tce −1} (9)

uk +ϕ
k
∈ Uk ∀k ∈ {tcs, . . . , tce} (10)

uk +ϕk ∈ Uk ∀k ∈ {tcs, . . . , tce} (11)

where f captures the building dynamics, and dk is an estimate of unmodelled distur-

bances, as detailed in Section 5.1. If the BEMS declares ϕϕϕ and ϕϕϕ , then the utility can

choose any fan power (and consequently air flow ûk) for all time steps tcs ≤ k ≤ tce

as long as u∗k +ϕ
k
≤ ûk ≤ u∗k +ϕk, where u∗k is the baseline air mass flow. Hence,

we “center” the flexibility around u∗.
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Fig. 5 Schematic of the power system showing its interconnections with the turbo-generators, the
building subsystem, and other sectors, along with the control architecture. Thick arrows represent
the power flow while thin arrows represent frequency and control signals. Dashed arrows indicate
the additional signals and power flows proposed in this work, on top of the state-of-the-art AGC.

4.2 Grid Contract

To express the grid contract CG, we refer to the grid system architecture in Fig. 5,

where commercial buildings are abstracted as a load for the power system.

Assumptions. Buildings can provide both positive and negative power flow to the

grid for frequency regulation purposes. When there is a power deficit, buildings

will temporarily use less power, and when there is as surplus of power, they will

temporarily use the extra power.

To formalize such a behavior at the grid level, we abstract the building subsystem

in terms of: (i) aggregate baseline power demand PD, and (ii) aggregate flexibility

for ancillary services δPanc. In practice, the grid operator predicts both the long-

term power demand and its short-term deviations from historical data (e.g. weather

patterns) by using machine learning algorithms. Therefore, in this formulation, we

assume that the power demand PD, and any variation δPD, are known parameters,

internal to the power system model. Similarly, the upper bound on the ramping rate

of the ancillary service power λ > 0 is treated as a constant parameter of the power

system model. Then, the only assumptions of the grid operator on the characteris-

tics of the ancillary service signal from the buildings can be expressed in terms of

maximum capacity max(δPanck
) > 0, and a minimum capacity min(δPanck

) < 0 at

each time k. Such bounds can be directly derived by the flexibility declared by the

buildings at the beginning of the commercial contract. Finally, we assume that usc

in Fig. 5 is also constant, since it is regulated by a local PI controller external to the

G-MPC problem.

Guarantees. The utility guarantees that its power consumption signals to the build-

ings will be within the assumed maximum and minimum capacity boundaries above.

Moreover, the recent Federal Energy Regulatory Commission (FERC) Order 755

requires scheduling coordinators to procure and compensate more for regulation re-

sources with faster ramping rates. This ramping rate constraint can be formalized

by requiring that |∆Panc|= |δPanck+1
−δPanck

| ≤ λ holds at each time step k, i.e. the

rate of change of the power supplied by the buildings must be guaranteed to be

limited by λ .
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5 System Model Library

We describe the models of the different components of the grid, starting with

the building subsystem. These models will be used together with the contracts in

Section 4 to formulate the MPC optimization problems.

5.1 Building Model

We equip the building component with both a behavioral model, capturing the sys-

tem dynamics, and a non-functional model, capturing the electric power consump-

tion as a function of the air mass flow ut and the outer temperature T out
t at time

t. By assuming a discretization step τB as in Section 4, the building dynamics are

regulated by a difference equation of the form

xt+1 = f (xt ,ut ,dt) (12)

where xt represent the system state, i.e. the temperatures of different rooms or zones

in the building, ut is the air mass flow to the thermal zones, and dt is an estimate of

the unmodelled disturbances, e.g. outside temperature or building occupancy [17].

The function f (.) is generally non-linear, which makes it more difficult to handle in

an optimization framework. Therefore, we adopt a linearized expression of the state

update equation using the forward Euler integration formula with time-step τB as:

xt+1 = Axt +But +Edt . (13)

The building HVAC power consumption is the summation of fan power, cool-

ing power and heating power. With the assumption of no recirculation of air and

constant air mass flow, the three contributions can be calculated as follows:

Pf (ut) = c1u3
t + c2u2

t + c3ut + c4 (14)

Ph(ut ,T
out

t ) = cput(T
s −T out

t )/COPh (15)

Pc(ut ,T
out

t ) = cput(T
out

t −T s)/COPc, (16)

where T out is the outside air temperature, constants c1−4 are fan parameters, cp is

the specific heat of air, COPh and COPc are the performance coefficients for the

heating system and the cooling system, respectively, and the supply air temperature

T s is considered constant. To move the coolant fluid around, heating and cooling

systems use pumps which consume electric power. However, we assume that electric

power consumption of pumps is negligible compared to the non-electric heating and

cooling powers of these systems [18, 16].
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Fig. 6 Block diagram of power system and its relation to governor, turbine, generator, and the
AGC signal for each control area.

5.2 Grid Model

The power system model, based on [8, 34, 13], consists of a governor, turbine, and

generator, interconnected as shown in the block diagram of Fig. 6. Electric power is

generated by the turbo-generators, and is fed to the power system. The power system

transmits and distributes the power to the end users. δPC is a control input which acts

against increase or decrease in the power demand to regulate the system frequency.

δPD denotes the fluctuations in the power demand, which are here considered as an

exogenous input (disturbance), while the aggregate flexibility from all the buildings

participating in the SF program is lumped into δPanc. As discussed in Section 4.2,

we assume that both the power demand PD and its variations δPD are known from

historical data. The variables of the power system are listed in Table 2 together with

a short description for each of them. Our model relies on the following simplifying

assumptions:

• The resistance of the transmission lines is ignored;

• The transmission line between areas i and j is characterized by a reactance Xtiei j
;

• Reactive power flows are ignored;

• The voltage Vi of bus i is considered constant.

At steady state, we have: ω =ωo, Vt =V o
t , and PM =PG =Po

M , where ωo, V o
t , and Po

M

are the nominal values for rated frequency, terminal voltage and mechanical power

input. We are interested in modeling the incremental changes with respect to the

steady-state condition.

Governor. The overall input-output transfer function of the governor is given by
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FGov(s) =
(1+ sT2)

(1+ sT1)(1+ sT3)
. (17)

Typical values for the time constants depend on whether governors are mechanical-

hydraulic or electro-hydraulic, with or without steam feedback [8].

Turbine. The input-output transfer function of a turbine is given by

δPM

PGV

= K1F1 +K3F1F2 +K5F1F2F3 +K7F1F2F3F4, (18)

where F1,F2,F3, and F4 are transfer functions corresponding to steam chest, piping

system, re-heaters, and cross-over mechanisms, respectively, and are given by

F1(s) =
1

1+ sT4
, F2(s) =

1

1+ sT5
, (19)

F3(s) =
1

1+ sT6
, F4(s) =

1

1+ sT7
. (20)

The basic time constant associated with steam turbines is T4 (steam chest). For non-

reheat steam turbines, this is the only needed time constant. The coefficients K1, K3,

K5, and K7 represent fractions of the total mechanical power outputs associated with

very high, high, intermediate, and low pressure components, respectively. Typical

values of the steam turbine time constants and fractions are reported in [8].

Generator. The dynamics of the generator is given by the following transfer func-

tion

FGen =
1

D+ sM
, (21)

where constants D and M represent the damping coefficient and the inertia of the

governor, respectively.

Two Area System Model. The components above can be interconnected to gener-

ate a model for the system in Fig. 4, including two areas connected by a tie line with

reactance Xtie. Ptie is the power flow on the tie line from area 1 to area 2. A positive

δPtie represents an increase in power transfer from area 1 to area 2. This in effect

is equivalent to increasing the load of area 1 and decreasing the load of area 2. The

model can be directly extended to n areas, under the assumption that non-negligible

power transfers can only occur between area i and its nearest neighbors i− 1 and

i+1. In the two-area model, the superscripts refer to the control area (i, j ∈ {1,2})

and the subscripts index the state in each area:
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dxi
1

dt
=

(−Dixi
1 +δPi

M −δPi
D −δP

i j
tie +δPi

anc)

Mi
x

(22a)

dxi
2

dt
=

(xi
3 − xi

2)

T i
7

(22b)

dxi
3

dt
=

(xi
4 − xi

3)

T i
6

(22c)

dxi
4

dt
=

(xi
5 − xi

4)

T i
5

(22d)

dxi
5

dt
=

(Pi
GV − xi

5)

T i
4

(22e)

dxi
6

dt
=

(xi
7 − xi

6)

T i
3

(22f)

dxi
7

dt
=

(−xi
7 +δPi

C − xi
1/Ri)

T i
1

(22g)

where

δPi
M = Ki

1xi
5 +Ki

3xi
4 +Ki

5xi
3 +Ki

7xi
2 (23)

Pi
GV = (1−T2/T3)x

i
6 +(T2/T3)x

i
7 (24)

In (22), the first state variable represents the frequency increment, xi
1 = δωi. The

differential equations for the seven state variables are derived using the mathemat-

ical models in (17)–(21). When the time constant representing the system pole is

zero, the corresponding differential equation becomes an algebraic equation. For

instance, when T5 = 0, the equation
dxi

4
dt

= 1/T5(x
i
5 − xi

4) turns into xi
5 = xi

4 = 0.

The real power transferred from bus i to bus j can be approximated as P
i j
tie ≈

ViVjbi jcos(θi − θ j). Since here we are concerned with incremental changes in all

variables, the incremental change in P
i j
tie is given by δP

i j
tie = νi j(θi−θ j) where at the

nominal operating points, θ o
i , i = 1,2, the transmission line stiffness coefficient νi j

is given by

νi j =−ViVjbi jcos(θ o
i −θ o

j ). (25)

In terms of the incremental state variables used, we have:

δPi
tie =

n

∑
j=1

νi j(x
i
8 − x

j
8), (26)

where the state variable xi
8 is the integral of the frequency increment of area i, i.e.,

dxi
8

dt
= xi

1. (27)
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The state space model (22)-(27) can be written in compact form as follows:

dx(t)

dt
= A′x(t)+B′

1usc(t)+B′
2uanc(t)+E ′d(t). (28)

States are stored in x, input signals to the speed changers are usc = [δPC1
δPC2

]T ,

the ancillary inputs from the buildings are uanc = [δPanc1
δPanc2

]T , and the ex-

ogenous inputs (disturbance), modeling the variations in demand are denoted by

d = [δPD1
δPD2

]T .

We discretize the state space dynamics using the forward Euler scheme. We show

the result on the equation for dxi
1/dt. The discretized dynamics for the other states

can be obtained in a similar way. At time tn we approximate the derivative of xi
1 by

dxi
1(tn)

dt
≈

xi
1(tn +δ t)− xi

1(tn)

δ t
(29)

Hence the discretized version of (22a) is

xi
1(tn+1) =

(

1−
Di

xδ t

Mi
x

)

xi
1(tn) +

δ t

Mi
x

[

δPi
M −δPi

D −δP
i j
tie +δPi

anc

]

,

where tn+1 = tn + δ t and δ t = τG is the discretization time step. The discrete-time

state-space model is obtained as

xn+1 = Axn +B1usc
n +B2uanc

n +Edn. (30)

We use this state update equation for the G-MPC problem in Section 6.3.

Automatic Generation Control. The AGC is the main control function of a util-

ity’s energy control section. The purpose of an AGC is to track the load variations

while maintaining the system frequency, net tie-line interchanges, and optimal gen-

eration level close to scheduled values [8]. This function is referred to as Load-

Frequency Control. A secondary objective is to distribute the required change in

generation among units to minimize operating costs [13]. In the case where several

areas are interconnected, each will perform its own AGC independent of the others.

In the classical AGC, a simple PI control is utilized to regulate the frequency of

the grid. The Area Control Error (ACE) is defined as

ACE i = δPi
tie +β ixi

1, (31)

where δPi
tie = Pi

tie−Pi
tie,scheduled, and β i is the bias coefficient of area i. The standard

industry practice is to set the bias β i at the so-called Area Frequency Response

Characteristic which is defined as β i = Di + 1/Ri. The integral of the ACE is then

used to construct the speed changer position feedback control signal δPi
C. A new

state xi
9 is then defined as
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dxi
9

dt
= ACE i. (32)

Consequently the control input δPi
C is given by

δPi
C =−Kixi

9, (33)

where Ki is the feedback gain. The MPC scheme proposed in Sec. 6.3 controls the

available ancillary service from commercial buildings to improve on the classical

AGC practice. This optimization-based control framework is utilized as a higher-

level control in a “hierarchical” fashion on top of the low-level classical AGC con-

trol, as visualized in Fig. 5.

6 Energy Management System Optimal Control

We first describe the communication protocol followed by the grid and the build-

ing subsystem over time. Then, based on this protocol, we show how the building

and the grid MPC schemes can be generated, respectively, from the contracts in

Section 4 and the models in Section 5.

6.1 Grid-Building Communication Protocol

The grid operator and the building subsystem communicate as follows:

1. Buildings and grid agree upon the length Hc of the commercial contract.

2. The utility declares πππ = [πe
0 , . . . ,π

e
Hm−1], the vector of prices of electric en-

ergy per unit step, the vector βββ = [β
0
, . . . ,β

Hm−1
] of rewards for downward

flexibility, and the vector βββ = [β 0, . . . ,β Hm−1] of reward for upward flexibil-

ity. If the utility is not willing to commit to the flexibility rates for the time

span beyond the next, immediate contract period, e.g. [β
Hc+1

, . . . ,β
Hm−1

], and

[β Hc+1, . . . ,β Hm−1], each building operator can obtain an estimate of these val-

ues from historical data. The same can be stated for the prices of electric energy

beyond the next contract period [πe
Hc+1, . . . ,π

e
Hm−1].

3. Each building operator computes the baseline air mass flow u∗k and the two en-

velopes el
k and eu

k , for the time frame k ∈ {0,1, . . . ,Hm − 1}, by solving the B-

MPC, and declares the envelope Pf (e
l), Pf (e

u) and the baseline Pf (u
∗) power

consumption profiles. The B-MPC can be safely solved independently of the

power control signals received from the grid, since the buildings do not make

any assumption on such signals, but the fact that they are confined within the

declared power envelopes. It is then possible for the buildings to separately mini-

mize their cost for all admissible values of the grid control signals. Such a robust
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control problem is key to compositional design since it breaks the circularity

between the B-MPC and the G-MPC problems.

4. The grid operator aggregates the envelope profiles received from the build-

ings and repeatedly solves the G-MPC, to obtain the control signals uanc
j for

j ∈ {0,1, . . . ,H}. These control signals are the aggregation of all the ancillary

service powers provided by the buildings. At each time step, the grid operator

will disaggregate δPanci
for each control area i into N pieces proportional to the

declared flexibility of each building, such that δPanci
= ∑

N
k=1 sk

i , where N is the

number of buildings participating in the ancillary service program.

5. During the next Hc time slots, the grid operator will send signals sk
j in each

control area, such that Pf (e
l,k
j ) ≤ sk

j ≤ Pf (e
u,k
j ) and the building operator k has

to track the signals, i.e., has to consume power equal to sk
j in time slot j. The

flexibility signal sk
j may arrive as frequently as every few seconds, as mentioned

earlier.

6.2 Design of the Building Optimal Control Scheme

Let Hm be the prediction horizon of the B-MPC in terms of building time slots,

selected as discussed in Section 4. We design the B-MPC scheme to minimize

the building economic cost in terms of baseline power consumption and flexibil-

ity over Hm, while satisfying the building constraints and the occupants’ comfort

requirements as encoded by the building contract CB in Section 4.1. At each time

t, the predictive controller solves an optimization problem to compute the baseline

air mass flow ut = [ut , . . . ,ut+Hm−1] to the thermal zones of the building, and the

downward and upward mass flow flexibility vectors ϕϕϕ
t+1

= [ϕ
t+1

, . . . ,ϕ
t+Hm ] and

ϕϕϕ t+1 = [ϕ t+1, . . . ,ϕ t+Hm ].
The inputs to the optimization problem are the initial state xt (zone tempera-

tures), the set of electric energy prices per time slot {πe
t , . . . ,π

e
t+Hm−1}, the non-

electric energy prices, such as gas price for heating πne,h and cooling πne,c (which

are considered time-invariant), the prediction of the outside temperature and inside

heat generation dt . The cost function consists of the cost for the baseline HVAC

power consumption, Chvac, minus the reward for the flexibility R, computed as fol-

lows:

R(Φ ,B) = βββ
T

ψψψ(u,ϕϕϕ)+βββ
T

ψψψ(u,ϕϕϕ) (34)

where B := {βββ ,βββ}, with βββ and βββ as in Section 6.1, Φ := {ϕϕϕ,ϕϕϕ}, and ψψψ(.) and

ψψψ(.) are given, at each time step k, by

ψ(uk,e
u
k), Pf (e

u
k)−Pf (uk) (35a)

ψ(uk,e
l
k), Pf (uk)−Pf (e

l
k) (35b)
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in which el = u + ϕϕϕ and eu = u + ϕϕϕ . The total HVAC power consumption cost

Chvac(ut ,πt) is the summation of fan power, cooling power and heating power costs,

given by:

Chvac(ut ,πt) = πe
t Pf (ut)+πne,cPc(ut ,T

out
t )+πne,hPh(ut ,T

out
t ) (36)

where T out is the outside air temperature, and the three power contributions are

calculated based on the building model in Section 5.1.

As discussed in Section 6.1, the building operator aims to minimize the economic

cost in the worst-case scenario for the grid signals (environment) following a game-

theoretic approach. The result is a robust min-max optimization problem. The inner

maximization problem derives the worst-case scenario cost and constraints, while

the outer minimization problem solves for its arguments (ut ,Φt+1), while guaran-

teeing that the constraints are satisfied for all the values of the uncertain mass flow

signals w from the grid, as long as they are within the range allowed by the building

flexibility. Therefore, at time t the building operator solves:

min
ut ,Φt+1

max
wt

Hm−1

∑
k=0

Chvac(ut+k,πt+k)−R(Φt+k+1,Bt+k+1) (37a)

subject to: xt+k+1 = f (xt+k,ut+k +wt+k,dt+k), ∀ k ∈ {0, ...,Hm −1} (37b)

∀ wt s.t. ϕ
t
≤ wt ≤ ϕ t (37c)

∀ wt+k s.t. ϕ
t+k

≤ wt+k ≤ ϕ t+k, ∀ k ∈ {1, ...,Hm −1} (37d)

ϕ t+k ≥ 0, ∀ k ∈ {1, ...,Hm −1} (37e)

ϕ
t+k

≤ 0, ∀ k ∈ {1, ...,Hm −1} (37f)

xt+k ∈ Xt+k, ∀ k ∈ {1, ...,Hm} (37g)

ut+k +wt+k ∈ Ut+k, ∀ k ∈ {0, ...,Hm −1} (37h)

We observe that ϕ
t

and ϕ t are computed in the previous time step and are constant

values in (37), while ϕ
t+k

and ϕ t+k for k ∈ {1, . . . ,Hm − 1} are optimization vari-

ables and will be computed in the current time step by solving the optimal control

problem. Therefore, B-MPC computes the future flexibility profile (starting from

the next time step), based on the current flexibility. For the very first time step, we

assume ϕ
0
= ϕ0 = 0.

The inner optimization problem can be solved analytically. In fact, according to

a fundamental theorem on convex functions [6], if a convex function attains a max-

imum over a closed convex set, then the maximum is achieved at some extreme

point of the set. When the building state update equation are linearized as described

in Section 5.1, the feasible set for states (the temperature of the rooms in the build-

ing) and controls (air mass flow into the thermal zones) is closed and convex, being

an intersection of closed half-spaces. The objective function is also convex in wt ,

since wt does not appear in the cost function. Hence, the min-max problem (37) is

equivalent to:
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min
ut ,Φt+1

Hm−1

∑
k=0

Chvac(ut+k,πt+k)−R(Φt+k+1,Bt+k+1) (38a)

s. t.: xt+k+1 = f (xt+k,ut+k +ϕ
t+k

,dt+k) ∀k ∈ {0, ...,Hm −1} (38b)

xt+k+1 = f (xt+k,ut+k +ϕ t+k,dt+k) ∀k ∈ {0, ...,Hm −1} (38c)

ϕ t+k ≥ 0, ∀k ∈ {1, ...,Hm −1} (38d)

ϕ
t+k

≤ 0, ∀k ∈ {1, ...,Hm −1} (38e)

xt+k ∈ Xt+k ∀k ∈ {1, ...,Hm −1} (38f)

xt+k ∈ Xt+k ∀k ∈ {1, ...,Hm −1} (38g)

ut+k +ϕ
t+k

∈ Ut+k ∀k ∈ {0, ...,Hm −1} (38h)

ut+k +ϕ t+k ∈ Ut+k ∀k ∈ {0, ...,Hm −1} (38i)

The result of (38) is the nominal power consumption u∗t+k and the maximum avail-

able flexibility Φ∗
t+k+1, for k ∈ {0, ...,Hm − 1}. The building declares u∗t+k and

Φ∗
t+k+1 for k ∈ {0, ...,Hc −1} to the utility. After Hc time slots, the BEMS collects

the updated parameters such as new measurements and disturbance predictions, sets

up the new MPC algorithm for k ∈ {Hc,Hc + 1, . . . ,Hc +Hm − 1}, solves the new

MPC for this time frame and uses only the first Hc values of baseline power con-

sumption and flexibility, i.e. for k = Hc, . . . ,2Hc −1, and this process repeats.

6.3 Design of the Grid Optimal Control Scheme

We design the G-MPC problem by combining assumptions and guarantees under the

responsibility of the grid operator, as expressed by the contract CG in Section 4.2.

Let Uanc
k = (uanc

k ,uanc
k+1, . . . ,u

anc
k+H−1) the trajectory of the power control signal of the

grid to the buildings for time steps from k to k+H − 1, where H is the prediction

horizon of G-MPC. We aim to minimize the ℓ2 norm of the ACE signal in areas

i = 1,2, ...,n, by exploiting the ancillary service available from buildings, taking

into account the system dynamics and constraints. More formally, at each time step

k, we solve:

min
Uanc

k

n

∑
i=1

H−1

∑
j=0

(ACEi
k+ j)

2 (39)

s.t. xk+ j+1 = Axk+ j +B2uanc
k+ j +Edk+ j

µ
k+ j

≤ uanc
k+ j ≤ µk+ j

|uanc
k+ j+1 −uanc

k+ j| ≤ λk+ j

where, for each area i, µk+ j(i) = ∑
N
m=1 Pf (e

u,m,i
k+ j ) and µ

k+ j
(i) = ∑

N
m=1 Pf (e

l,m,i
k+ j ). All

the constraints of problem (39) should hold for j = 0,1, . . . ,H −1. The constraints
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of the optimization problem are µk+ j > 0 for the maximum positive power and

µ
k+ j

< 0 for maximum negative power provided by the set of buildings in each

area. Here, “positive” and “negative” refer to the flow of power from generation to

consumption. These values are computed by the buildings and sent to the grid oper-

ator periodically, as detailed in Section 6.1. λk+ j is the maximum limit on the rate

of change of ancillary service provided by the buildings. Based on the assumptions

in Section 4.1, deviations in the power demand from the buildings are known and

lumped into the signal dk+ j. A robust version of the G-MPC problem to deal with

uncertainties in the power demand, following a similar approach as in the B-MPC

problem, will be object of future work. Finally, we do not incorporate B1usc
k in the

state-space model, since we assume that usc is constant and regulated by the local

PI controller.

7 Simulation Results

To validate the proposed methodology, we simulated the control algorithms in

Section 6 by using the building model in [16, 17], developed and validated against

historical data. For rapid prototyping, we used YALMIP [14] as an interface to

back-end optimization solvers. The non-linear optimization problem in B-MPC was

solved using IPOPT [35], while CPLEX [3] was used to solve the quadratic program

generated by G-MPC.

7.1 Validation of the B-MPC Algorithm

Different reward rates have been considered for upward and downward flexibility at

each time step, as shown at the bottom of Fig. 7, under the constraint that downward

flexibility is rewarded more than upward flexibility, i.e. β > β for most of the day.

We performed simulations with a sampling time of 1 hour and a prediction horizon

of Hm = 24 h. On a 4-core 2.67-GHz Intel processor with 3.86 GB of memory, the

mean and standard deviation of solver times were 8.9 s and 5.3 s, respectively. Fig. 7

shows the results when ancillary signals are received from the grid every minute: no

building constraint (e.g. temperature comfort zone) is violated for arbitrary values of

the fan speed enforced by the grid, as long as the fan power consumption is within

the safe envelope calculated by B-MPC. The maximum flexibility (100%) is ob-

tained when the room temperature is far from the boundaries of the comfort zone.

The flexibility decreases as the temperature of the room approaches the comfort

zone boundary, and reaches its minimum (about 0-15%) when the room tempera-

ture is close to the boundaries of the comfort zone, and the reward is small. Fig. 7

shows that the control strategy in (38) can indeed offer HVAC energy consumption

flexibility via proper incentives. Table 3 lists the parameters used in our simulations.
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Fig. 7 Per-unit energy rate, upward and downward flexibility reward (bottom), building flexibility
(middle), room temperature profile (top). Flexibility signals are sent every minute from the grid.

Table 3 Simulation parameters used for B-MPC validation.

Parameter Value

c1 −6.06×10−13 [CFM−3]

c2 6.73×10−8 [CFM−2]

c3 −1.2×10−3 [CFM−1]
c4 59.2
COPh 3
COPc 2
cp 1.0 [kJ/(kg·K)]

7.2 Validation of the G-MPC Algorithm

We consider two interconnected control areas with model parameters as in Table 4,

and with inter-area stiffness coefficient ν = 1.0 p.u. The main generation unit for

area 1 is a non-reheat turbo generator (TG) system while the main generation unit

for area 2 is a hydro TG system. Some metrics such as root mean square (rms)

values of frequency and ACE signal are considered to compare the performance

of the proposed controller with respect to a traditional scheme. To simplify, we use

time-invariant bounds for the maximum and minimum ancillary power µk = µ
k
= µ

and maximum rate of change of ancillary power λ in the following simulations.

We performed simulations for a time horizon of 100 s and a sampling time

τG = 1 s. The mean and standard deviation solver times were 0.02 s and 0.005 s,
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Table 4 Simulation parameters used for G-MPC validation.

Control Area Parameters

Area 1 T1 = 0.1, T3 = 0.1, T4 = 1.0
K1 = 1.0
M = 132.6 [MW s]
D = 0.0265 [p.u.]

Area 2 T1 = 0.2, T3 = 0.3, T4 = 0.1, T5 = 0.5
K1 = 0.2, K3 = 3
M = 663.13 [MW s]
D = 0.1325 [p.u.]
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Fig. 8 Load disturbance signal.
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Fig. 9 Frequency of areas 1 and 2 in response to the load disturbance. The prediction horizon is
H = 10 and the maximum ancillary power is max(Panc) = 0.5 p.u. Results relate to different values
of rate-of-change of ancillary power (max|∆Panc|= λ ).

respectively, for a prediction horizon of H = 10 s. We consider a disturbance signal

in the load of area 1, and no disturbance in the load of area 2, as shown in Fig. 8. We

assess the performance of the proposed controller considering the following scenar-

ios.

Scenario 1. The maximum ancillary service available in each area is 0.5 per unit

(p.u.) of power. We consider a prediction horizon of H = 10 time steps. As shown in
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Fig. 10 Frequency trajectories in control areas 1 and 2 (H = 10, max(∆Panc) = 0.9 p.u.,
max|Panc|= µ).

Fig. 9, by increasing the maximum rate of change of ancillary power (ramping rate

for generation units) the resulting frequency deviation decreases. A ramping rate

of λ = 0.05 (p.u./s) is associated with large power generator size, a ramping rate

of λ = 0.1 (p.u./s) is associated with smaller size generators. High ramping rates,

such as λ = 0.3 (p.u./s), are associated with fast ancillary services such as the one

provided by building HVAC system fans.

Scenario 2. To investigate the impact of the maximum available ancillary power

constraint on the frequency deviations in each area, we relax the constraint on the

ramping rate of the ancillary services, by selecting a higher bound λ = 0.9 (p.u./s).

As shown in Fig. 10, by increasing the maximum available ancillary power µ the

frequency deviation decreases, thus showing the effectiveness of our control strat-

egy. The disturbance in the load of area 1 affects both the interconnected areas;

however, the frequency change in area 1 is larger than the one in area 2.

Simulation results for the scenarios above show that G-MPC can effectively uti-

lize ancillary services from the buildings for frequency regulation purposes.

8 Conclusions

We addressed the problem of optimal design of an integrated energy managing sys-

tem based on a supply-following strategy. In our framework, assume-guarantee con-

tracts formalize the requirements of both the power grid and the commercial build-

ing subsystem, and specify their interface so as to allow for independent implemen-

tation of two model predictive control (MPC) schemes in a compositional fashion.

At the building level, we cast a robust optimal control problem to determine the

baseline power consumption of the HVAC system and the amount of allowed power
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consumption flexibility to maximize the building monetary incentive while satisfy-

ing its temperature and air mass flow requirements. At the grid level, we optimally

control the ancillary service power flow within the buildings’ flexibility, while inte-

grating constraints such as ramping rates of ancillary service providers, maximum

available ancillary power, and load forecast information. Simulation results show

that commercial buildings can profitably provide ancillary services that can be ef-

fectively regulated at both the building and the grid levels by the proposed MPC

scheme.

As a future work, we plan to further refine the communication interface between

grid and buildings to incorporate a more realistic scenario, in which an electric-

ity broker seeks rate offers from suppliers for “bundled” groups of customers and

acts on their behalf. We also plan to develop a robust formulation of the grid MPC

problem to address the uncertainties associated with imperfect load predictions.
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