
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.1, MARCH, 2011 DOI:10.5573/JSTS.2011.11.1.033

Smart Bus Arbiter for QoS control in H.264 decoders

Chanho Lee

Abstract—H.264 decoders usually have pipeline

architecture by a macroblock or a 4 × 4 sub-block.

The period of the pipeline is usually fixed to

guarantee the operation in the worst case which

results in many idle cycles and higher data

bandwidth. Adaptive pipeline architecture for H.264

decoders has been proposed for efficient decoding

and lower the requirement of the bandwidth for the

memory bus. However, it requires a controller for the

adaptive priority control to utilize the advantage. We

propose a smart bus arbiter that replaces the

controller. It is introduced to adjust the priority

adaptively the QoS (Quality of Service) control of the

decoding process. The smart arbiter can be integrated

the arbiter of bus systems and it works when certain

conditions are met so that it does not affect the

original functions of the arbiter. An H.264 decoder

using the proposed architecture is designed and

implemented to verify the operation using an FPGA.

Index Terms—H.264, QoS, implementation, AHB,

arbiter, arbitration policy

I. INTRODUCTION

H.264 is a video coding standard developed recently

by JVT (Joint Video Team) of ISO/IEC and ITU-T. It is

also called MPEG-4 part 10 AVC (Advanced Video

Coding) [1]. Its compression rate is higher by about 25-

40% than that of the MPEG-4 advanced simple profile

[2]. It includes new features such as 1/4-pixel inter-

prediction with variable block size, multiple reference

frames, intra prediction, and context-based adaptive

entropy coding: context-based adaptive variable length

coding (CAVLC) and context-based adaptive binary

arithmetic coding (CABAC) [1]. The new features

require complicated compression algorithm and a lot of

arithmetic calculation to offer the high compression rate

and the image quality. The computational complexity

of the H.264 decoder has been increased twice compared

with the MPEG-4 decoder.

H.264 decoders usually have pipeline architecture by a

macroblock (MB) or a 4 × 4 sub-block. The complexity

and time for processing data at each pipeline stage are

variable depending on the images because the encoding

methods are different depending on the images. The

period of a pipeline stage should be determined so that

the most time-consuming stage can process the block of

data in the worst case, which requires hardware with

higher performance than that for normal case. The worst

case would not occur so often that the processing units

are often idle. Decoder hardware with lower performance

can decode a movie by eliminating the idle cycles.

According to the results of the runtime analysis using

H.264 decoding software, motion compensation (MC)

uses up to 55% of total decoding time. That is, the

efficient architecture of the MC is crucial for the design

of the decoder [3, 4]. The performance of the MC is

determined by two factors; one is the computation

performance and the other is the time for reading

reference pixel data from memory. H.264 decoders

usually have three units that get access to the reference

frame memory. The first one is the MC as mentioned

above. The second one is a deblocking filter (DF), and

the last one is a data_out unit that transfers image data to

a display device or a host system. If a bus to a host

system or a display unit is not separate, a variable length

Manuscript received Nov. 27, 2010; revised Feb. 7, 2011.

This paper was invited from ISOCC 2010

School of Electronic Engineering, Soongsil University, Sangdo-dong,

Dongjak-gu, Seoul, 156-743, Korea

E-mail : chlee@ssu.ac.kr

34 CHANHO LEE : SMART BUS ARBITER FOR QOS CONTROL IN H.264 DECODERS

decoder (VLD) which reads NAL (Network Layer

Abstraction) stream also gets access to the memory bus.

The three units compete in access to memory, and only

one ‘read’ or ‘write’ transaction is possible at a time

because an inexpensive single DRAM chip is usually

used for the reference frame memory. The MC should

have the highest priority in access to memory as it is the

most time-consuming unit in a decoder as mentioned

above. However, the priority needs to be adjusted

because other units can also block the decoding process

if either one cannot read from or write to the memory.

For example, the DF must not write pixel data of the

current frame to memory before all data of the earliest

frame are read out by the data_out unit when the

reference frame memory is full of pixel data. The above

situation can happen for the adaptive pipeline

architecture [5]. Therefore, the memory bus must provide

smart arbitration policy for the three units to get access

to the reference frame memory [6].

In this paper, we propose an improved smart arbiter

and efficient H.264 decoder architecture using it. The

proposed architecture is designed for the smart arbiter for

both the QoS (Quality of Service) control in the memory

bus and the normal network arbitration. An H.264

decoder is designed according to the proposed

architecture. The decoder employs an adaptive pipeline

in which periods of a pipeline stage varies depending on

the encoded data so that the idle cycles are minimized.

The stages in the pipeline communicate with each other

by hand-shaking so that data are transferred without a

controller for decoding processes. The controller for the

memory access by MC, DF, VLD, and the data_out units

is not necessary due to the smart arbiter. The smart

arbiter and the adaptive pipeline architecture relieve the

tight timing requirement of the internal computing units

so that the replacement or modification of the units is

easy. The decoder is implemented using an FPGA to

verify the operation.

II. PROPOSED ARCHITECTURE

1. Adaptive pipeline architecture

H.264 decoders usually consist of VLD, inverse

transform and quantization (ITQ) unit, intra prediction

(IP) unit, the MC unit, and the DF. The MC unit requires

pixel data of multiple reference frames which may

occupy tens of MBs. The amount of memory is too large

for internal memory and so external memory is necessary.

The DF writes pixel data of the current frame to the

reference memory after filtering because the pixel data of

the current frame become those of a reference frame

when decoding the pixel data of the following frames. A

data_out unit is necessary to read pixel data of the

reference frame memory and to send them to a display

device or a host system although it is not directly related

to decoding. A single DRAM is usually employed as the

reference memory to reduce the cost and the volume. As

a result, three units compete to get access to the reference

frame memory.

The complexity and the time for processing a

macroblock are variable depending on the type of image.

If the period of processing a macroblock is fixed, it

should be large enough to accommodate the worst case

[6]. As a result, the processing units will be idle

frequently as shown in Fig. 1. The period is determined

to accommodate the macroblock M0 which is assumed to

be the worst case, and the decoder has idle cycles for M1

and M2. The pipeline is usually controlled by a central

controller in the case.

The data transfers between computing units are not

directed by a central controller in the adaptive pipeline

architecture [5]. For example, as soon as parameter are

decoded by Ex-Golomb(EG) decoder in the VLD, they

are delivered to the MC or IP to obtain reference data.

Fig. 2 shows the processing sequence of the adaptive

Fig. 1. Processing sequence of decoder pipeline with a fixed

period [5].

Fig. 2. Processing sequence of adaptive pipeline [5].

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.1, MARCH, 2011 35

pipeline. The data are delivered using hand-shaking

communication without a central controller as soon as

the next stage is ready to receive the data. The periods of

processing macroblocks are determined by the encoding

types, and they are variable. At least one stage is

working at any time because the data are delivered

whenever it is possible. As a result, the idle cycles are

minimized, and the overall decoding time is reduced.

2. Smart bus arbiter

The MC, DF and data_out unit need to get access to

the reference frame memory, and the VLD and the

data_out unit need to get access to the buffer memory of

a host system as mentioned above. The adaptive pipeline

gives out a problem of contention in access to the

reference frame memory and the buffer memory since it

is not guaranteed that the three units read or write pixel

data during the variable period. In addition, the data_out

unit writes pixel data to the frame memory of the display

device and the VLD reads NAL stream data although it

requires very small bandwidth. The absence of a

centralized controller and the variable period may not

give enough time for the three units to get access to the

reference frame memory one by one in the period. As a

result, the pipeline may be blocked or the pixel data of a

frame may be overwritten without being read out to a

display device. The frame rate for the display device

should also be maintained so that the decoder does not

play a movie too fast or slow.

A control unit called DMACA (Direct Memory

Access Controller with Arbiter) was employed in the

H.264 decoder with the adaptive pipeline in order to

minimize the pipeline hazard [5]. The DMACA receives

interrupt signals from the three units and determines

whose request will be processed. Only the DMACA gets

access to the reference memory and delivers data to the

three units. It is inefficient for the DMACA to distribute

data because twice the numbers of transfers are required

for the delivery of pixel data.

In order to solve the problem, a smart arbitration

scheme is introduced in the arbiter of the bus system as

shown in Fig. 3 [6]. The arbitration scheme for the H.264

decoder was mixed with the AHB arbitration logic. The

smart arbiter logic is now separated from the AHB

arbiter and is configurable by a host system with an

improved arbitration scheme. The arbiter reads the

addresses of the data transfer and monitors the status of

the reference frame memory. The MC has the highest

priority in the normal condition to increase the

performance of the decoder. If the reference frame

memory is full and even the pixel data of the earliest

frame have not been read out, the arbiter gives higher

priority to the data_out unit to prevent the hazard of

missing frames due to the overwriting by the DF. There

is one more condition that the data_out has higher

priority than the MC unit. The data_out unit must read

out pixel data to a display device or the host system at a

given frame rate so that the decoded motion picture is

displayed at the same rate as the original one. The smart

arbiter monitors the rate that data_out unit transfers pixel

data to a display device or a host system, and gives it the

higher priority than others or does not give grant signals

at all when the frame rate does not meet the required

frame rate. Therefore, the smart arbiter provides the QoS

control in the memory bus as well as the bus arbitration.

The three units have the master interface so that they

can read or write data without a direct memory access

controller (DMAC) [6]. It will reduce the number of data

delivery cycles to a half of that with the DMACA. They

also determine when they get access to the reference

memory for them to increase the performance.

The AHB arbiter can have various arbitration policies

such as fixed priority [7], Round-Robin [8], TDMA [9],

and Lottery [10]. The TDMA and the Lottery scheme

can allocate weighted chances of arbitration to certain

masters. If the weight factor is selected appropriately it

may work for the memory bus of H.264 decoders

without the smart arbiter. I design an AHB arbiter which

Fig. 3. Smart arbiter to solve the problem of adaptive pipeline.

36 CHANHO LEE : SMART BUS ARBITER FOR QOS CONTROL IN H.264 DECODERS

is compliant to AMBA 2.0 specification with various

arbitration policies, and apply it to a decoder. I simulate

the decoder for the various arbitration policies of the

arbiter for the same time period, and the image size is

QVGA. The applied arbitration policies are the fixed

priority (F), Round-Robin (RR), Round-Robin with fixed

scheme as the second arbitration (RR+F), TDMA (T),

TDMA with the fixed scheme (T+F), Lottery scheme (L),

and Lottery with the fixed scheme (L+F). The DF is not

blocked to write data to the reference frame memory

when the memory is full and the frame rate is not

controlled since the DMACA is eliminated. Regardless

of the arbitration policies, the decoded pixel data have

errors of missing pixel blocks although the locations of

errors are different. The normal arbitration polices

cannot control the QoS but controls only the allocation of

the bandwidths of masters. Increasing the bandwidth of

bus network by using high performance network such as

AMBA AXI cannot solve the problem, either [11].

III. DESIGN OF H.264 DECODER

An H.264 decoder is designed using the proposed

architecture. Fig. 4 shows the block diagram of the

decoder. It consists of VLD, ITQ-MC/IP, DF and

data_out units. Coefficients and parameters are delivered

through a dedicated data path using hand-shaking

communication. The pixel data of the reference frame

and the decoded pixel data are transferred through an

AHB network for the memory access. The reference

frame data are stored in a PSRAM (Pseudo-SRAM). The

ITQ-MC/IP, DF and data_out units have AHB master

interfaces so that they can get access to the memory

directly. It reads the pixel data of the reference frames

from the reference frame memory directly. They also

have AHB slave interfaces which provide internal

parameters and data for debugging purposes. The slave

interface of the data_out unit is also used to configure the

decoder operation. The ITQ-MC/IP unit includes ITQ,

MC and IP units which share a hand-shaking interface

through which parameters and coefficients are delivered

to the MC/IP and ITQ, respectively. It also has an

interface with an internal memory for the IP unit. The DF

has an interface with the internal memory to store pixel

data of a macroblock. The data_out unit has an AHB

master interface to read the pixel data from the reference

frame memory and to send them out to a display device

or a host system. The decoder is connected to a host

system through an AHB-to-AHB bridge. SDRAM is

used to store the NAL data and as a frame buffer of a

TFTLCD controller to implement the decoder on my

prototyping board.

The smart arbiter of the AHB network has specialized

priority logic to arbitrate the requests from the four

masters. The VLD unit has the highest priority although

the frequency of the request is very low. The MC unit has

the second highest priority and the DF has the lower

priority than the MC unit. However, if the buffer of the

DF is full and the DF does not get a grant signal due to

the MC, the DF blocks the pipeline and the MC also

stops. As a result, the MC does not request a bus master,

and the DF can write pixel data to the reference frame

memory to empty the internal buffer so that the MC unit

can work again. The MC and the DF can get access to

the reference memory alternatively in this way.

If the bandwidth of the AHB network is not large

enough or the period for a macroblock is not long

enough, the data_out unit may not get grant signals from

the arbiter. The smart arbiter monitors the status of the

reference frame memory. If the reference frame memory

is full and the pixel data of the earliest frame have not

been read out, the smart arbiter gives the highest priority

to the data_out unit so that the DF does not overwrite

data to the location of the earliest frame without being

read out. Overwriting data without being read out means

that the corresponding frame is lost. The smart arbiter
Fig. 4. Block diagram of the H.264 decoder based on the

proposed architecture.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.1, MARCH, 2011 37

also monitors the frame rate that the data_out delivers the

pixel data. The frame rate was controlled by the data_out

unit in the previous work [6]. It gives the higher priority

to the data_out unit than others or stops the entire

pipeline if the frame rate does not meet the requirement.

The arbiter does not violate any AMBA AHB

specification since the behavior for the smart arbitration

mentioned above is implemented in the priority logic of

the AHB arbiter and it can behave as a normal AHB

arbiter by turning off the monitoring function for the

reference frame memory. Fig. 5 shows the block diagram

of the smart arbiter. It consists of an AHB arbiter and a

flow control unit. The AHB slave interface is used to

configure the flow control unit and is not used at runtime.

Without the output signals from the flow control unit, the

arbiter behaves like a normal AHB arbiter.

The decoder is designed using Verilog-HDL and the

synthesis results are compared with others as shown in

Table 1. The memory is a temporary storage in the

decoder and does not include the reference frame

memory. The operating frequency corresponds to the

image size. The decoder is also implemented using an

FPGA to verify the operation. Fig. 6 shows the

verification result that a sample movie is decoded and

displayed using a prototyping board.

Fig. 7 shows the comparison results of the perfor-

mance of the decoders with the smart arbiter and the DMACA.

The performance is measured using the accumulated

decoding time until each frame of ‘Foreman’ is displayed.

The operation frequency is selected so that the decoder

with the DMACA can decode images at 30 frames per

second. The decoding time for the decoder with the

smart arbiter is obtained after the idle time to keep the

frame rate of 30 is eliminated. The performance is

improved about 30% which is smaller than the expected

value of 50% because of the overhead to pass through

the AHB-to-AHB bridge.

IV. CONCLUSIONS

The variable pipeline architecture for H.264 decoder is

AHB

Slave

Interface

s_HRESP
s_HRDATA

s_HREADY

Modified

AHB

Arbiter

HCLK
HRESETn

HBUSREQ

HLOCK

HTRANS
HBURST

HADDR

HREADY
HRESP

HSPLIT

HGRANT

HMASTER
HMASTLOCK

frame_cnt_end

stop_all

ref_addr_gap

ref_base_addr

mc_mb_end

mast_bandwidth

control_data

Flow

Contol

Unit

AHB Signals Smart Arbiter

Fig. 5. Block diagram of the proposed smart arbiter.

Table 1. Synthesis results of decoders

 Proposed [12] [13] [14]

Gate count 225,372 242,705 217,428 456,598

Memory

[bits]
70,848 23,200 81,756 164,864

Operating

frequency

25 MHz

(0.18 µm)

54 MHz

(0.25 µm)

120 MHz

(0.18 µm)

100 MHz

(0.18 µm)

Image size 480p30 CIF30 1024p30 1080HD

Fig. 6. Verification results of the H.264 decoder based on the

proposed architecture using an FPGA prototyping board.

Fig. 7. Comparison results of the performance of the decoders

with the smart arbiter and the DMACA.

38 CHANHO LEE : SMART BUS ARBITER FOR QOS CONTROL IN H.264 DECODERS

proposed to reduce the decoding time by removing the

idle cycles. The parameters and the coefficients are

transferred through a dedicated data path using hand-

shaking communication. The adaptive pipeline

architecture does not need a centralized controller, and

makes it easy to design a decoder. The problem of access

to the reference frame memory in the adaptive pipeline

architecture is solved using an improved smart bus

arbiter with the function of the QoS control. The smart

bus arbiter has priority logic that monitors the status of

the reference frame memory and adaptively adjusts the

priority of the masters so that the performance of the

decoder is optimized. The QoS control cannot be

provided by various arbitration policies. An H.264

decoder is designed based on the proposed architecture,

and is also implemented using an FPGA to verify the

operation. The decoder with the smart arbiter shows

better performance by 30% than that with a central flow

controller.

ACKNOWLEDGMENTS

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MEST) (No. 2010-0021225) and the EDA

tools were supported by IDEC.

REFERENCES

[1] Joint Video Team, Draft ITU-T Recommendation

and Final Draft International Standard of Joint

Video Specification. ITU-T Rec. H.264 and

ISO/IEC 14496-10 AVC, May, 2003.

[2] C.-Y. Tsai, T.-C. Chen, T.-W. Chen, L.-G. Chen,

“Bandwidth Optimized Motion Compensation

Hardware Design for H.264/AVC HDTV Decoder,”

Proceedings of 48th Midwest Symposium on

Circuits and Systems, Vol.2, pp.1199-1202, Aug.,

7-10, 2005.

[3] M. Alle, J. Biswas, S. K. Nandyl, “High

performance VLSI implementation for H.264

Inter/Intra prediction,” Proceedings of IEEE

International Conference on Comsumer Electonics,

pp.1-2, Jan., 2007.

[4] W.-N. Lie, H.-C. Yeh, T. C.-I. Lin, C.-F. Chen,

“Hardware-efficient computing architecture for

motion compensation interpolation in H.264 video

coding,” Proceedings of IEEE International

Symposium on Circuits and Systems, Vol.3, pp.

2136-2139, May 23-26, 2005.

[5] C. Lee, “Design of Low Power H.264 Decoder

using adaptive pipeline,” Journal of IEEK,

Vol.47SD, No.9, pp.1-6 , Sep., 2010.

[6] C. Lee and S. Yang, “Design of an H.264 Decoder

with Variable Pipeline and Smart Bus Arbiter,”

Proceedings of 2010 International SoC Design

Conference, pp.432-435, Oct., 22-23, 2010.

[7] T. N. Mudge, J. P. Hayes, D. C. Winsor, “Multiple

Bus Architectures,” IEEE Computer, Vol.20, No.6,

pp.42-48, Jun., 1987.

[8] A. B. Kovaleski, “High-speed bus arbiter for

multiprocessors,” 1EE PROC, Vol. 130, Pt. E, No.

2, pp. 49-56, Mar., 1983.

[9] K. A. Kettler, J. P. Lehoczky, and J. K. Strosnider,

“Modeling Bus Scheduling Policies for Real-time

Systems,” Proceedings of 16th IEEE Real-Time

Systems Symposium, pp.242-253, Dec., 5-7, 1995.

[10] K. Lahiri, A. Raghunathan, and G. Lakshminarayana,

“LOTTERYBUS: A new high performance

communication architecture for system-on-chip

designs,” Design Automation Conference, pp.15-20,

Jun., 2002

[11] S. Na, S. Yang, and C.-M. Kyung, “Low-Power

Bus Architecture Composition for AMBA AXI,”

Journal of Semiconductor Technology and Science,

pp. 75-79, Vol.9, No.2, Jun., 2009

[12] S. M. Park, M. Lee, S. Kim, K.-S. Shin, I. Kim, H.

Cho, H. Jung, D. Lee, “VLSI Implementation of

H.264 Video Decoder for Mobile Multimedia

Application,” ETRI Journal, Vol.28, No.4, Aug.,

2006.

[13] T.-C. Chen, C.-Jr Lian, L.-G. Chen, “Hardware

Architecture Design of an H.264/AVC Video

Codec,” Proceedings of ASPDAC 2006, pp.750-

757, Jan., 24-27, 2006.

[14] T.-M. Liu, T.-A. Lin, S.-Z. Wang, W.-P. Lee, K.-C.

Hou, J.-Y. Yang C.-Y. Lee, “An 865-μW H.264/

AVC Video Decoder for Mobile Applications,”

Proceedings of ASSCC 2005, pp. 301-304, Nov., 1-

3, 2005.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.1, MARCH, 2011 39

Chanho Lee received the BS and MS

degrees in electronic engineering from

Seoul National University, Seoul,

Korea, in 1987 and 1989, and the PhD

degree from the University of

California, Los Angeles, in 1994. In

1994, he joined the semiconductor

R&D center of Samsung Electronics, Giheung, Korea.

Since 1995, he has been a faculty member of the School of

Electronic Engineering, Soongsil University, Seoul, Korea,

and he is currently Professor. His research interests are in

SoC on-chip-network, SoC platform, memory controller,

the design of H.264 codec, and 2D/3D graphic processor.

He is a senior member of IEEE.

