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Abstract—H.264 decoders usually have pipeline 

architecture by a macroblock or a 4 × 4 sub-block. 

The period of the pipeline is usually fixed to 

guarantee the operation in the worst case which 

results in many idle cycles and higher data 

bandwidth. Adaptive pipeline architecture for H.264 

decoders has been proposed for efficient decoding 

and lower the requirement of the bandwidth for the 

memory bus. However, it requires a controller for the 

adaptive priority control to utilize the advantage. We 

propose a smart bus arbiter that replaces the 

controller. It is introduced to adjust the priority 

adaptively the QoS (Quality of Service) control of the 

decoding process. The smart arbiter can be integrated 

the arbiter of bus systems and it works when certain 

conditions are met so that it does not affect the 

original functions of the arbiter. An H.264 decoder 

using the proposed architecture is designed and 

implemented to verify the operation using an FPGA. 

 

Index Terms—H.264, QoS, implementation, AHB, 

arbiter, arbitration policy 

I. INTRODUCTION 

H.264 is a video coding standard developed recently 

by JVT (Joint Video Team) of ISO/IEC and ITU-T. It is 

also called MPEG-4 part 10 AVC (Advanced Video 

Coding) [1]. Its compression rate is higher by about 25-

40% than that of the MPEG-4 advanced simple profile 

[2]. It includes new features such as 1/4-pixel inter-

prediction with variable block size, multiple reference 

frames, intra prediction, and context-based adaptive 

entropy coding: context-based adaptive variable length 

coding (CAVLC) and context-based adaptive binary 

arithmetic coding (CABAC) [1]. The new features 

require complicated compression algorithm and a lot of 

arithmetic calculation to offer the high compression rate 

and the image quality.  The computational complexity 

of the H.264 decoder has been increased twice compared 

with the MPEG-4 decoder.  

H.264 decoders usually have pipeline architecture by a 

macroblock (MB) or a 4 × 4 sub-block. The complexity 

and time for processing data at each pipeline stage are 

variable depending on the images because the encoding 

methods are different depending on the images. The 

period of a pipeline stage should be determined so that 

the most time-consuming stage can process the block of 

data in the worst case, which requires hardware with 

higher performance than that for normal case. The worst 

case would not occur so often that the processing units 

are often idle. Decoder hardware with lower performance 

can decode a movie by eliminating the idle cycles. 

According to the results of the runtime analysis using 

H.264 decoding software, motion compensation (MC) 

uses up to 55% of total decoding time. That is, the 

efficient architecture of the MC is crucial for the design 

of the decoder [3, 4]. The performance of the MC is 

determined by two factors; one is the computation 

performance and the other is the time for reading 

reference pixel data from memory. H.264 decoders 

usually have three units that get access to the reference 

frame memory. The first one is the MC as mentioned 

above. The second one is a deblocking filter (DF), and 

the last one is a data_out unit that transfers image data to 

a display device or a host system. If a bus to a host 

system or a display unit is not separate, a variable length 
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decoder (VLD) which reads NAL (Network Layer 

Abstraction) stream also gets access to the memory bus. 

The three units compete in access to memory, and only 

one ‘read’ or ‘write’ transaction is possible at a time 

because an inexpensive single DRAM chip is usually 

used for the reference frame memory. The MC should 

have the highest priority in access to memory as it is the 

most time-consuming unit in a decoder as mentioned 

above. However, the priority needs to be adjusted 

because other units can also block the decoding process 

if either one cannot read from or write to the memory. 

For example, the DF must not write pixel data of the 

current frame to memory before all data of the earliest 

frame are read out by the data_out unit when the 

reference frame memory is full of pixel data. The above 

situation can happen for the adaptive pipeline 

architecture [5]. Therefore, the memory bus must provide 

smart arbitration policy for the three units to get access 

to the reference frame memory [6]. 

In this paper, we propose an improved smart arbiter 

and efficient H.264 decoder architecture using it. The 

proposed architecture is designed for the smart arbiter for 

both the QoS (Quality of Service) control in the memory 

bus and the normal network arbitration. An H.264 

decoder is designed according to the proposed 

architecture. The decoder employs an adaptive pipeline 

in which periods of a pipeline stage varies depending on 

the encoded data so that the idle cycles are minimized. 

The stages in the pipeline communicate with each other 

by hand-shaking so that data are transferred without a 

controller for decoding processes. The controller for the 

memory access by MC, DF, VLD, and the data_out units 

is not necessary due to the smart arbiter. The smart 

arbiter and the adaptive pipeline architecture relieve the 

tight timing requirement of the internal computing units 

so that the replacement or modification of the units is 

easy. The decoder is implemented using an FPGA to 

verify the operation. 

II. PROPOSED ARCHITECTURE 

1. Adaptive pipeline architecture 

 

H.264 decoders usually consist of VLD, inverse 

transform and quantization (ITQ) unit, intra prediction 

(IP) unit, the MC unit, and the DF. The MC unit requires 

pixel data of multiple reference frames which may 

occupy tens of MBs. The amount of memory is too large 

for internal memory and so external memory is necessary. 

The DF writes pixel data of the current frame to the 

reference memory after filtering because the pixel data of 

the current frame become those of a reference frame 

when decoding the pixel data of the following frames. A 

data_out unit is necessary to read pixel data of the 

reference frame memory and to send them to a display 

device or a host system although it is not directly related 

to decoding. A single DRAM is usually employed as the 

reference memory to reduce the cost and the volume. As 

a result, three units compete to get access to the reference 

frame memory.  

The complexity and the time for processing a 

macroblock are variable depending on the type of image. 

If the period of processing a macroblock is fixed, it 

should be large enough to accommodate the worst case 

[6]. As a result, the processing units will be idle 

frequently as shown in Fig. 1. The period is determined 

to accommodate the macroblock M0 which is assumed to 

be the worst case, and the decoder has idle cycles for M1 

and M2. The pipeline is usually controlled by a central 

controller in the case.  

The data transfers between computing units are not 

directed by a central controller in the adaptive pipeline 

architecture [5].  For example, as soon as parameter are 

decoded by Ex-Golomb(EG) decoder in the VLD, they 

are delivered to the MC or IP to obtain reference data. 

Fig. 2 shows the processing sequence of the adaptive 

Fig. 1. Processing sequence of decoder pipeline with a fixed 

period [5]. 

 

Fig. 2. Processing sequence of adaptive pipeline [5]. 
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pipeline. The data are delivered using hand-shaking 

communication without a central controller as soon as 

the next stage is ready to receive the data. The periods of 

processing macroblocks are determined by the encoding 

types, and they are variable. At least one stage is 

working at any time because the data are delivered 

whenever it is possible. As a result, the idle cycles are 

minimized, and the overall decoding time is reduced. 

 

2. Smart bus arbiter 

 

The MC, DF and data_out unit need to get access to 

the reference frame memory, and the VLD and the 

data_out unit need to get access to the buffer memory of 

a host system as mentioned above. The adaptive pipeline 

gives out a problem of contention in access to the 

reference frame memory and the buffer memory since it 

is not guaranteed that the three units read or write pixel 

data during the variable period. In addition, the data_out 

unit writes pixel data to the frame memory of the display 

device and the VLD reads NAL stream data although it 

requires very small bandwidth. The absence of a 

centralized controller and the variable period may not 

give enough time for the three units to get access to the 

reference frame memory one by one in the period. As a 

result, the pipeline may be blocked or the pixel data of a 

frame may be overwritten without being read out to a 

display device. The frame rate for the display device 

should also be maintained so that the decoder does not 

play a movie too fast or slow. 

A control unit called DMACA (Direct Memory 

Access Controller with Arbiter) was employed in the 

H.264 decoder with the adaptive pipeline in order to 

minimize the pipeline hazard [5]. The DMACA receives 

interrupt signals from the three units and determines 

whose request will be processed. Only the DMACA gets 

access to the reference memory and delivers data to the 

three units. It is inefficient for the DMACA to distribute 

data because twice the numbers of transfers are required 

for the delivery of pixel data. 

In order to solve the problem, a smart arbitration 

scheme is introduced in the arbiter of the bus system as 

shown in Fig. 3 [6]. The arbitration scheme for the H.264 

decoder was mixed with the AHB arbitration logic. The 

smart arbiter logic is now separated from the AHB 

arbiter and is configurable by a host system with an 

improved arbitration scheme. The arbiter reads the 

addresses of the data transfer and monitors the status of 

the reference frame memory. The MC has the highest 

priority in the normal condition to increase the 

performance of the decoder. If the reference frame 

memory is full and even the pixel data of the earliest 

frame have not been read out, the arbiter gives higher 

priority to the data_out unit to prevent the hazard of 

missing frames due to the overwriting by the DF. There 

is one more condition that the data_out has higher 

priority than the MC unit. The data_out unit must read 

out pixel data to a display device or the host system at a 

given frame rate so that the decoded motion picture is 

displayed at the same rate as the original one. The smart 

arbiter monitors the rate that data_out unit transfers pixel 

data to a display device or a host system, and gives it the 

higher priority than others or does not give grant signals 

at all when the frame rate does not meet the required 

frame rate. Therefore, the smart arbiter provides the QoS 

control in the memory bus as well as the bus arbitration. 

The three units have the master interface so that they 

can read or write data without a direct memory access 

controller (DMAC) [6]. It will reduce the number of data 

delivery cycles to a half of that with the DMACA. They 

also determine when they get access to the reference 

memory for them to increase the performance. 

The AHB arbiter can have various arbitration policies 

such as fixed priority [7], Round-Robin [8], TDMA [9], 

and Lottery [10]. The TDMA and the Lottery scheme 

can allocate weighted chances of arbitration to certain 

masters. If the weight factor is selected appropriately it 

may work for the memory bus of H.264 decoders 

without the smart arbiter. I design an AHB arbiter which 

Fig. 3. Smart arbiter to solve the problem of adaptive pipeline. 
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is compliant to AMBA 2.0 specification with various 

arbitration policies, and apply it to a decoder. I simulate 

the decoder for the various arbitration policies of the 

arbiter for the same time period, and the image size is 

QVGA. The applied arbitration policies are the fixed 

priority (F), Round-Robin (RR), Round-Robin with fixed 

scheme as the second arbitration (RR+F), TDMA (T), 

TDMA with the fixed scheme (T+F), Lottery scheme (L), 

and Lottery with the fixed scheme (L+F). The DF is not 

blocked to write data to the reference frame memory 

when the memory is full and the frame rate is not 

controlled since the DMACA is eliminated. Regardless 

of the arbitration policies, the decoded pixel data have 

errors of missing pixel blocks although the locations of 

errors are different. The normal arbitration polices 

cannot control the QoS but controls only the allocation of 

the bandwidths of masters. Increasing the bandwidth of 

bus network by using high performance network such as 

AMBA AXI cannot solve the problem, either [11]. 

III. DESIGN OF H.264 DECODER 

An H.264 decoder is designed using the proposed 

architecture. Fig. 4 shows the block diagram of the 

decoder. It consists of VLD, ITQ-MC/IP, DF and 

data_out units. Coefficients and parameters are delivered 

through a dedicated data path using hand-shaking 

communication. The pixel data of the reference frame 

and the decoded pixel data are transferred through an 

AHB network for the memory access. The reference 

frame data are stored in a PSRAM (Pseudo-SRAM). The 

ITQ-MC/IP, DF and data_out units have AHB master 

interfaces so that they can get access to the memory 

directly. It reads the pixel data of the reference frames 

from the reference frame memory directly. They also 

have AHB slave interfaces which provide internal 

parameters and data for debugging purposes. The slave 

interface of the data_out unit is also used to configure the 

decoder operation. The ITQ-MC/IP unit includes ITQ, 

MC and IP units which share a hand-shaking interface 

through which parameters and coefficients are delivered 

to the MC/IP and ITQ, respectively. It also has an 

interface with an internal memory for the IP unit. The DF 

has an interface with the internal memory to store pixel 

data of a macroblock. The data_out unit has an AHB 

master interface to read the pixel data from the reference 

frame memory and to send them out to a display device 

or a host system. The decoder is connected to a host 

system through an AHB-to-AHB bridge. SDRAM is 

used to store the NAL data and as a frame buffer of a 

TFTLCD controller to implement the decoder on my 

prototyping board. 

The smart arbiter of the AHB network has specialized 

priority logic to arbitrate the requests from the four 

masters. The VLD unit has the highest priority although 

the frequency of the request is very low. The MC unit has 

the second highest priority and the DF has the lower 

priority than the MC unit. However, if the buffer of the 

DF is full and the DF does not get a grant signal due to 

the MC, the DF blocks the pipeline and the MC also 

stops. As a result, the MC does not request a bus master, 

and the DF can write pixel data to the reference frame 

memory to empty the internal buffer so that the MC unit 

can work again. The MC and the DF can get access to 

the reference memory alternatively in this way.  

If the bandwidth of the AHB network is not large 

enough or the period for a macroblock is not long 

enough, the data_out unit may not get grant signals from 

the arbiter. The smart arbiter monitors the status of the 

reference frame memory. If the reference frame memory 

is full and the pixel data of the earliest frame have not 

been read out, the smart arbiter gives the highest priority 

to the data_out unit so that the DF does not overwrite 

data to the location of the earliest frame without being 

read out. Overwriting data without being read out means 

that the corresponding frame is lost. The smart arbiter 
Fig. 4. Block diagram of the H.264 decoder based on the 

proposed architecture. 
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also monitors the frame rate that the data_out delivers the 

pixel data. The frame rate was controlled by the data_out 

unit in the previous work [6]. It gives the higher priority 

to the data_out unit than others or stops the entire 

pipeline if the frame rate does not meet the requirement. 

The arbiter does not violate any AMBA AHB 

specification since the behavior for the smart arbitration 

mentioned above is implemented in the priority logic of 

the AHB arbiter and it can behave as a normal AHB 

arbiter by turning off the monitoring function for the 

reference frame memory. Fig. 5 shows the block diagram 

of the smart arbiter. It consists of an AHB arbiter and a 

flow control unit. The AHB slave interface is used to 

configure the flow control unit and is not used at runtime. 

Without the output signals from the flow control unit, the 

arbiter behaves like a normal AHB arbiter. 

The decoder is designed using Verilog-HDL and the 

synthesis results are compared with others as shown in 

Table 1.  The memory is a temporary storage in the 

decoder and does not include the reference frame 

memory. The operating frequency corresponds to the 

image size. The decoder is also implemented using an 

FPGA to verify the operation. Fig. 6 shows the 

verification result that a sample movie is decoded and 

displayed using a prototyping board. 

Fig. 7 shows the comparison results of the perfor-

mance of the decoders with the smart arbiter and the DMACA. 

The performance is measured using the accumulated 

decoding time until each frame of ‘Foreman’ is displayed. 

The operation frequency is selected so that the decoder 

with the DMACA can decode images at 30 frames per 

second. The decoding time for the decoder with the 

smart arbiter is obtained after the idle time to keep the 

frame rate of 30 is eliminated. The performance is 

improved about 30% which is smaller than the expected 

value of 50% because of the overhead to pass through 

the AHB-to-AHB bridge. 

IV. CONCLUSIONS 

The variable pipeline architecture for H.264 decoder is 
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Fig. 5. Block diagram of the proposed smart arbiter. 

 

Table 1. Synthesis results of decoders 

 Proposed [12] [13] [14] 

Gate count 225,372 242,705 217,428 456,598

Memory 

[bits] 
70,848 23,200 81,756 164,864

Operating 

frequency 

25 MHz 

(0.18 µm) 

54 MHz 

(0.25 µm) 

120 MHz 

(0.18 µm) 

100 MHz 

(0.18 µm)

Image size 480p30 CIF30 1024p30 1080HD

Fig. 6. Verification results of the H.264 decoder based on the 

proposed architecture using an FPGA prototyping board. 

  

Fig. 7. Comparison results of the performance of the decoders 

with the smart arbiter and the DMACA. 



38 CHANHO LEE : SMART BUS ARBITER FOR QOS CONTROL IN H.264 DECODERS 

proposed to reduce the decoding time by removing the 

idle cycles. The parameters and the coefficients are 

transferred through a dedicated data path using hand-

shaking communication. The adaptive pipeline 

architecture does not need a centralized controller, and 

makes it easy to design a decoder. The problem of access 

to the reference frame memory in the adaptive pipeline 

architecture is solved using an improved smart bus 

arbiter with the function of the QoS control. The smart 

bus arbiter has priority logic that monitors the status of 

the reference frame memory and adaptively adjusts the 

priority of the masters so that the performance of the 

decoder is optimized. The QoS control cannot be 

provided by various arbitration policies. An H.264 

decoder is designed based on the proposed architecture, 

and is also implemented using an FPGA to verify the 

operation. The decoder with the smart arbiter shows 

better performance by 30% than that with a central flow 

controller. 
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