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Abstract—A key requirement for high performance on FPGAs
is to maintain continuous data streaming from the DRAM. An
impediment in many computations, especially in the scientific
computing domain, is irregular stencils and boundary conditions,
requiring memory accesses that are random, redundant, or both.
To address this problem, we present Smache, a novel smart-
caching framework that uses FPGA on-chip memory resources
for optimising access for arbitrary stencil shapes and boundary
conditions. We propose a combination of stream and static
buffers, and it is the latter that allows arbitrarily large offsets
in stencils. The architecture is complemented by a formal model
for determining buffer configuration. We propose a hybrid use
of the block and distributed RAM on the FPGA. The design is
validated for a 2D grid, 4-point stencil with circular boundaries.

I. INTRODUCTION

The importance of streaming dataflow architecture for
achieving high performance on FPGAs for scientific, multime-
dia and other HPC applications is well recognized. However, a
considerable proportion of such models involve working with
stencils, possibly with boundary conditions requiring access
to locations with large offsets (or reaches), both of which
lead to random and redundant accesses from the DRAM. This
breaks the continuity of streaming, degrading performance.
While there has been work on mitigating this issue, we
observed the need of a more generic solution for dealing
with arbitrary stencils and boundary conditions. For example,
some scientific problems require stencil computations with
circular boundary conditions that result in offsets as large as
the entire grid-size itself, which may be many million bytes.
There are no straightforward solutions that would allow one
to maintain continuous streaming in such a scenario. In this
paper, we present a novel smart-caching (Smache) architecture
to enable continuous data streaming between global (i.e. off-
chip DRAM) memory and an FPGA.

Our key contributions are: a novel hybrid architecture of
streaming and static buffers, an algorithm to compute the
buffer sizes, transparent on-chip double buffering with write-
through logic, a proof-of-concept HDL implementation that
uses a cost-model to balance the utilization of block-RAM
(BRAM) and distributed-RAM (registers) on an FPGA, and a
two-layer architecture customization.

The problem of streaming for stencil computations is a
well explored topic. Cong et al’s work [1] on an architecture
for stencil computation acceleration on FPGAs is similar to
our work with respect to our proposal of a hybrid use of
registers and BRAMs. However, our use of static buffers, the

buffer configuration algorithm and transparent on-chip double
buffering feature is different. Reference [2] discusses an ap-
proach for optimizing streaming on the Maxeler[3] framework,
and emphasizes the re-use of data by processing multiple time
steps in one pass. This is pertinent work, but orthogonal to our
proposal for optimizing off-chip access. The work presented
in [4] similarly discusses optimizing date re-use by doing
multiple time-steps in one pass. Sano et al. [5] propose an
approach for optimizing memory access for high-performance
computation in a multi-device scenario, using soft processors.
Reference [6] presents an HDL template for 2D stencil code
applications, that allows streaming. Reference [7] discusses
this problem in the context of 3D stencils whose dimensions
follows some constraints. Reference [8] propose the use of
on-chip RAM for optimizing MPEG-4 applications. Reference
[9] present a polyhedral model-based framework for iterative
stencil loops. The use of OpenCL based HLS approach for
stencil computation was discussed in [10]. Most of this work is
complementary to ours, especially those dealing with multiple
devices, or those that use polyhedral transformations or other
approaches to group multiple work-instance1 iterations (e.g.
time loops of a scientific model) to maximize data re-use. Our
proposal of using a combination of static and streaming buffers
for arbitrary stencils shapes and boundary conditions is—as
best as we know—a novel feature of our work.

II. A FORMAL MODEL FOR STREAM AND STATIC

BUFFERING

A key novel contribution of our Smache architecture is
its combination of stream and static buffers which together
provide a general solution of arbitrary offsets required to create
stencils. We have developed an algorithm for determining the
configuration of these buffers for the general case. Given the
following: a vector m of size N representing the content of
the off-chip DRAM memory attached to an FPGA; and two
iteration patterns pi and po, each pattern is in general an
ordered subset of a permutation of the sequence 0 .. N-1,
usually this would be a regular pattern such as contiguous or
strided access, but for this discussion it can be more general;
we define the streams s{i,o} as accesses to the array m:

∀i ∈ [0,#p{i,o} − 1] | s{i,o}[i] = m[ p{i,o}(i) ]

For any given program performing computations on this
stream, we can divide the computations based on the element
of the stream on which they act. In practice this means splitting

1From OpenCL terminology; refers to one iteration over index space.



the computation per loop nest. Furthermore, given that we are
working with stencils, usually a computation will not act on
a single element only, but on a small subset of elements at a
known offset from the given element. We call this subset the
stream tuple or tuple for short.

We define two terms to quantify the memory access pattern
for a computation: The range is the number of elements of
the stream that participate in a given computation. We will
also use the term to refer to the part of the stream comprising
these elements. The reach is the difference between the largest
and smallest offset from a given element in the stream to the
elements in the stream tuple. For example assume an element
of the stream that refers to m[i], and its tuple (m[i],m[i −
1],m[i + 1],m[i − k],m[i + k]). Then the largest offset is k,
the smallest−k, and the reach is 2k.

For efficient performance we want to limit access to the
DRAM and perform the necessary accesses as efficiently as
possible. For that purpose we buffer elements from m in
memory on the FPGA chip. This memory is very fast but it is
a limited resource. We can buffer elements in two ways:
Stream buffering: For a given subset elements required for a
given computation (a range of tuples), we can determine the
reach of the tuple and create a circular window buffer (stream
buffer) of the size of the reach. Then the tuple needed for
the computation on each element of the stream is present in
this buffer. Referring to the above example, for a given s[i]
the stream buffer would buffer all elements from s[i − k] to
s[i+ k].
Static buffering: For a given subset of elements required
for a given computation, we can determine the range and
create a static buffer of the size of this range to store an
element from the tuple for all tuples in the range. For example,
given the tuple above and the range above, the static buffer
would be of size N/m/4 and could contain the elements
m[4.i + k], ∀ i ∈ [N/m, 2N/m]. A typical use case is that
of circular boundary conditions in a 2D or 3D stencil-type
computation: we can statically buffer the boundary values
rather than have them in the stream.

The purpose of these two types of buffers is to make
the best possible use of the FPGA internal memory: ideally
we want to create a stream buffer for the complete stream.
However, for some ranges of the stream the reach might be
so large that this buffer can’t fit in the available memory. We
can reduce the reach for a range by storing part of a tuple in
a static buffer, as long as the sum of sizes of all static buffers
and the stream buffer fits in the on-chip memory. Note that we
only ever need a single stream buffer, the one with the largest
reach, because all other stream buffers will fit into this one.

We can formalise this approach as follows: Given the
streams si and so, divided into k non-overlapping ranges rj
of size Rj ; for each range we have a tuple tj of nj elements
with a reach max(tj)−min(tj). We can compute the cost in
terms of stream buffer and static buffers using the algorithm
listed in Algorithm 1.

III. SMACHE: A NOVEL HARDWARE ARCHITECTURE

FOR STATIC AND STREAMING BUFFERS

We have designed a proof-of-concept HDL design that is
generic and can work with arbitrary offsets, as well as different
kinds of boundary conditions. To illustrate the architecture, we

Algorithm 1 Optimal buffer size calculation

for j in 0 .. k

streamj , staticj = calc_opt_sz(j)
end

tot = max∀j(stream) + sum∀j(static)
def calc_opt_sz(j)

for i in 0 .. nj − 1
streami =max(tj,0 .. tj,i)−min(tj,0 .. tj,i)
statici = i.Rj

totali = streami + statici
end

iopt = 0; totopt = MAX_SZ

for i in 0 .. nj − 1
if toti < totopt

totopt = toti, iopt = i

end

end

end

will use a contrived example, and then discuss how the archi-
tecture can be generalized for arbitrary stencils boundaries.
Our example is an 11×11 2D grid requiring a 4-point stencil,
as shown in Figure 1(a). Circular boundaries at the horizontal
edges, and open boundaries at the vertical edges, lead to a
total of nine different stencil cases (4 corners, 4 edges, 1 non-
boundary). This small example already captures a variety of
non-trivial, irregular and asymmetric stencil cases, which is
where we see our approach as making a contribution to the
state of the art. Our objective is to maintain continuous and
contiguous streaming from the DRAM. Stalling the stream
from DRAM, or reverting to random accesses, affects the
sustained memory bandwidth considerably, as our own work
has also shown[11]. For small reaches, a conventional window
or stream buffer would serve the purpose. This approach will
not scale however, e.g. for circular boundaries reaching across
the grid with potentially millions of elements. For such cases,
the static buffers store a fixed set of elements rather than a
moving window.

Figure 1(b) is a block diagram of our architecture showing
the realization of the smart-cache technique for any grid that
requires two static buffers, which would make this suitable for
most 2D grids with circular boundaries. The data is read into
the Smache module (large dotted rectangle), along with the
index, the work-instance, and a stall signal to allow integration
with e.g. the AXI4-Stream protocol. The Smache module is
shown connected to a computation kernel, and the output from
the kernel is fed back into the Smache module to update the
static buffers for the next work-instance.

Static Buffers: A circular boundary condition leads to
a reach spanning the entire array. For even modest-sized
scientific models, storing entire arrays on-chip is simply not an
option. Static buffers, our approach for storing stencil elements
with large reaches was introduced in section II. They are stored
on-chip, but unlike stream buffers, they don’t hold the entire
window of data from the current to the stencil index, but
only the elements required to create the stencil. The memory
required for static buffers is thus independent of the reach,
which lets us work with arbitrarily large stencil reaches.

With reference to Figure 1(a), let’s assume for the purpose
of this example that we are unable to store the entire array on-
chip due to resource constraints. So the stencil for elements
in the top and bottom rows requires data that cannot be stored
by the stream buffer. We cache these top and bottom rows
into static buffers where they are maintained using a write-
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Fig. 1. (a) An 11×11 2D grid for a problem requiring a 4-point stencil (e.g. case 1), with circular horizontal boundaries(e.g. case 2), and open vertical
boundaries (e.g. case 3). (b) Block diagram of the smache architecture that implements the static and streaming buffers (for a grid like one shown on the left),
with double buffering of static buffers, and hubrid use of BRAMs and registers, shown connected to a computational kernel.

through policy. Figure 1(b) shows these static buffers. The
two buffers T and B store the top and bottom rows of the
array respectively. We also transparently incorporate double
buffering (white and black buffers in the figure) approach,
which are read and written concurrently, and swapped after
every work-instance. The static buffers requires an additional
warm-up work-instance iteration at the beginning. This warm-
up cost is amortized over multiple work-instance iterations.

Stream Buffers and Hybrid use of registers and BRAM:
Use of a moving-window or stream buffer is a well-understood
technique for improving performance of stencil computations,
and is part of our design. We propose a hybrid use of the
two main types of on-chip memories on an FPGA: BRAM
and registers. This allows flexibility in resource-constrained
situations. We can statically predict which locations in the
stream buffer will be accessed to create the stencil, and ensure
these are placed in register memory, so that they can be
accessed concurrently to create the stencil in a single cycle.
The rest of the elements can be kept in one or more inter-leaved
BRAMs which are accessed logically as a FIFO, but never
require more than one concurrent read access. (Concurrent
reads from the BRAMs infers a multi-port BRAM which can
lead to synthesis of multiple identical BRAMs.) The relative
utilization of registers vs BRAMs in the hybrid design varies
between the extremes of using registers only for the entire
stream buffer (Case-R), to using registers for those locations
only that create the stencil, and BRAMs for all the rest (Case-
H), which is the case shown in Figure 1(b)).

Smache Controller: The Smache controller orchestrates the
data movement across the buffers and creates the stencil tuple
for the kernel. It is implemented as three concurrent finite
statemachines (FSMs). FSM-1: pre-fetches data into the static
buffers. FSM-2: gathers data from the static and streaming
buffers, and emits the stencil tuple for the computation kernel.
FSM-3: reads relevant data from the computation kernel, and
updates static buffers.

Generalization of the Architecture: The Smache architec-
ture is generic and compatible with arbitrary stencil shapes.
To allow this adaptability, we can configure Smache at two
levels. Number of Static Buffers: The number of static buffers
needed for a particular problem can be determined from a
static analysis of the stencil code as discussed in section II.

Configuration of Parameters: Once the number of static
buffers is fixed, we can configure a set of parameters to specify
any stencil shape within the constraints of the number of static
buffers previously fixed.

Memory Utilization Cost Model for Design-Space Explo-
ration: The Smache architecture uses scarce on-chip memory
resources which are required by the computation kernel and
the shell logic as well. For any design-space exploration (DSE)
exercise, manual or automated, it is important to have a cost-
model that reasonably predicts these resource requirements
for Smache. This becomes especially more important in view
of the hybrid approach we have proposed, that allows one
to trade-off BRAM bits against Registers (and vice-versa).
Fortunately, the Smache architecture lends itself to a simple
memory resource cost-model. The details of the cost-model
outside the scope of this paper. We have however shown
estimated vs actual costs in section IV.

IV. EXPERIMENTAL RESULTS

Smache vs Baseline: We have implemented a prototype
Smache architecture (Figure 1(b)) in Verilog-HDL for a simple
4-point averaging filter. For comparison, we created a baseline
HDL design that does not have any stencil buffers. This means
that each grid-point requires 4 words to be read from the
global memory, which is 4× more than what is required for
the Smache architecture. The simulation results are shown
in Figure 2. As expected, the Smache-based solution uses
considerably less cycles—around 20% of the baseline—for the
same computation as it eliminates redundant memory accesses.
This is also indicated in the required global memory traffic
which is around 40% of what is needed for the baseline
case. So even though the Smache architecture synthesizes at
a frequency that is lower than that for the baseline, we still
get an overall 3× simulated speed-up. The resource utilization
of the baseline implementation was: 79 ALMs, 262 registers,
and no BRAM bits; the Smache version used 520 ALMs, 1088
registers, and 1.5K BRAM bits, indicating the resource trade-
off.

Hybrid Smache vs Register-Only Smache: We also com-
pared two different versions of the Smache architecture to
show the utility of the hyrbrization feature of our architecture.
Case-R implements the entire streaming buffer in registers.



Case-H uses the hybrid design shown in Figure 1(b) which uses
a combination of registers and BRAMs. The results are shown
in Table I. The potential for trade-off is starkly demonstrated in
a larger grid size of 1 million elements. In this scenario, Case-
R consumes 66K registers and 131K BRAM bits, whereas the
Case-H consumes only 1.5K Registers 196K BRAM bits. This
variation in the utilization of the two types of on-chip memory
resources can be exploited to meet design constraints.

Accuracy of Cost Model Estimates: We have developed
a cost-model to estimate the memory resource utilization for
the Smache architecture for a given problem definition and
a certain mixture of registers and BRAM for the streaming
buffer. We have verified the predicted costs against actual
numbers from a full-synthesis for a Stratix-V device. The
results are in Table I. As we can see, our predicted cost very
closely tracks the actual resource utilization, and hence our
cost expressions can easily be incorporated in a larger cost-
model for design-space exploration.

V. CONCLUSION AND FUTURE WORK

FPGAs have started playing a role in mainstream HPC and
big-data, albeit still a marginal one. In this context, the strength
of FPGAs lie in their ability to provide high performance
and energy-efficiency for streaming computations. However,
stencil-based computation in the streaming paradigm, if done
naively, would either break down the continuous data stream
with repeated random accesses to the memory, or result in re-
dundant data transfers. To optimise the throughput, we require
contiguous accesses to DRAM, and re-use of data on-chip. We
have proposed a caching architecture that is capable of working
with arbitrary stencil shapes and boundary conditions, by using
a combination of static and streaming buffers. The streaming
buffers are for nearby stencil elements, and the static buffers
stencil elements with very large reaches. We presented a formal
model for buffer configuration, and showed how our streaming
buffer architecture allows a hybrid use of registers and BRAMs
to meet resource constraints. We presented simulation results
on a prototype HDL implementation of our architecture, that
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Fig. 2. Performance comparison of Smache-based 4-point stencil design
against baseline design that has no stencil buffering. The array size is 11×11,
and the kernel is run 100 times. Cycle count is from simulation, and Frequency
is from full synthesis for a Stratix-5 device. The DRAM traffic is calculated
from the grid-size and the number of bytes accessed for each grid-point. The
simulated execution time and performance in MOPS is calculated from the
cycle count and frequency.

Problem Rsc Bsc Rsm Bsm Rtotal Btotal

11 × 11r
Estimate 0 1408 800 0 800 1408

Actual 0 1536 928 0 998 1536

11 × 11h
Estimate 0 1408 352 448 352 1856

Actual 0 1536 355 512 425 2048

1024 × 1024r
Estimate 0 131072 65632 0 65632 131072

Actual 0 131200 65670 0 66857 131200

1024 × 1024h
Estimate 0 131072 352 65280 352 196352

Actual 0 131200 362 65536 1549 196736

TABLE I. THE ESTIMATED VS ACTUAL UTILIZATION OF ON-CHIP

MEMORY RESOURCES. HERE R REFERS TO REGISTERS, B TO BRAM, sc
TO STATIC BUFFERS, sm TO STREAMING BUFFER.

clearly show the reduction of DRAM traffic and the potential
for improved performance when our architecture is used. Our
key future work is to completely automate the creation of
the Smache architecture given a problem with a particular
stencil shape and boundary conditions. We are also working
to integrate our design with a commercial high-level FPGA
programming tool, and get real-time results.

REFERENCES

[1] J. Cong, P. Li, B. Xiao, and P. Zhang, “An optimal microarchitecture
for stencil computation acceleration based on non-uniform partitioning
of data reuse buffers,” in Proceedings of the 51st Annual Design

Automation Conference. ACM, 2014, pp. 1–6.

[2] H. Fu, R. G. Clapp, O. Mencer, and O. Pell, “Accelerating 3d convolu-
tion using streaming architectures on fpgas,” in SEG Technical Program

Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009,
pp. 3035–3039.

[3] O. Pell and V. Averbukh, “Maximum performance computing with
dataflow engines,” Computing in Science Engineering, vol. 14, no. 4,
pp. 98–103, July 2012.

[4] A. A. Nacci, V. Rana, F. Bruschi, D. Sciuto, I. Beretta, and D. Atienza,
“A high-level synthesis flow for the implementation of iterative stencil
loop algorithms on fpga devices,” in Proceedings of the 50th Annual

Design Automation Conference. ACM, 2013, p. 52.

[5] K. Sano, Y. Hatsuda, and S. Yamamoto, “Scalable streaming-array of
simple soft-processors for stencil computations with constant memory-
bandwidth,” in Field-Programmable Custom Computing Machines

(FCCM), 2011 IEEE 19th Annual International Symposium on. IEEE,
2011, pp. 234–241.

[6] M. Schmidt, M. Reichenbach, and D. Fey, “A generic vhdl template for
2d stencil code applications on fpgas,” in Object/Component/Service-

Oriented Real-Time Distributed Computing Workshops (ISORCW), 2012

15th IEEE International Symposium on. IEEE, 2012, pp. 180–187.

[7] M. Shafiq, M. Pericas, R. De la Cruz, M. Araya-Polo, N. Navarro, and
E. Ayguadé, “Exploiting memory customization in fpga for 3d stencil
computations,” in Field-Programmable Technology, 2009. FPT 2009.

International Conference on. IEEE, 2009, pp. 38–45.

[8] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing hardware from dataflow programs,” Journal

of Signal Processing Systems, vol. 63, no. 2, pp. 241–249, 2011.

[9] G. Natale, G. Stramondo, P. Bressana, R. Cattaneo, D. Sciuto, and M. D.
Santambrogio, “A polyhedral model-based framework for dataflow
implementation on fpga devices of iterative stencil loops,” in 2016

IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD), Nov 2016, pp. 1–8.

[10] H. M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama, “Opencl-
based fpga-platform for stencil computation and its optimization
methodology,” IEEE Transactions on Parallel and Distributed Systems,
vol. PP, no. 99, pp. 1–1, 2016.

[11] S. W. Nabi and W. Vanderbauwhede, “Mp-stream: A memory per-
formance benchmark for design space exploration on heterogeneous
hpc devices,” in 2018 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW). IEEE, 2018, pp. 194–
197.


