
SMART CAMERA NETWORKS IN VIRTUAL REALITY

Faisal Qureshi

Department of Computer Science
University of Toronto
Toronto, ON, Canada

Demetri Terzopoulos

Computer Science Department
University of California
Los Angeles, CA, USA

ABSTRACT

This paper presents smart camera network research in the

context of a unique new synthesis of advanced computer graph-

ics and vision simulation technologies. We design and exper-

iment with simulated camera networks within visually and

behaviorally realistic virtual environments. Specifically, we

demonstrate a smart camera network comprising static and

active simulated video surveillance cameras that provides per-

ceptive coverage of a large virtual public space, a train station

populated by autonomously self-animating virtual pedestri-

ans. In the context of human surveillance, we propose a cam-

era network control strategy that enables a collection of smart

cameras to provide perceptive scene coverage and perform

persistent surveillance with minimal intervention. Our novel

control strategy naturally addresses camera aggregation and

camera handoff, it does not require camera calibration, a de-

tailed world model, or a central controller, and it is robust

against camera failures and communication errors.

Index Terms— Virtual Vision, Computer Vision, Persis-

tent Surveillance, Smart Cameras, Camera Networks, Multi-

Camera Coordination and Control

1. INTRODUCTION

Recently video surveillance has found numerous applications

in search and rescue operations, crime fighting, environment

monitoring, traffic and city management, urban sensing, etc.

Multi-camera systems, or camera networks, are a critical com-

ponent of any video surveillance infrastructure. As the size of

the network grows, it becomes infeasible for human operators

to monitor the numerous video streams and identify all events

of possible interest. Therefore, it is desirable to have cam-

era networks capable of carrying out sensing operations au-

tonomously or with minimal human intervention. In this pa-

per, we demonstrate a model camera network comprising un-

calibrated static and active simulated video surveillance cam-

eras that, with minimal operator assistance, provide percep-

tive coverage of a large virtual public space—a train station

populated by autonomously self-animating virtual pedestrians

(Fig. 1).

Figure 1: Plan view of the (roofless) virtual Penn Station envi-

ronment, revealing the concourses and train tracks (left), the main

waiting room (center), and the shopping arcade (right). (The yel-

low rectangles indicate pedestrian portals.) An example camera net-

work is illustrated, comprising 16 simulated active (pan-tilt-zoom)

video surveillance cameras. Synthetic images from simulated video

surveillance cameras 1, 7, and 8 (from [1]).

Once a pedestrian of interest is selected either automati-

cally or by an operator monitoring surveillance video feeds,

the cameras decide amongst themselves how best to observe

the subject. For example, a subset of the active pan/tilt/zoom

(PTZ) cameras can collaboratively track the pedestrian as (s)he

weaves through the crowd. The problem of assigning cam-

eras to follow pedestrians becomes challenging when multiple

pedestrians are involved. To deal with the myriad of possibil-

ities, the cameras must be able to reason about the dynamic

situation. To this end, we propose a distributed camera net-

work control strategy that is capable of dynamic, task-driven

node aggregation through local decision-making and intern-

ode communication.1 The work presented here is an exten-

sion of that presented in [5].

1A node can communicate with neighboring nodes, where the neighbor-

hood of a node can be defined automatically as the set of nodes that are, e.g.,

within nominal radio communications distance of that node [2]. References

[3, 4] present schemes for learning sensor network topologies.

1-4244-1354-0/07/$25.00 c©2007 IEEE

1.1. Virtual Vision

This type of research would be very difficult to carry out

in the real world given the cost of (and legal impediments

to) deploying and experimenting with an appropriately com-

plex camera network in a large public space the size of a

train station. Despite its sophistication, our virtual vision

simulator runs on high-end commodity PCs, obviating the

need to grapple with special-purpose hardware and software

(Fig. 2). The multiple virtual cameras, which generate syn-

thetic video feeds that emulate those generated by real surveil-

lance cameras, are very easily reconfigurable in the virtual

space (Fig. 1). Moreover, the virtual world provides readily

accessible ground-truth data for the purposes of camera net-

work algorithm validation.

Skeptics might argue that virtual vision relies on simu-

lated data, which can lead to inaccurate results. In particu-

lar, they may fret that virtual video lacks the subtleties of real

video and that meaningful evaluation of a machine vision sys-

tem is impossible in the absence of real video. However, our

high-level camera control routines do not directly process any

raw video. Instead, low-level recognition and tracking rou-

tines, which mimic the performance (including failure modes)

of a state-of-the-art pedestrian localization and tracking sys-

tem, generate realistic input data for the high-level routines.

Hence, our simulator enables us to develop and test camera

network control algorithms under realistic assumptions de-

rived from physical camera networks. We believe that these

algorithms will readily port to the real world.

An important issue in smart camera networks is how to

compare camera network algorithms. Two possible approaches

are: 1) time-shared physical camera networks and 2) realistic

simulation environments. It is a matter of simple video cap-

ture to gather benchmark data from time-shared physical net-

works comprising passive, fixed-zoom cameras, but gathering

benchmark data for networks comprising active PTZ cameras

requires scene reenactment for every run, which is clearly in-

feasible in most cases. Costello et al. [6], who compared

various schemes for scheduling an active camera to observe

pedestrians present in the scene, ran into this issue and resort

to Monte Carlo simulation to evaluate camera scheduling ap-

proaches. They conclude that evaluating scheduling policies

on an physical testbed comprising a single active camera is

extremely complicated. Our virtual vision approach provides

a viable alternative that, among other benefits compared to

a physical camera network, offers convenient and unlimited

repeatability.

1.2. Smart Camera Network

Many of the characteristics and challenges associated with

sensor networks are relevant to the work presented here. A

fundamental issue in sensor networks is the selection of sen-

sor nodes that participate in a particular sensing task [7]. The

selection process must take into account the informational

Figure 2: The virtual vision paradigm (image from [1]).

contribution of each node against its resource consumption

or potential utility in other tasks. Distributed approaches for

node selection are preferable to centralized approaches and

offer what are perhaps the greatest advantages of networked

sensing—robustness and scalability. Also, in a typical sensor

network, each node has local autonomy and can communicate

with a small number of neighboring nodes that are within ra-

dio communication range. Message delay and message loss

are common occurrences in sensor networks due to bandwidth

limitations, interference, etc. One must also account for non-

stationary network topology due to node failures, node addi-

tions, etc.

Mindful of these issues, we propose a novel camera net-

work control strategy that does not require camera calibration,

a detailed world model, or a central controller. The over-

all behavior of the network is the consequence of the local

processing at each node and internode communication. The

network is robust to node and communication link failures.

Moreover, it is scalable due to the lack of a central controller.

Visual surveillance tasks are performed by groups of one or

more camera nodes. These groups, which are created on the

fly, define the information sharing parameters and the extent

of collaboration between nodes. A group evolves—i.e., old

nodes leave the group and new nodes join it—during the life-

time of the surveillance task. One node in each group acts as

the group supervisor and is responsible for group-level deci-

sion making. We also present a novel constraint satisfaction

problem formulation for resolving group-group interactions.

2. RELATED WORK

As was argued in [8, 9], computer graphics and virtual real-

ity technologies are rapidly presenting viable alternatives to

the real world for developing sensory systems (see also [10]).

Our camera network is deployed and tested within the virtual

train station simulator that was developed in [1]. The simu-

lator incorporates a large-scale environmental model (of the

original Pennsylvania Station in New York City) with a so-

phisticated pedestrian animation system that combines behav-

ioral, perceptual, and cognitive human simulation algorithms.

The simulator can efficiently synthesize well over 1000 self-

animating pedestrians performing a rich variety of activities

in the large-scale indoor urban environment. Standard com-

puter graphics techniques render the busy urban scene with

considerable geometric and photometric detail (Fig. 1).

The problem of forming sensor groups based on task re-

quirements and resource availability has received much atten-

tion within the sensor networks community [7]. Reference

[11] argues that task-based grouping in ad hoc camera net-

works is highly advantageous. Collaborative tracking, which

subsumes the above issue, is considered an essential capabil-

ity in many sensor networks [7]. Reference [12] introduces

an information driven approach to collaborative tracking that

attempts to minimize the energy expenditure at each node by

reducing internode communication. A node selects the next

node by utilizing the information gain vs. energy expenditure

tradeoff estimates for its neighbor nodes. In the context of

camera networks, it is often difficult for a camera node to

estimate the expected information gain by assigning another

camera to the task without explicit geometric and camera-

calibration knowledge, and such knowledge is tedious to ob-

tain and maintain during the lifetime of the camera network.

Therefore, our camera networks eschew such knowledge; a

node need only communicate with nearby nodes before se-

lecting new nodes.

Nodes comprising sensor networks are usually untethered

sensing units with limited onboard power reserves. Hence, a

crucial concern in sensor networks is the energy expenditure

at each node, which determines the lifespan of a sensor net-

work [13]. Node communications have large power require-

ments; therefore, sensor network control strategies attempt to

minimize the internode communication [12]. Presently, we do

not address this issue; however, the communication protocol

proposed here limits the communication to the active nodes

and their neighbors.

Little attention has been paid in computer vision to the

problem of controlling active cameras to provide visual cov-

erage of an extensive public area, such as a train station or an

airport [14, 6]. Previous work on camera networks in com-

puter vision has dealt with issues related to low-level and

mid-level vision, namely segmentation, tracking, and iden-

tification of moving objects [15], and camera network cali-

bration [16]. Our approach does not require calibration; how-

ever, we assume that the cameras can identify a pedestrian

with reasonable accuracy. To this end, we employ color-based

pedestrian appearance models.

IrisNet is a sensor network architecture tailored towards

advanced sensors connected via high-capacity communica-

tion channels [17]. It takes a centralized view of the net-

work and models it as a distributed database, allowing effi-

cient access to sensor readings. We consider this work to be

orthogonal to ours. SensEye is a recent sensor-network in-

spired multi-camera system [18]. It demonstrates the benefits

in terms of low-latencies and energy efficiency of a multi-

tiered network where each tier defines a set of sensing ca-

pabilities and corresponds to a single class of smart camera

sensors. However, SensEye does not deal with the distributed

camera control issues that we address.

Our node grouping strategy is inspired by the ContractNet

distributed problem solving protocol [19] and it realizes group

formation via internode negotiation. Unlike Mallett’s [11] ap-

proach to node grouping where groups are defined implicitly

via membership nodes, our approach defines groups explic-

itly through group leaders. This simplifies reasoning about

groups; e.g., Mallett’s approach requires specialized nodes

for group termination. Our strategy handles group leader fail-

ures through group merging and group leader demotion oper-

ations.

Resolving group-group interactions requires sensor assign-

ment to various tasks, which shares many features with Multi-

Robot Task Allocation (MRTA) problems studied by the multi-

agent systems community [20]. Specifically, according to the

taxonomy provided in [20], our sensor assignment formula-

tion belongs to the single-task (ST) robots, multi-robot (MR)

tasks, instantaneous assignment (IA) category. ST-MR-IA

problems are significantly more difficult than single robot task

MTRA problems. Task-based robot grouping arise naturally

in ST-MR-IA problems, which are sometimes referred to as

coalition formation. ST-MR-IA problems have been exten-

sively studied and they can be reduced to a Set Partitioning

Problem (SPP), which is strongly NP-hard [21]. However,

heuristics-based set partitioning algorithms exist that produce

good results on large SPPs [22]. Fortunately, the sizes of

MRTA problems, and by extension SPPs, encountered in our

camera sensor network setting are small due to the spatial or

locality constraints inherent to the camera sensors.

We model sensor assignments as a Constraint Satisfaction

Problem (CSP), which we solve using “centralized” back-

tracking. Each sensor assignment that passes the hard con-

straints is assigned a weight, and the assignment with the

highest weight is selected. We have intentionally avoided

distributed constraint optimization techniques, such as [23]

and [24], due to their explosive communication requirements

even for small sized problems. Additionally, it is not obvious

how they handle node and communication failures. Our strat-

egy lies somewhere between purely distributed and fully cen-

tralized schemes for sensor assignment—sensor assignment

is distributed at the level of the network, whereas it is central-

ized at the level of a group.

3. SMART CAMERA NODES

Each virtual camera node is an autonomous agent capable of

communicating with nearby nodes.

The sensing capabilities of a camera node are determined

by the low-level visual routines (LVR). The LVRs, such as

pedestrian tracking and identification, are computer vision al-

gorithms that directly operate upon the synthetic video gen-

erated by the virtual cameras as well as upon the information

readily available from the 3D virtual world. They mimic the

Figure 3: The top-level camera controller.

performance of a state-of-the-art pedestrian segmentation and

tracking module. Each camera can fixate and zoom on an ob-

ject of interest. The fixation and zooming routines are image

driven and do not require any 3D information such as camera

calibration or a global frame of reference. Refer to [25] for

the details.

An augmented hierarchical finite state machine implements

the top-level controller of the camera node (Fig. 3). The cam-

era controller is responsible for the overall behavior of the

camera node and it takes into account the information gath-

ered through visual analysis (bottom-up) and the current task

(top-down).

In its default state, Idle, the camera node is not involved

in any task. A camera node transitions into the Computin-

gRelevance state upon receiving a queryrelevance message

from a nearby node. Using the description of the task that

is contained within the queryrelevance message, and by em-

ploying the LVRs, the camera node can compute its relevance

to the task. For example, a camera can use visual search to

find a pedestrian that matches the appearance-based signature

forwarded by the querying node. The relevance encodes the

expectation of how successful a camera node will be at a par-

ticular sensing task. The camera returns to the Idle state if

it fails to compute the relevance due to the fact that it can-

not find a pedestrian matching the description. On the other

hand, when the camera successfully finds the desired pedes-

trian, it returns the relevance value to the querying node. The

querying node passes the relevance value to the supervisor

node of the group, which decides whether or not to include

the camera node in the group. The camera goes into the Per-

formingTask state upon joining a group, where the embedded

child finite state machine hides the sensing details from the

top-level controller and enables the node to handle transient

sensing (tracking) failures. All states other than the Perform-

ingTask state have built-in timers (not shown in Fig. 3) that al-

low the camera node to transition into the default state rather

than wait indefinitely for a message from another node.

(a) (b) (c)

Figure 4: The LVRs are programmed to track pedestrians 1 and

3. Pedestrian 3 is tracked successfully; however, (a) track is lost of

pedestrian 1 who blends in with the background. (b) The tracking

routine loses pedestrian 3 when she is occluded by pedestrian 2, but

it regains track of pedestrian 3 when pedestrian 2 moves out of the

way (c).

4. CAMERA NETWORK MODEL

The camera network communication scheme that enables task-

specific node organization is as follows: An operator presents

a particular sensing request to one of the nodes. In response

to this request, relevant nodes self-organize into a group with

the aim of fulfilling the sensing task. The group, which for-

malizes the collaboration between member nodes, is a dy-

namic arrangement that evolves throughout the lifetime of

the task. At any given time, multiple groups might be ac-

tive, each performing its respective task. Group formation

is determined by the local computation at each node and the

communication between the nodes. Specifically, we employ

the ContractNet protocol, which models auctions (announce-

ment, bidding, and selection) for group formation [19] (Fig. 5).

The local computation at each node involves choosing an ap-

propriate bid for the announced sensing task.

From the standpoint of user interaction, we have identified

two kinds of sensing queries: 1) where the queried camera it-

self can measure the phenomenon of interest—e.g., when a

human operator selects a pedestrian to be tracked within a

particular video feed—and 2) when the queried node might

not be able to perform the required sensing and needs to route

the query to other nodes. For instance, an operator can task

the network to count the number of pedestrians wearing green

tops. Currently, the network supports only the first type of

query, which suffices for initiating collaborative tracking tasks.

4.1. Node Grouping

Node grouping commences when a node n receives a sens-

ing query. In response to the query, the node sets up a named

task and creates a single-node group. Initially, as node n is

the only node in the group, it is chosen as the leader. To re-

cruit new nodes to the current task, node n begins by sending

queryrelevance messages to its neighboring nodes, Nn. This

is akin to auctioning the task in the hope of finding suitable

(a) Announcement (b) Bidding (c) Selection

Figure 5: Task auction supports coalition formation. The red cross

indicates a lost message.

nodes. A subset N ′ of Nn respond by sending their rele-

vance values for the current task (relevance message). This

is the bidding phase. Upon receiving the relevance values,

node n selects a subset M of N ′ to include in the group and

sends join messages to the chosen nodes. This is the selection

phase. When there is no resource contention between groups

(tasks)—e.g., when only one task is active, or when multiple

tasks that do not require the same nodes for successful opera-

tion are active—the selection process is relatively straightfor-

ward; node n picks those nodes from N ′ that have the high-

est relevance values. On the other hand, a conflict resolution

mechanism is required when multiple groups vie for the same

nodes. We present a scheme to handle this situation in the

next section. A node that is not already part of any group can

join the group upon receiving a join message from the leader

of that group. After receiving the join message, a subset M ′

of M elect to join the group.

For groups comprising more than one node, if a group

leader decides to recruit more nodes to the task at hand, it

instructs group nodes to broadcast task requirements. This is

accomplished by sending queryrelevance to group nodes. The

leader node is responsible for group-level decisions, so mem-

ber nodes forward to the group leader all the group-related

messages, such as the relevance messages from potential can-

didates for group membership. During the lifetime of a group,

member nodes broadcast status messages at regular intervals.

Group leaders use these messages to update the relevance in-

formation of the group nodes. When a leader node receives a

status message from another node performing the same task,

the leader node includes that node into its group. The leader

uses the most recent relevance values to decide when to drop

a member node. A group leader also removes a node from

the group if it has not received a status message from that

node by some preset time limit.2 Similarly, a group node can

choose to stop performing the task when it detects that its rel-

evance value is below a certain threshold. When a leader de-

tects that its own relevance value for the current task is below

the predefined threshold, it selects a new leader from among

the member nodes. The group vanishes when the last node

2The relevance value of a group node decays over time in the absence of

new status messages from that node. Thus, we can conveniently model node-

dependent timeouts; i.e., the time duration during which at least one status

message must be received by the node in question.

leaves.

4.2. Conflict Resolution

A conflict resolution mechanism is needed when multiple groups

require the same resources. The problem of assigning cam-

eras to the contending groups can be treated as a Constraint

Satisfaction Problem (CSP) [26]. Formally, a CSP consists of

a set of variables {v1, v2, v3, · · · , vk}, a set of allowed values

Dom[vi] for each variable vi (called the domain of vi), and a

set of constraints {C1, C2, C3, · · · , Cm}. The solution to the

CSP is a set {vi ← ai | ai ∈ Dom[vi]}, where the ais satisfy

all the constraints.

We treat each group g as a variable, whose domain con-

sists of the non-empty subsets of the set of cameras with rel-

evance values (with respect to g) greater than a predefined

threshold. The constraints restrict the assignment of a camera

to multiple groups. We define a constraint Cij as ai ∩ aj =
{Φ}, where ai and aj are camera assignments to groups gi

and gj , respectively; k groups give rise to k(k − 1)/2 con-

straints.

We can then define a CSP problem P = (G, D, C), where

G = {g1, g2, · · · , gk} is the set of groups (variables) with

non-empty domains, S = {Dom[gi] | i ∈ [1, k]} is the set of

domains for each group, and C = {Cij | i, j ∈ [1, k], i �= j}
is the set of constraints. A node initiates the conflict resolu-

tion procedure upon identifying a group-group conflict; e.g.,

when it intercepts a queryrelevance message from multiple

groups, or when it already belongs to a group and it receives

a queryrelevance message from another group. The conflict

resolution procedure begins by centralizing the CSP in one

of the supervisor nodes, which uses backtracking to solve the

problem. The result is then conveyed to the other supervisor

nodes.

CSPs have been studied extensively in the computer sci-

ence literature and there exist many schemes for solving CSPs.

We employ backtracking to search systematically through the

space of possibilities in order to find an optimal camera as-

signment. We store the currently best result and backtrack

whenever the current partial solution is of poorer quality. Us-

ing this strategy, we can guarantee an optimal solution under

the assumption that the quality of solutions increase mono-

tonically as values are assigned to more variables (Table 1).

When P does not have a solution, we solve smaller CSPs by

relaxing the node requirements for each task.

A key feature of our proposed conflict resolution scheme

is centralization, which requires that all the relevant informa-

tion be gathered at the node that is responsible for solving

the CSP. For smaller CSPs, the cost of centralization is eas-

ily offset by the speed and ease of solving the CSP. One can

perhaps avoid centralization by using a scheme for distributed

CSPs [24].

Test cases 1 2 3 4

Number of groups 2 2 2 2

Number of sensors per group 3 3 3 3

Average number of relevant sensors 12 12 16 16

Average domain size 220 220 560 560

Number of solutions 29290 9 221347 17

Number of nodes explored 29511 175 221908 401

Number of Backtracks 48620 36520 314160 215040

Solver used AllSolu BestSolu AllSolu BestSolu

Table 1: Finding an optimal sensor node assignment. We compare our scheme (BestSolu) with naive backtracking (AllSolu). The problem

is to assign three sensors each to two groups. The average number of relevant nodes for each group is 12 and 16. AllSolu finds all solutions,

ranks them, and picks the best one, whereas BestSolu computes the optimal solution by storing the currently best solution and backtracking

when partial assignment yields a poorer solution. As expected, the BestSolu solver outperforms the AllSolusolver.

3ENSING
2ANGE

#OMMUNICATION
2ANGE

.EIGHBORS

#AMERA฀.ODES

!CTIVE฀#AMERA

0OSSIBLE
#ANDIDATES

Figure 6: A camera network for video surveillance consists of cam-

era nodes that can communicate with other nearby nodes. Collab-

orative, persistent surveillance requires that cameras organize them-

selves to perform camera handover when the observed subject moves

out of the sensing range of one camera and into that of another.

4.3. Node Failures and Communication Errors

The proposed communication model takes into consideration

node and communication failures. Communication failures

are perceived as camera failures. For example, when a node

is expecting a message from another node, and the message

never arrives, the first node concludes that the second node

is malfunctioning. A node failure is assumed when the su-

pervisor node does not receive the node’s response to succes-

sive heartbeat messages, and the supervisor node removes the

problem node from the group. Conversely, when a member

node does not receive a heartbeat message from the supervi-

sor node within a set time limit, it assumes that the supervisor

node has experienced a failure and selects itself to be the su-

pervisor of the group. An actual or perceived supervisor node

failure can therefore give rise to multiple single-node groups

performing the same task.

Multiple groups assigned to the same task are merged by

demoting all the supervisor nodes of the constituent groups

except one. Demotion is either carried out based upon the

unique ID assigned to each node—among the conflicting nodes,

the one with the highest ID is selected to be the group leader—

or when unique node IDs are not guaranteed, demotion can be

carried out via a contention management scheme that was first

introduced in ALOHA network [27]. See [25] for the details.

5. PERSISTENT VIDEO SURVEILLANCE

Now, consider how a network of dynamic cameras may be

used in the context of video surveillance (Fig. 6). A human

operator spots one or more mobile pedestrians of interest in a

video feed and, for example, requests the network to “zoom

in on this pedestrian,” “observe this pedestrian,” or “observe

the entire group.” The successful execution and completion

of these tasks requires an intelligent allocation of the avail-

able cameras. In particular, the network must decide which

cameras should track the pedestrian and for how long.

A detailed world model that includes the location of cam-

eras, their fields of view, pedestrian motion prediction mod-

els, occlusion models, and pedestrian movement pathways

may allow (in some sense) optimal allocation of cameras;

however, it is cumbersome and in most cases infeasible to

acquire such a world model. Our approach eschews such a

knowledge base. We assume only that a pedestrian can be

identified by camera nodes with reasonable accuracy. Any

two nodes that are within communication range of each other

are considered neighbors. A direct consequence of this ap-

proach is that the network can easily be modified through re-

moval, addition, or replacement of camera nodes.

The accuracy with which individual camera nodes are able

to compute their relevance to the task at hand determines the

overall performance of the network (see [25] for the details).

The computed relevance values are used by the node selection

scheme described above to assign cameras to various tasks.

The supervisor node gives preference to the nodes that are

currently free, so the nodes that are part of another group are

selected only when an insufficient number of free nodes are

available for the current task.

6. RESULTS

To date, we have tested our smart camera network system

with up to 16 stationary and pan-tilt-zoom virtual cameras,

and we have populated the virtual Penn station with up to 100

pedestrians. The camera network correctly assigned cameras

(a) C1; 0.5 min (b) C9; 0.5 min (c) C7; 0.5 min (d) C6; 0.5 min (e) C7; 1.5 min

(f) C7; 2.0 min (g) C6; 2.2 min (h) C6; 3.0 min (i) C7; 3.5 min (j) C6; 4.2 min

(k) C2; 3.0 min (l) C2; 4.0 min (m) C2; 4.3 min (n) C3; 4.0 min (o) C3; 5.0 min

(p) C3; 6.0 min (q) C3; 13.0 min (r) C10; 13.4 min (s) C11; 14.0 min (t) C9; 15.0 min

Figure 7: For 15 minutes, a pedestrian of interest is successively

observed by Cameras 7, 6, 2, 3, 10, and 9 (refer to Fig. 1) as she

makes her way through the station from the arcade through the main

waiting room and into the concourse. (a-d) Cameras 1, 9, 7, and 8

monitoring the station. (e) The operator selects a pedestrian of in-

terest in the video feed from Camera 7. (f) Camera 7 has zoomed

in on the pedestrian, (g) Camera 6, which is recruited by Camera 7,

acquires the pedestrian. (h) Camera 6 zooms in on the pedestrian. (i)

Camera 7 reverts to its default mode after losing track of the pedes-

trian and is now ready for another task (j) Camera 6 has lost track

of the pedestrian. (k) Camera 2. (l) Camera 2, which is recruited

by Camera 6, acquires the pedestrian. (m) Camera 2 observing the

pedestrian. (n) Camera 3 is recruited by Camera 6; Camera 3 has

acquired the pedestrian. (o) Camera 3 zooming in on the pedestrian.

(p) Pedestrian is at the vending machine. (q) Pedestrian is walk-

ing towards the concourse. (r) Camera 10 is recruited by Camera 3;

Camera 10 is observing the pedestrian. (s) Camera 11 is recruited by

Camera 10. (t) Camera 9 is recruited by Camera 10.

in most cases. Some of the problems that we encountered are

related to pedestrian identification and tracking. As we in-

crease the number of virtual pedestrians in the train station,

the identification and tracking module experiences increasing

difficulty, so the surveillance task fails (and the cameras re-

turn to their default settings).

For the example in Fig. 7, we placed 16 active PTZ cam-

eras in the train station as indicated in Fig. 1. An operator

selects the pedestrian with the red top in Camera 7 (Fig. 7(e))

and initiates an “observe” task. Camera 7 forms the task

group and begins tracking the pedestrian. Subsequently, Cam-

era 7 recruits Camera 6, which in turn recruits Cameras 2 and

3 to observe the pedestrian. Camera 6 becomes the supervi-

sor of the group when camera 7 loses track of the pedestrian

and leaves the group. Subsequently, Camera 6 experiences a

tracking failure, sets Camera 3 as the group supervisor, and

leaves the group. Cameras 2 and 3 persistently observe the

pedestrian during her stay in the main waiting room, where

she also visits a vending machine. When the pedestrian starts

walking towards the concourse, Cameras 10 and 11 take over

the group from Cameras 2 and 3. Cameras 2 and 3 leave the

group and return to their default modes. Later, Camera 11,

which is now acting as the group’s supervisor, recruits Cam-

era 9, which observes the pedestrian as she enters the con-

course.

7. CONCLUSION

We envision future video surveillance systems to be networks

of stationary and active cameras capable of providing per-

ceptive coverage of extended environments with minimal re-

liance on human operators. Such systems will require not

only robust, low-level vision routines, but also novel camera

network methodologies. The work presented in this paper is a

step toward the realization of smart camera networks and our

initial results appear promising.

A unique and important aspect of our work, is that we

have developed and demonstrated our prototype video surveil-

lance system in virtual reality—a realistic train station envi-

ronment populated by lifelike, autonomously self-animating

virtual pedestrians. Our sophisticated camera network simu-

lator should continue to facilitate our ability to design such

large-scale networks and experiment with them on commod-

ity personal computers.

The overall behavior of our prototype smart camera net-

work is governed by local decision making at each node and

communication between the nodes. Our approach is new in-

sofar as it does not require camera calibration, a detailed world

model, or a central controller. We have intentionally avoided

multi-camera tracking schemes that assume prior camera net-

work calibration which, we believe, is an unrealistic goal for a

large-scale camera network consisting of heterogeneous cam-

eras. Similarly, our approach does not expect a detailed world

model which, in general, is hard to acquire. Since it lacks any

central controller, we expect the proposed approach to be ro-

bust and scalable.

We are currently constructing more elaborate scenarios in-

volving multiple cameras situated in different locations within

the train station, with which we would like to study the per-

formance of the network in persistently observing multiple

pedestrians during their stay in the train station.

8. ACKNOWLEDGMENTS

The research reported herein was made possible in part by a grant

from the Defense Advanced Research Projects Agency (DARPA)

of the Department of Defense. We thank Tom Strat, formerly of

DARPA, for his generous support and encouragement. We also thank

Wei Shao and Mauricio Plaza-Villegas for their invaluable contribu-

tions to the implementation of the train station simulator.

9. REFERENCES

[1] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” in

Proc. ACM SIGGRAPH / Eurographics Symposium on Com-

puter Animation, Los Angeles, CA, July 2005, pp. 19–28.

[2] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and

F. Silva, “Directed diffusion for wireless sensor networking,”

IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 2–

16, Feb. 2003.

[3] A. Ihler, J. Fisher, R. Moses, and A. Willsky, “Nonparametric

belief propagation for self-calibration in sensor networks,” in

Proc. Third International Symposium on Information Process-

ing in Sensor Networks, Berkeley, CA, Apr. 2004, pp. 225–233.

[4] D. Marinakis, G. Dudek, and D. Fleet, “Learning sensor net-

work topology through Monte Carlo expectation maximiza-

tion,” in Proc. IEEE Intl. Conf. on Robotics and Automation,

Barcelona, Spain, Apr. 2005.

[5] F. Qureshi and D. Terzopoulos, “Virtual vision and smart cam-

era networks,” in Working Notes of the International Work-

shop on Distributed Smart Cameras (DSC 2006), B. Rinner

and W. Wolf, Eds., Boulder, CO, Oct. 2006, pp. 62–66, Held

in conjunction with ACM SenSys 2006.

[6] C.J. Costello, C.P. Diehl, A. Banerjee, and H. Fisher, “Schedul-

ing an active camera to observe people,” in Proc. 2nd ACM

International Workshop on Video Surveillance and Sensor Net-

works, New York, NY, 2004, pp. 39–45, ACM Press.

[7] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, “Collabo-

rative signal and information processing: An information di-

rected approach,” Proceedings of the IEEE, vol. 91, no. 8,

pp. 1199–1209, 2003.

[8] D. Terzopoulos and T. Rabie, “Animat vision: Active vision

in artificial animals,” Videre: Journal of Computer Vision Re-

search, vol. 1, no. 1, pp. 2–19, Sept. 1997.

[9] D. Terzopoulos, “Perceptive agents and systems in virtual real-

ity,” in Proc. 10th ACM Symposium on Virtual Reality Software

and Technology, Osaka, Japan, Oct. 2003, pp. 1–3.

[10] A. Santuari, O. Lanz, and R. Brunelli, “Synthetic movies for

computer vision applications,” in Proc. 3rd IASTED Interna-

tional Conference: Visualization, Imaging, and Image Process-

ing (VIIP 2003), Spain, Sept. 2003, no. 1, pp. 1–6.

[11] J. Mallett, The Role of Groups in Smart Camera Net-

works, Ph.D. thesis, Program of Media Arts and Sciences,

School of Architecture, Massachusetts Institute of Technology,

Feb. 2006.

[12] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic

sensor collaboration for tracking applications,” in IEEE Signal

Processing Magazine, vol. 19, pp. 61–72. Mar. 2002.

[13] M. Bhardwaj, A. Chandrakasan, and T. Garnett, “Upper

bounds on the lifetime of sensor networks,” in IEEE Interna-

tional Conference on Communications, 2001, no. 26, pp. 785–

790.

[14] Robert Collins, Alan Lipton, Hironobu Fujiyoshi, and Takeo

Kanade, “Algorithms for cooperative multisensor surveil-

lance,” Proceedings of the IEEE, vol. 89, no. 10, pp. 1456–

1477, Oct. 2001.

[15] R. Collins, O. Amidi, and T. Kanade, “An active camera sys-

tem for acquiring multi-view video,” in Proc. International

Conference on Image Processing, Rochester, NY, Sept. 2002,

pp. 517–520.

[16] D. Devarajan, R.J. Radke, and H. Chung, “Distributed metric

calibration of ad hoc camera networks,” ACM Transactions on

Sensor Networks, vol. 2, no. 3, pp. 380–403, 2006.

[17] J. Campbell, P.B. Gibbons, S. Nath, P. Pillai, S. Seshan, and

R. Sukthankar, “Irisnet: An internet-scale architecture for

multimedia sensors,” in Proc. of the 13th annual ACM in-

ternational conference on Multimedia, New York, NY, 2005,

pp. 81–88, ACM Press.

[18] P. Kulkarni, D. Ganesan, P. Shenoy, and Q. Lu, “Senseye: a

multi-tier camera sensor network,” in Proc. of the 13th annual

ACM international conference on Multimedia, New York, NY,

2005, pp. 229–238, ACM Press.

[19] R.G. Smith, “The contract net protocol: High-level commu-

nication and control in a distributed problem solver,” IEEE

Transctions on Computers, vol. C-29, no. 12, pp. 1104–1113,

Dec. 1980.

[20] B. Gerkey and M. Matari, “A formal analysis and taxonomy of

task allocation in multi-robot systems,” International Journal

of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[21] M.R. Garey and D.S. Johnson, ““Strong” NP completeness

results: Motivation, examples, and implications,” Journal of

the ACM, vol. 25, no. 3, pp. 499–508, 1978.

[22] A. Atamturk, G. Nemhauser, and M. Savelsbergh, “A com-

bined lagrangian, linear programming and implication heuris-

tic for large-scale set partitioning problems,” Journal of

Heuristics, vol. 1, pp. 247–259, 1995.

[23] P.J. Modi, W.-S. Shen, M. Tambe, and M. Yokoo, “Adopt:

asynchronous distributed constraint optimization with quality

guarantees,” Artificial Intelligence, vol. 161, no. 1–2, pp. 149–

180, Mar. 2006, Elsevier.

[24] M. Yokoo, Distributed Constraint Satisfaction: Foundations of

Cooperation in Multi-agent Systems, Springer-Verlag, Berlin,

Germany, 2001.

[25] F.Z. Qureshi, Intelligent Perception in Virtual Camera Net-

works and Space Robotics, Ph.D. thesis, Department of Com-

puter Science, University of Toronto, Canada, January 2007.

[26] J.K. Pearson and P.G. Jeavons, “A survey of tractable con-

straint satisfaction problems,” Tech. Rep. CSD-TR-97-15,

Royal Holloway, University of London, July 1997.

[27] F.F. Kuo, “The ALOHA system,” ACM SIGCOMM Computer

Communication Review, vol. 25, no. 1, pp. 41–44, 1995,

