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ABSTRACT 
 

This paper presents a system for video object generation 
and selective encoding with applications in surveillance, 
mobile videophones, and automotive industry. Object 
tracking and MPEG-4 compression are performed in real-
time. The system belongs to a new generation of 
intelligent vision sensors called smart cameras, which 
execute autonomous vision tasks and report events and 
data to a remote base-station. A detection module signals 
the object of interest presence within the camera field of 
view, while the tracking part follows the target to generate 
temporal trajectories. The compression is MPEG-4 
compliant and implements the Simple Profile of the 
standard, capable of encoding up to four video objects. At 
the same time, the compression is selective, maintaining a 
higher quality for the foreground objects and a lower 
quality for the background representation. This property 
contributes to bandwidth reduction while preserving the 
essential information of foreground objects. The system 
performance is demonstrated in experiments that involve 
objects representing faces and vehicles seen from both 
static and moving cameras. 
 
 

1. INTRODUCTION 
 

The 3G digital cellular technology [11] will soon provide 
increased bandwidth: up to 384K bit/sec when a device is 
stationary or moving at pedestrian speed, 128K bit/sec in a 
car, and 2M bit/sec in fixed applications. By combining 
this new communication framework with powerful vision 
algorithms, better sensors, and DSP chips with increased 
computational power and memory capacity, the concept of 
smart cameras becomes a reality.  A smart camera is an 
autonomous vision-based device capable to perform 
intelligent tasks such as surveillance or obstacle detection 
while reporting to its base station events and data.  

This paper presents a prototype real-time system that 
generates video objects of interest and encodes them 
selectively. Our system represents a step forward towards 
the implementation of smart cameras for surveillance 
[3,8], mobile videophones [6,7], and intelligent vehicles.  

For these scenarios, the system task is to transmit to its 
base station high quality foreground data, while trading-off 
the quality of the background data. For surveillance, the 
base station will forward the data stream to a central 
processing unit for person recognition/re-identification. In 
the case of videophone the base station will transmit the 
data to another device. In automotive applications, 
communication is also needed between smart cameras.  

The paper is organized as follows. Section 2 presents on 
overview of the system and Section 3 discusses the object 
detection and tracking module. The compression module 
is presented in Section 4. Section 5 shows experimental 
results. 

 
 

2. SMART CAMERA OVERVIEW 
 

The block diagram of a smart camera is presented in 
Figure 1. The detection and tracking module signals the 
object of interest presence within the camera field of view 
and provides the 2-D coordinates of the detected object 
and the estimated scales to the compression module. Based 
on the foreground and background data, this module 
generates MPEG-4 [12] compliant compressed video 
objects. Our software implementation is modular, 
involving multiple threads that are synchronized for the 
tasks of grabbing, detection, tracking, camera control, 
compression, and visualization. 

When active cameras are used, the control module 
initiates commands that ensure the centering of the target 
in the camera view. Appropriate control of the pan, tilt, 
and zoom is an important phase of the tracking process. 
The camera should execute fast saccades in response to 
sudden and large movements of the target while providing 
a smooth pursuit when the target is quasi-stationary. We 
implemented a control mechanism that resembles the 
human visual system. The fovea sub-image occupies 
laterally about 6 degrees of the camera’s 50 degrees field 
of view, at zero zoom. The communication with the Sony 
EVI-D30 camera is achieved through a standard RS-232C 
interface. 
 



 
Figure 1. Block diagram of a smart camera with real-
time video object generation and encoding. 
 

However, contrary to other tracking systems that 
suspend the processing of visual information during the 
saccade movements [1], our visual tracker is sufficiently 
robust to deal with the large amount of blurring resulting 
from camera motion. Thus, the tracking is a continuous 
process, not interrupted by the servo commands.  

 
3. OBJECT DETECTION AND TRACKING 

 

The modules performing object detection and tracking are 
based on our recent work described in [4,5].  

In the case of faces, a color model is obtained by 
computing the mean histogram of face samples recorded in 
the morning, afternoon, and at night. The dissimilarity 
between the face model and the face candidates is 
measured by a metric based on the Bhattacharyya 
coefficient. The gradient ascent mean shift procedure is 
employed to guide a fast search for the best face candidate 
in the neighborhood of a given image location. For more 
details, please see [5]. 
 

4. MPEG-4 MODULE 
 

The MPEG-4 module [2,12] is based on the software 
recently made public by the International Organization for 
Standardization. We use a Simple Profile encoder [9] 
capable of processing up to four video objects of 
rectangular shape. The reference software implements 
motion estimation with full search (16 x 16 pixels) block-
matching algorithm with forward prediction. It is not 
optimized, however, achieving only 15 fps on a QCIF (176 
x 144 pixels) stream with two video objects, processed on 
a 900 MHz PC.  

Nevertheless, using optimization at all levels, including 
new algorithms for intra and inter video object plane 
encoding, fast motion estimation, and MMX technology, 
much better performance is possible. A frame rate of 70 
fps is reported for CIF resolution video (352 x 288 pixels) 
on 800 MHz PC with similar quality as the reference 
software [13]. 

There are already dedicated chips that perform real time 
MPEG-4 compression (see Matsushita or TI-DSC24). 
Since the detection and tracking modules can be easily 
implemented in DSP, the natural step forward is the DSP 
implementation of our entire system. We are currently 
investigating the VLSI solution [10]. 
 

5. EXPERIMENTS 
 

The performance of the system is assessed in this section 
by analyzing experiments that involve both static and 
moving cameras. 
 
5.1 Static Camera with Automatic Pan and Tilt 
 

The first experiment was performed in an office 
environment with daylight (coming from a large window 
in the background) and artificial light. A human subject 
walks through the office and executes large and sudden 
movements. Only two QCIF video objects are created in 
this experiment, the subject’s face and background. The 
entire sequence, called Alessio_1 has about 300 frames. 
Four frames containing the composition of the two 
reconstructed video objects are presented in Figure 2. 
Observe that face data is decoded with much higher 
accuracy in comparison to the background data. 

 The detection, tracking, video object formation, and 
selective encoding are performed at a frame rate of 15 fps 
on a 900 MHz PC. Since the decoder merges together the 
video objects according to the segmentation mask, the 
reconstructed stream is a composition of a high quality 
video object (the face) and a low quality video object (the 
background). We use a texture quantization step of 4 for 
the face and 30 for the background.   

As an objective dissimilarity measure we employ the 
Peak Signal to Noise Ratio (PSNR) between the original 
and reconstructed frames: 
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where RMSE denotes the Root Mean Squared Error, 
expressed by:  
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In equation (2) the original image value at position i is 

denoted by iX , while R
iX  is the value of the decoded 

image and n is the number of pixels. For color images the 
formula (2) is applied for each color plane. 

The PSNR values for each reconstructed frame are 
shown in Figure 3a for the face video object and in Figure 
3b for the background. The PSNR of the background 
object varies significantly in time, about 6dB. The reason 
of the variation is due to both changes in the scene 
composition (regions with and without texture) and to 
camera motion. On the other side, the quality of the 
reconstructed face is remarkably constant over time, which 



strengthens our conjecture that a recognition module can 
be successfully employed after the decoding. 
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Figure 2.  Reconstructed Alessio_1 sequence. 
Compression ratio is 63.06. 
 

 
(a)   (b) 

Figure 3. PSNR of the reconstructed data for Alessio_1 
sequence: (a) Face. (b) Background. 
 

 
(a)    (b) 

Figure 4. Performance obtained by applying different 
quantization steps for the face object. (a) PSNR of the 
entire sequence function of the bit rate. (b) PSNR of 
the face only, function of the frame number. 

 
 

The bit rate at the output of the encoder for various 
quantization steps (4, 8, and 16, respectively) applied to 
the face object is represented in Figure 4a, with the 
quantization step for the background maintained 
unchanged, equal to 30. The corresponding compression 
ratio is 63.06, 91.32, and 117.9, respectively. Figure 4b 
shows the resulting PSNR values computed only for the 
face object. 

 
5.2. Moving Camera 
We present next two other experiments, however, this time 
the camera is moving. In the first experiment the camera is 
hand held, while in the second experiment the camera is 
installed in a car and the tracker follows the vehicle from 
the front of the camera. 
 
5.2.1 Walking Person Sequence 
The original sequence Alessio_2 contains 300 frames 
grabbed in an office with artificial light. The camera and 
the subject are moving simultaneously, uncorrelated with 
each other.  
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Figure 5. Reconstructed Alessio_2 sequence. 
Compression ratio is 53.74. The PSNR is 35.5 dB for 
the face and about 26dB for the background. 

 

Observe the preservation of the face details in the 
reconstructed frames shown in Figure 5. This property of 
the system is remarkable, taking into account that the 
camera underwent large and sudden motions.  

 
5.2.2 Vehicle Pursuit Sequence 
Finally, we use as input the Pursuit sequence, containing 
about 300 frames grabbed in a moving vehicle. The 
sequence has a frame size of 256 x 256 pixels and lasts for 
approximately 20 seconds (15 fps). Four reconstructed 
frames are shown in Figure 6. The box-shaped 
segmentation mask encloses the car from the front. As a 



result, two video objects are generated, the frontal car and 
the background.  

The PSNR values of the car video object shown in 
Figure 7a present an impressive regularity. The reason is 
that the segmentation mask encloses almost exactly the car 
object. Hence, the movements and changes in the 
background structure of the camera do not affect the 
compression quality of the car video object. By 
comparison, in the face encoding examples, a rectangular 
mask was employed to enclose the elliptical shape of the 
face. As a result of this approximation, some elements of 
the background were included in the face video object 
leading to a greater variability in the encoder performance. 
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Figure 6. Reconstructed Pursuit sequence. 
Compression ratio is 68.94. 
 
 

 
(a)    (b) 

Figure 7.  PSNR of the reconstructed data for Pursuit 
sequence.  (a) Car.  (b) Background. 

6. CONCLUSIONS 
 

This paper presented a smart camera with real-time video 
object creation and encoding based on the MPEG-4 
standard. Our system has applications in surveillance, 
security, mobile videophones, and automotive industry.  It 
combines powerful algorithms for object detection, 
tracking, and compression. The system performance has 
been demonstrated and discussed on various sequences 
taken with a fixed camera with pan and tilt, and with a 
moving camera. We showed that it is possible to obtain 
very good and relatively constant reconstructed quality for 
the object of interest even in the conditions of large 
camera/object movements. This work represents a step 
forward towards the DSP implementation of smart 
cameras, capable of programmable intelligent vision tasks. 

 

Acknowledgements.  We would like to thank Dr. Alok 
Gupta, the former Head of the Imaging and Visualization 
Department of Siemens Corporate Research for 
sponsoring A. Del Bue’s internship in Princeton. We thank 
Professor von Seelen of the Institute for Neuro-informatik, 
Ruhr-Universitaet, Bochum, Germany for the pursuit 
sequence. 
 

7. REFERENCES 
 

[1] J. Batista, P. Peixoto, H. Araujo, “Real-Time Active Visual 
Surveillance by Integrating Peripheral Motion Detection with Foveated 
Tracking”, IEEE Workshop on Visual Surveillance, Bombay, India, 
18—25, 1998. 
[2] S. Battista, F. Casalino, C. Lande, “MPEG-4: The Third Millennium 
Standard”, IEEE Multimedia, vol. 6, no. 4, pp. 74-83, 1999. 
[3] R.T. Collins, A.J. Lipton, T. Kanade, “A System for Video 
Surveillance and Monitoring”, American Nuclear Society Eight Intern. 
Meeting on Robotics and Remote Systems, 1999. 
[4] D. Comaniciu, V. Ramesh, P. Meer, “Real-Time Tracking of Non-
Rigid Objects using Mean Shift”, IEEE CVPR, Hilton Head Island, 
South Carolina, 2:142—149, 2000. 
[5] D. Comaniciu, V. Ramesh, “Robust Detection and Tracking of 
Human Faces with An Active Camera”, IEEE Int'l Workshop on Visual 
Surveillance, Dublin, Ireland, 11-18, 2000. 
[6] J.L. Crowley, F. Berard, “Multi-Modal Tracking of Faces for Video 
Communications”, IEEE Conference on Computer Vision and Pattern 
Recognition, Puerto Rico, 640—645, 1997. 
[7] A. Eleftheriadis, A. Jacquin, “Automatic Face Location Detection 
and Tracking for Model-Assisted Coding of Video Teleconference 
Sequences at Low Bit Rates”, Signal Processing - Image Comm., 7(3): 
231—248, 1995. 
[8] M. Greiffenhagen, V. Ramesh, D. Comaniciu, H. Niemann, 
“Statistical Modeling and Performance Characterization of a Real-Time 
Dual Camera Surveillance System”, IEEE CVPR, Hilton Head Island, 
South Carolina, 2:335—342, 2000. 
[9] R. Koenen, “Profiles and Levels in MPEG-4: Approach and 
Overview”, Signal Processing: Image Communication, (4-5):463-478, 
2000. 
[10] P. Kuhn, “Algorithms, Complexity Analysis and VLSI 
Architectures for MPEG-4 Motion Estimation”, Kluwer, Boston, 1999. 
[11] W.W. Lu (Editor), “Technologies on Broadband Wireless Mobile: 
3G Wireless and Beyond”, IEEE Communications Magazine, 
38(10):57—19, 2000. 
[12] Moving Picture Experts Group, “Overview of the MPEG-4 
Standard”, ISO/IEC JTC1/SC29/WG11, 2000. 
[13] W. Zheng, I. Ahmad, M. L. Liou, “Real-Time Software Based 
MPEG-4 Video Encoding”, Workshop on MPEG-4, San Jose, 2001. 


