
International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia

http://aict.itf.llu.lv 238

Smart Cities Software from the developer’s point of view

Dmitry Namiot
1
, Manfred Schneps-Schneppe

2

1
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow,

Russia dnamiot@gmail.com
2
Ventspils International Radio Astronomy Centre Ventspils University College, Ventspils, Latvia

manfreds.sneps@gmail.com

Abstract: The paper discusses the current state and development proposals for Smart Cities and Future Internet

projects. Definitions of a Smart City can vary but usually tend to suggest the use of innovative Info-

Communication technologies such as the Internet of Things and Web 2.0 to deliver more effective and efficient

public services that improve living and working conditions and create more sustainable urban environments.

Our goal is to analyze the current proposals from the developer’s point of view, highlight the really new

elements, the positions borrowed from the existing tools as well as propose some new extensions. We would like

to discuss the possible extensions for the existing proposals and describe add-ons that, by our opinion, let keep

the future research inline with the modern approaches in the web development domain.

Keywords: m2m, future internet, open API, Smart City, Web Intents.

Introduction

The concept of “smart cities” has attracted considerable attention in the context of urban development policies.

The Internet and broadband network technologies as enablers of e-services become more and more important for

urban development while cities are increasingly assuming a critical role as drivers of innovation in areas such as

health, inclusion, environment and business (Schaffers et al., 2011). There is a limitless amount of available

online resource and articles, devoted to smart cities and related IT tools. Our goal in this article is to analyze

them from the software development point of view.

There are actually more than one defintion for the term „smart city”. For example, IBM’s Smart Cities digitize

and connect infrastructures (IOT) to infuse them with new intelligence (IBM, 2012). As per Forrester, Smart

City is the combined use of software systems, server infrastructure, network infrastructure, and client devices to

better connect seven critical city infrastructure components and services: city administration, education,

healthcare, public safety, real estate, transportation, and utilities (Smart City, 2012).

The rest of the paper is organized as follows. We consider two projects: EPIC project, and FI-Ware project. Then

we analyze the Open API for M2M, submitted to ETSI, and offer a new web tool, Web Intents for M2M, as an

enhancement of M2M middleware.

EPIC project

Altogether, seven pilot projects were selected for the call for funding under the CIP ICT Policy Support Program

on “Open Innovation for Future Internet-enabled services in smart cities”. This list includes the following

projects: EPIC, Smart IP, Peripheria, People, Open Cities, Life 2.0 and Smart-Islands.

The European Platform for Intelligent Cities (EPIC) is a European Commission-funded project that aims to wed

state-of-the-art cloud computing technologies with fully researched and tested e-Government service

applications to create the first truly scalable and flexible pan-European platform for innovative, user-driven

public service delivery.

The EPIC platform will combine the industrial strength of IBM’s ‘Smart City’ vision and cloud computing

infrastructure with the knowledge and expertise of the Living Lab approach (which expressly engages citizens in

service design) to ensure the development of a European ‘innovation ecosystem’ to deliver sustainable, user-

driven web-based services for citizens and businesses.

The EPIC project will help to significantly accelerate the uptake of new citizen-generated services across Europe

by combining the world-leading business expertise of Deloitte Consulting with the practical, first-hand

knowledge of the European Network of Living Labs to guide cities through the routes, decisions and steps they

need to undertake to improve service delivery and achieve the benefits of ‘smart’ working. Fig. 1 presents the

whole project.

The key points, from the development point of view, are: test and development cloud and its APIs, service

catalogue and its API’s (at least discovery and publishing), and IoT middleware.

At this moment, we can already highlight one significant moment: the word “middleware” actually describes the

very wide area of software. And it is not understandable, for example, why cloud and directory of services are

separated from the middleware? All three components could be presented actually as middleware.

International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia

http://aict.itf.llu.lv 239

In the terms of software, EPIC approach is based on the well known Web services approach in the traditional

(canonical) form: WSDL, SOAP, etc. At this stage, EPIC does not introduce really new elements for the

developers community.

Fig. 1. EPIC project roadmap (EPIC, 2012).

FI-Ware project

The more interesting from the developer’s point of view is FI-Ware project. FI-WARE is being developed as

part of the Future Internet Public Private Partnership program launched by the European Commission in

collaboration with the ICT Industry.

The Reference Architecture of the FI-WARE platform is structured along a number of technical chapters,

namely: Cloud Hosting, Data/Context Management, Internet of Things (IoT) Services Enablement,

Applications/Services Ecosystem and Delivery Framework, Security and Interface to Networks and Devices. As

per official document, FI-WARE will enable smarter, more customized/personalized and context-aware

applications and services by the means of a set of assets able to gather, exchange, process and analyze massive

data in a fast and efficient way (Fig. 2).

Data in FI-WARE refers to information that is produced, generated, collected or observed that may be relevant

for processing, carrying out further analysis and knowledge extraction. A basic concept in FI-WARE is that data

elements are not bound to a specific format representation. Actually the whole data model in FI-WARE has been

described with the concept of NoSql systems in mind (Pokorny, 2011). Data items could be named and presents

themselves by just named collection of triples: <name, type, value>.

What is important, that optionally, data elements could have meta-data (descriptions) associated with them.

Meta-data elements could be described via collections of triples <name, type, value> too. The data-model

described in FI-WARE is actually could be perfectly supported by distributed key-value systems (Lakshman,

Malik, 2010).

Context in FI-WARE is represented through context elements. A context element extends the concept of data

element by associating an EntityId and EntityType to it, uniquely identifying the entity (which in turn may map

to a group of entities) in the FI-WARE system to which the context element information refers. In addition, there

may be some attributes as well as meta-data associated to attributes that we may define as mandatory for context

elements as compared to data elements (FI-Ware, 2012b).

International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia

http://aict.itf.llu.lv 240

Fig. 2. FI-WARE project (FI-Ware, 2012a).

It is very important that FI-WARE actually uses the same model for data and meta-data. It means that from the

developer’s point of view it should be possible to use the same model for persistence and search for both data

and meta-data.

An event in FI-WARE is an act of creation a new element. It could be either data event (create data elements), or

context event (creates context element). As an example, a sensor device measures some value and periodically

creates and sends a new context element. The creation and sending of the context element is an event.

Because each event has got either data or context elements linked to, the whole system can see events via linked

data. It makes the whole system much more uniform (homogeneous) comparing with M2M approach described

below.

Discussion

At this moment we have a wide choice for real-time analytical systems based on key-value stores. For example,

we can mention Google Percolator (Peng and Dabek, 2010) or Twitter Storm (Marz, 2011). It is exactly the

approach needed for processing data in FI-WARE model. For event publishing, FI-WARE roadmap suggests

ContextML (Knappmeyer et al., 2010) and SPARQL (Sparql, 2012).

ContextML is light-weight XML based context representation schema in which context information is

categorized into scopes and related to different types of entities (e.g. user, device). The schema is also applied

for encoding management messages in order to allow for a flexible framework supporting gradual plug & play

extendibility and mobility. ContextML is tailored to be used for REST-based communication between the

framework components.

SPARQL. RDF is a directed, labeled graph data format for representing information in the Web. And SPARQL

specification defines the syntax and semantics of the query language for RDF. SPARQL can be used to express

queries across diverse data sources, whether the data is stored natively as RDF or viewed as RDF via

middleware. SPARQL contains capabilities for querying required and optional graph patterns along with their

conjunctions and disjunctions. SPARQL also supports extensible value testing and constraining queries by

source RDF graph. The results of SPARQL queries can be results sets or RDF graphs.

O&M example. The obvious candidates here are standards activities from The Open Geospatial Consortium

(OGC) that focus on sensors and sensor networks comprise (Botts, 2008). At the first hand it is Observations &

Measurements Schema (O&M) as well as Sensor Model Language (SensorML), Transducer Model Language

(TransducerML or TML), Sensor Observations Service (SOS), Sensor Planning Service (SPS) and Sensor Alert

Service (SAS).

For example O&M supports data sampling as this:

<gml:description>

 Observation test instance: fruit mass

</gml:description>

 <gml:name>Observation test 1</gml:name>

 <om:phenomenonTime>

 <gml:TimeInstant gml:id="ot1t">

<gml:timePosition>

2005-01-11T16:22:25.00

International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia

http://aict.itf.llu.lv 241

</gml:timePosition>

 </gml:TimeInstant>

 </om:phenomenonTime>

 <om:parameter>

<om:NamedValue>

<om:name xlink:href="http://sweet.jpl.nasa.gov/ontology/property.owl#Temper

ature"/>

 <om:value xsi:type="gml:MeasureType" uom="Cel">

22.3

</om:value>

</om:NamedValue>

</om:parameter>

XML vs. JSON. But keeping in mind the modern trend in web development – shall we keep that as XML, or it is

a time to replace it with an appropriate JSON?

FI-WARE proposes also an interesting approach for Applications/Services Ecosystem and Delivery Framework.

It is based on the heavy usage on USDL (Barros, 2012). Universal Service-Semantics Description Language

(USDL) can be used by service developers to specify formal semantics of web-services. Thus, if WSDL can be

regarded as a language for formally specifying the syntax of web services, USDL can be regarded as a language

for formally specifying their semantics. USDL is as formal service documentation that will allow sophisticated

conceptual modeling and searching of available web-services, automated composition, and other forms of

automated service integration. For example, the WSDL syntax and USDL semantics of web services can be

published in a directory which applications can access to automatically discover services (Park, 2011).

Open API for M2M

Why we think that it is a must to talk about M2M API here? Actually, in the many aspects, IoT and M2M

applications are performing absolutely the same tasks. For example, both systems could be described as data

collectors for the future processing. This section describes an Open API for M2M, submitted to ETSI. It is

probably the most valuable achievement at this moment. Roadmap for FI-WARE highlights the plans for M2M

General Enabler (Gateway). In the same time M2M Open API can benefits from more elaborated FI-WARE

persistence and cloud offerings.

The Open API for M2M applications are developed jointly in EURESCOM study P1957 and the EU FP7

SENSEI project. The Open API has been submitted as a contribution to ETSI TC M2M for standardization

(ETSI, 2011).

Actually, in this Open API, we can see the big influence of Parlay specification. Parlay Group leads the standard,

so called Parlay/OSA API, to open up the networks by defining, establishing, and supporting a common

industry-standard APIs. Parlay Group also specifies the Parlay Web services API, also known as Parlay X API,

which is much simpler than Parlay/OSA API to enable IT developers to use it without network expertise (Yim,

2006).

The goals are obvious, and they are probably the same as for any unified API. One of the main challenges in

order to support easy development of M2M services and applications will be to make M2M network protocols

“transparent” to applications. Providing standard interfaces to service and application providers in a network

independent way will allow service portability (Gronbek, 2008).

At the same time, an application could provide services via different M2M networks using different technologies

as long as the same API is supported and used. By this way, an API shields applications from the underlying

technologies and reduces efforts involved in service development. Services may be replicated and ported

between different execution environments and hardware platforms (Gronbek, Ostendorf, 2010).

This approach also lets services and technology platforms to evolve independently. A standard open M2M API

with network support will ensure service interoperability and allow ubiquitous end-to-end service provisioning.

The Open API provides service capabilities that are to be shared by different applications. Service Capabilities

may be M2M specific or generic, i.e., providing support to more than one M2M application.

Key points for Open API are:

- it supports interoperability across heterogeneous transports

- ETSI describes high-level flow and does not dictate implementation technology

- it is message-based solution

- it combines P2P with client-server model

- and it supports routing via intermediaries

At this moment, all point are probably not discussable except the message-based decision. Nowadays, publish-

subscribe method is definitely not among the favorites approaches in the web development, especially for heavy-

loading projects.

Let us name the main Open API categories (Table 1) and make some remarks (Sneps-Sneppe, Namiot, 2012a).

International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia

http://aict.itf.llu.lv 242

Table 1

Open API categories and remarks

Open API

categories

API contents Comments

Grouping

A group here is defined as a common set of

attributes (data elements) shared between member

elements. On practice it is about the definition of

addressable and exchangeable data sets.

Just note, as it is important for our

future suggestions, there are no

persistence mechanisms for groups.

Transactions

Service capability features and their service

primitives optionally include a transaction ID in

order to allow relevant service capabilities to be

part of a transaction. Just for the deploying

transactions and presenting some sequences of

operations as atomic.

In the terms of transactions

management Open API presents the

classical 2-phase commit model. By

the way, we should note here that this

model practically does not work in the

large-scale web applications. We

think it is very important because

without scalability we cannot think

about “billions of connected devices”.

Application

Interaction

The application interaction part is added in order to

support development of simple M2M applications

with only minor application specific data

definitions: readings, observations and commands.

Application interactions build on the

generic messaging and transaction

functionality and offer capabilities

considered sufficient for most simple

application domains.

Messaging The Message service capability feature offers

message delivery with no message duplication.

Messages may be unconfirmed, confirmed or

transaction controlled.

The message modes supported are

single Object messaging, Object group

messaging, and any object messaging;

(it can also be Selective object

messaging). Think about this as

Message Broker.

Event

notification

and presence

The notification service capability feature is more

generic than handling only presence. It could give

notifications on an object entering or leaving a

specific group, reaching a certain location area,

sensor readings outside a predefined band, an

alarm, etc.

It is a generic form. So, for example,

geo fencing should fall into this

category too. The subscriber

subscribes for events happening at the

Target at a Registrar. The Registrar

and the Target might be the same

object. This configuration offers a

publish/subscribe mechanism with no

central point of failure.

Compensation Fair and flexible compensation schemes between

cooperating and competing parties are required to

correlate resource consumption and cost, e.g. in

order to avoid anomalous resource consumption

and blocking of incentives for investments. The

defined capability feature for micro-payment

additionally allows charging for consumed

network resources.

It is very similar, by the way, to

Parlay’s offering for Charging API.

Sessions In the context of OpenAPI a session shall be

understood to represent the state of active

communication between Connected Objects.

OpenAPI is REST based, so, the

endpoints should be presented as some

URI’s capable to accept (in this

implementation) the basic commands

GET, POST, PUT, DELETE (See an

example below).

A session example: requests execution of some function.

URI: http://{nodeId}/a/do
Method: POST

Request

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<appint-do-request xmlns="http://eurescom.eu/p1957/openm2m">

<requestor>9378f697-773e-4c8b-8c89-27d45ecc70c7</requestor>

<commands>

International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia

http://aict.itf.llu.lv 243

<command>command1</command>

<command>command2</command>

</commands>

<responders>9870f7b6-bc47-47df-b670-2227ac5aaa2d</responders>

<transaction-id>AEDF7D2C67BB4C7DB7615856868057C3</transaction-id>

</appint-do-request>

Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<appint-do-response xmlns="http://eurescom.eu/p1957/openm2m">

<requestor>9378f697-773e-4c8b-8c89-27d45ecc70c7</requestor>

<timestamp>2010-04-30T14:12:34.796+02:00</timestamp>

<responders>9870f7b6-bc47-47df-b670-2227ac5aaa2d</responders>

<result>200</result>

</appint-do-response>

Note that because we are talking about server-side solution, there is no problem with so called sandbox

restrictions. But it means of course, that such kind of request could not be provided right from the client side as

many modern web applications do. In the same time FI-WARE authors, at least according to roadmap, pays

attention to JSON and other client-side technologies. The reasons are obvious – the modern web-based

technologies can save the development time. The next section below is also devoted to client-side technologies.

Data persistence. Another area, where M2M API in the current form is weak by our opinion, belongs to data

persistence. We should keep in mind that we are talking about the particular domain – M2M. In the most cases,

all business applications here will deal with some metering data. As soon as we admit, that we are dealing with

the measurements in the various forms, we should make, as seems to us a natural conclusion – we need to save

the data somewhere. It is the core business for M2M – save data for the future processing.

So, the question is very easy – can we talk about M2M applications without talking about data persistence?

Again, the key question is M2M. It is not some abstract web API. We talk about the well-defined domain here.

As seems to us, even right now, before the putting some unified API in place, the term M2M almost always

coexists with the term “cloud”. And as we can see, almost always has been accompanied by the terms like

automatic database logging, backup capabilities, etc.

So, maybe this question is more for the discussions or it even could be provocative in the some forms, but it is:

why there is no reference API for persistence layer in the unified M2M API? It is possible in general to create

data gathering API without even mentioning data persistence?

Web intents vs. Open API from ETSI

This section is devoted to the relatively new approach in the client-side web development – Web Intents. The

first time Web Intents usage for M2M applications was proposed by Dmitry Namiot (Sneps-Sneppe, Namiot,

2012b).

Let us start from the basic. Users use many different services on the web to handle their day to day tasks,

developers use different services for various tasks. In other words, our environment consists of connected

applications. And of course, all they expect their applications to be connected and to work together seamlessly.

It is almost impossible for developers to anticipate every new service and to integrate with every existing

external service that their users prefer, and thus, they must choose to integrate with a few select APIs at great

expense to the developer.

As per telecom experience, we can mention here the various attempts for unified API that started, probably, with

Parlay. Despite a lot of efforts, Parlay API’s actually increase the time for development. It is, by our opinion, the

main reason for the Parlay’s failure.

Web Intents solves this problem. Web Intents is a framework for client-side service discovery and inter-

application communication. Services register their intention to be able to handle an action on the user's behalf.

Applications request to start an action of a certain verb (for example: share, edit, view, pick, etc.) and the system

will find the appropriate services for the user to use based on the user's preference. It is the basic (Namiot, 2013).

Going to M2M applications it means that our potential devices will be able to present more integrated for the

measurement visualization for example. The final goal of any M2M based application is to get (collect)

measurements and perform some calculations (make some decisions) on the collected dataset. We can go either

via low level API’s or use (at least for majority of use cases) some integrated solutions. The advantages are

obvious. We can seriously decrease the time for development.

Web Intents example. Web intents put the user in control of service integrations and make the developers life

simple. Here is the modified example for web intents integration for the hypothetical web intents example:

1. Register some intent upon loading our HTML document

document.addEventListener("DOMContentLoaded", function() {

 var regBtn = document.getElementById("register");

 regBtn.addEventListener("click", function() {

International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia

http://aict.itf.llu.lv 244

 window.navigator.register("http://webintents.org/m2m", undefined);

 }, false);

2. Start intent’s activity

 var startButton = document.getElementById("startActivity");

 startButton.addEventListener("click", function() {

 var intent = new Intent();

 intent.action = "http://webintents.org/m2m";

 window.navigator.startActivity(intent);

 }, false);

3. Get measurements (note – in JSON rather than XML) and display them in

our application

 window.navigator.onActivity = function(data) {

 var output = document.getElementById("output");

 output.textContent = JSON.stringify(data);

 };

 }, false);

Discussion. Obviously, that it is much shorter than the long sequence of individual calls as per M2M Open API.

The key point here is onActivity callback that returns JSON (not XML!) formatted data. As per suggested M2M

API we should perform several individual requests, parse XML responses for the each of them and only after

that make some visualization. Additionally, web intents based approach is asynchronous by its nature, so, we do

not need to organize asynchronous calls by our own.

Also, Web Intents approach lets us bypass sandbox restrictions. In other words, developers can raise requests

right from the end-user devices, rather than always call the server. The server-side only solution becomes

bottleneck very fast. And vice-versa, client side based requests let developers deploy new services very quickly.

Why do not use the powerful browsers in the modern smart-phones? At the end of the day, Parlay specifications

were born in the time of WAP and very rudimentary mobile browsers. Why do we ignore HTML5 browsers and

JavaScript support in the modern phones?

Future work

Considering M2M communications as a central point of Future Internet, European commission creates

standardization mandate M/441. The Standardization mandate M/441, issued on 12th March 2009 by the

European mandate to CEN, CENELEC and ETSI, in the field of measuring instruments for the development of

an open architecture for utility meters involving communication protocols enabling interoperability, is a major

development in shaping the future European standards for smart metering and Advanced Metering

Infrastructures. The general objective of the mandate is to ensure European standards that will enable

interoperability of utility meters (water, gas, electricity, heat), which can then improve the means by which

customers’ awareness of actual consumption can be raised in order to allow timely adaptation to their demands.

ETSI's 3rd workshop on Machine to Machine (M2M) communications, held in Mandelieu, France on October

23-25, 2012, gathered leading experts from all over the world to hear how ETSI M2M technology standards are

being deployed. “With 270 registered delegates from four continents, 25 speakers, thirteen live demonstrations

of M2M-based applications and two days of intense discussion, this year's event was again a success,” – the

official workshops’ site assure us (M2MWORKSHOP, 2012). In reality, the state-of-the-art with M2M standards

is far from hopeful.

The demos covered once again a respectable cross section of the application domains such as: Smart Metering,

Home automation, Energy Efficiency, Smart building, Smart City, Smart Parking, Exercise, Gaming and Home

Energy, Management Systems linked with Social Networking Service and others. But the existing standards

CoAP, 6lowpan, ETSI M2M, OMA DM, BBF TR069, OSGi, HGI, etc. and the ZigBee, KNX, etc. are far from

convergence.

The new international M2M Partnership Project “oneM2M” is now started. The list of funding partners include

ETSI (Europe), ATIS and TIA (US), CCSA (China), TTA (Korea), ARIB and TTC (Japan). And the leading role

of ETSI goes more sophisticated.

Conclusions

This paper discusses the current state and development proposals for Smart Cities and Future Internet projects.

Our goal was to analyze the current proposals from the developer’s point of view. Software development

companies and universities should start investigate tools used and proposed in the Future Internet roadmap right

now. Also we discussed the possible extensions for the existing proposals and describe the add-ons that, by our

opinion, let keep the future research inline with the modern approaches in the web development domain. Article

proposes some new additions – web intents as add-on for the more traditional REST approach. The main goal for

our suggestions is the simplifying of the development phases for new applications by support asynchronous calls

and JSON versus XML data transfer.

International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia

http://aict.itf.llu.lv 245

Acknowledgments

The paper is financed from ERDF's project SATTEH (No. 2010/0189/2DP/2.1.1.2.0/10/APIA/VIAA/019) being

implemented in Engineering Research Institute «Ventspils International Radio Astronomy Centre» of Ventspils

University College (VIRAC).

References

Barros, A., Oberle, D., Kylau, U., Heinzl, S., 2012. Handbook of Service Description. Design Overview of

USDL. Part 2, pp.187-225.

Botts, M., Percivall, G., Reed, C., Davidson, J., 2008. OGC Sensor Web Enablement: Overview and High Level

Architecture. GeoSensor Networks. Lecture Notes in Computer Science, Volume 4540/2008, pp.175-190.

EPIC, 2012. Available at: http://www.epic-cities.eu/ Retrieved: Jan, 2013.

ETSI, 2011. Draft ETSI TS 102 690 V0.13.3 (2011-07) Technical Specification.

FI-Ware, 2012a. Available at: http://www.finest-ppp.eu/files/deliverables/d03/finest_d3.2.pdf Retrieved: Feb,

2013.

FI-Ware, 2012b. Available at: http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php Retrieved: Jan,

2013.

Grønbæk, I., 2008. Architecture for the Internet of Things (IoT): API and interconnect, The Second International

Conference on Sensor Technologies and Applications, IEEE August 2008.

Grønbæk, I. and Ostendorf, K., 2010. Open API for M2M applications. ETSI M2M Workshop, Oct. 2010.

IBM, 2012. Available at: http://www.ibm.com/smarterplanet/uk/en/sustainable_cities/ideas/index.html

Retrieved: Feb, 2013

Knappmeyer, M., Kiani, S.L., Fra, C., Moltchanov, B., Baker, N., 2010. ContextML: A light-weight context

representation and context management schema. Wireless Pervasive Computing (ISWPC), 5th IEEE

International Symposium on Date of Conference: 5-7 May 2010, pp. 367 – 372.

Lakshman, A. and Malik, P., 2010. Cassandra: a decentralized structured storage system. ACM SIGOPS

Operating Systems Review archive, Volume 44. Issue 2, April 2010, pp. 35-40.

M2MWORKSHOP, 2012. Available at: http://www.etsi.org/ Retrieved: Feb, 2013

Marz, N., 2011. A Storm is coming. Available at: http://engineering.twitter.com/2011/08/storm-is-coming-more-

details-and-plans.html, August 2011.

Namiot, D., 2013.. "Web Intents as an Extension for M2M Open API." European Journal of Scientific Research

94.3 (2013): pp. 452-462.

Park, H., Kim, B., Ko, Y., Lee, D., 2011. InterX: A service interoperability gateway for heterogeneous smart

objects. Pervasive Computing and Communications Workshops (PERCOM Workshops), IEEE

International Conference, 21-25 March 2011, pp. 233 – 238.

Peng, D. and Dabek, F., 2010. Large-scale incremental processing using distributed transactions and

notifications. OSDI ’10, pp. 251–264.

Pokorny, J., 2011. NoSQL databases: a step to database scalability in web environment. Proceedings of the 13th

International Conference on Information Integration and Web-based Applications and Services, ACM,

New York, USA, pp. 278-283.

Schaffers, H. et al., 2011. Smart Cities and the Future Internet: Towards Cooperation Frameworks for

Innovation. J. Domingue et al. (Eds.), The Future Internet, Springer, pp. 431-446.

Schneps-Schneppe, M., Maximenko, A., Namiot, D., Malov, D., 2012. Wired Smart Home: energy metering,

security, and emergency issues. In Ultra Modern Telecommunications and Control Systems and

Workshops (ICUMT), 2012 4th International Congress on (pp. 405-410). IEEE.

SPARQL, 2012. Available at: http://www.mendeley.com/research/sparql-query-language-for-rdf/ Retrieved:

Feb, 2013.

Sneps-Sneppe, M. and Namiot, D. (2012, April). About M2M standards. M2M and Open API. In ICDT 2012,

The Seventh International Conference on Digital Telecommunications (pp. 111-117).

Sneps-Sneppe, M., and Namiot, D., 2012. "M2M Applications and Open API: What Could Be Next?." Internet

of Things, Smart Spaces, and Next Generation Networking (2012): pp. 429-439..

Yim, J., Choi, Y., Lee, B., 2006. Third Party Call Control in IMS using Parlay Web Service Gateway. Advanced

Communication Technology, ICACT 2006. The 8th International Conference. 20-22 Feb. 2006, pp. 221 –

224.

