
Smart Contract Generation for Inter-Organizational
Process Collaboration

1st Tianhong Xiong1,2

1.School of Computer Science and Engineering
Sun Yat-sen University

Guangzhou, China
2.School of Digital Media and Humanities

Hunan University of Technology and Business
Changsha, China

xiongth3@mail2.sysu.edu.cn

2nd Shangqing Feng
School of Computer Science and Engineering

Sun Yat-sen University
Guangzhou, China

fengshq5@mail2.sysu.edu.cn

3rd Maolin Pan
School of Computer Science and Engineering

Sun Yat-sen University
Guangzhou, China

panml@mail.sysu.edu.cn

4th Yang Yu*
School of Computer Science and Engineering

Sun Yat-sen University
Guangzhou, China

yuy@mail.sysu.edu.cn

Abstract—Currently, inter-organizational process collabora-
tion (IOPC) has been widely used in the design and development
of distributed systems that support business process execution.
Blockchain-based IOPC can establish trusted data sharing among
participants, attracting more and more attention. The core of
such study is to translate the graphical model (e.g., BPMN) into
program code called smart contract that can be executed in the
blockchain environment. In this context, a proper smart contract
plays a vital role in the correct implementation of block-chain-
based IOPC. In fact, the quality of graphical model affects the
smart con-tract generation. Problematic models (e.g., deadlock)
will result in incorrect contracts (causing unexpected behaviours).
To avoid this undesired implementation, this paper explores to
generate smart contracts by using the verified formal model as
input instead of graphical model. Specifically, we introduce a
prototype framework that supports the automatic generation of
smart contracts, providing an end-to-end solution from modeling,
verification, translation to implementation. One of the cores of
this framework is to provide a CSP#-based formalization for
the BPMN collaboration model from the perspective of mes-
sage interaction. This formalization provides precise execution
semantics and model verification for graphical models, and a
verified formal model for smart contract generation. Another
novelty is that it introduces a syntax tree-based translation
algorithm to directly map the formal model into a smart contract.
The required formalism, verification and translation techniques
are transparent to users without imposing additional burdens.
Finally, a set of experiments shows the effectiveness of the
framework.

Index Terms—Inter-Organizational Process Collaboration,
Blockchain, BPMN, Smart Contract, Verification

I. INTRODUCTION

At present, inter-organizational process collaboration
(IOPC), as a distributed para-digm, has been widely used

.

in the design and development of software systems that
support business process execution [1]. Furthermore, because
of its powerful modeling ability, Business Process Model and
Notation 2.0 (BPMN for short) [2] has become one of the
most commonly used proposals when defining process models,
supporting the design and implementation of IOPC from the
perspective of model-driven development.

Blockchain is an emerging decentralized technology for
establishing trusted data sharing among participants [3]. Since
it is tamper-proof, the executed log records will not be disputed
by possible forgery by participants or third parties. This
enables it to provide a full process audit trail of transactional
data. Benefiting from the above features, IOPC combined
with blockchain has attracted more and more attention, and
has been explored in many fields, e.g., supply chain [4, 5],
government service [4], e-commerce [5] and others [8-10].
This type of study usually translates the model (e.g., BPMN)
into program code called smart contract that can be executed
in the blockchain environment, and coordinates and records
the task execution and interaction of the participants. In this
context, a smart contract that meets expectations plays a vital
role in the correct implementation of blockchain-based IOPC.

In fact, the generation of smart contract (as object code) is
directly affected by the graphical model of IOPC (as source
code). Although BPMN has been widely used as a de facto
modeling standard, semiformal definition and natural text de-
scription sometimes contain misleading information in model
description [6]. This may become more serious in industrial
environment, because model designers are usually not familiar
with formalism and verification technology, but are used to
standard graphical symbols. In this context, the quality of
the graphical models may be uneven. The low-quality models

ar
X

iv
:2

30
3.

09
25

7v
1

 [
cs

.S
E

]
 1

6
M

ar
 2

02
3

(e.g., deadlock) may result in incorrect contracts that cause
undesirable behaviours, and more importantly, it is hard to
repair the contracts after implementation.

To avoid undesired implementation, this paper proposes an
automated framework support the smart contract generation for
IOPC. It covers the complete life cycle of IOPC from model-
ing, verification, translation to implementation. One of its core
is to propose a suitable formal model as the source code for
smart contract generation. As we all know, a formal model has
clear execution semantics, can accurately describe the behavior
specification, and avoid the ambiguity caused by semiformal
and text description. In particular, it can identify problematic
models in advance through model checking, which enhances
the confidence of quality of models and software systems.
These are particularly important for IOPC involving a large
number of message interactions, because the graphical model
is prone to deadlock due to message congestion, and its
corresponding smart contract is difficult to repair in real time
[7].

Specifically, the framework first uses BPMN collaboration
model to represent IOPC. In practice, BPMN collaboration can
intuitively representing the boundaries and business responsi-
bilities of participants, focusing on interaction in collaboration
[3, p. 317]. Furthermore, due to the advantages of Commu-
nicating Sequential Programs (CSP#) [8] in message commu-
nication and structured representation, we give a structured
formalization for the BPMN model and the corresponding
automatic translation algorithm, that is, the model elements are
mapped to the corresponding composition of CSP# processes.
This facilitates the subsequent smart contract generation.

Another key is the translation from CSP# model to smart
contract. The formal model is parsed into a syntax tree
structure, in which all internal nodes are non-terminal symbols,
and each leaf node is a terminal symbol, representing a
component element of the CSP# model. Based on the syntax
tree, a two-stage translation algorithm is given, with a formal
model as input instead of a semiformal graphical model. It first
traverses the relationships among the formal model elements
to determine the logical execution order, and then translates
each element in turn into the smart contract codes written in
Solidity. Finally, a set of experiments shows the effectiveness
of prototype framework.

In summary, the main contributions of this paper include
the followings:

• We propose a prototype framework for automatic
smart contract generation for IOPC, which provides an
end-to-end solution integrating ”modeling-verification-
translation-implementation”. The required formalism and
translation technology are transparent to users, so the
framework does not impose additional user burden while
achieving the expected goal.

• We give a CSP# formalization of BPMN collaboration
model and the corresponding translation algorithm from
BPMN model to formal CSP# model. Different from the
existing proposals, it is structured and focuses on message
communication, ignoring internal elements that do not

participate in interaction. This structured formalization
is particularly suitable for mapping to smart contract,
reducing the complexity of translation.

• We develop a translation algorithm from CSP# model
to smart contract. It starts with defining the association
relationships between model elements, and then generates
contract code by parsing the syntax tree of formal model.
This algorithm employs the knowledge of compilation
principles (lexical and syntax analysis), which is con-
ducive to accurate understanding and translation of smart
contract.

The rest of this paper is organized as follows. Section 2
briefly describes a running example to illustrate the context
and motivation of this work. Section 3 introduces the frame-
work and Section 4 describes the core methods in detail.
Section 5 shows a set of experiments and discusses some
observations obtained in the experiments. After reviewing the
related work in Section 6, Section 7 summarizes the paper.

II. RUNNING EXAMPLE

This section introduces a supply chain process collabora-
tion scenario as an example throughout this paper, which is
convenient to explain the context and motivation of our work.

In the collaboration scenario, the participants come from
different organizations and assume different business responsi-
bilities. Each participant has its own BPMS and establishes in-
teraction with each other through the blockchain-based collab-
oration service (agent). The internal processes of participants
are implemented on its own BPMS to ensure privacy, while
the collaboration process is translated into a Solidity smart
contract deployed in the blockchain environment, which stores
transaction information and controls the interaction order to
provide mutual trust.

The supply chain example adapted from literature [9] de-
scribes the manufacturing and delivery process of product
order, involving 5 participants: Wholesaler, Manufacturer,
Broker, Supplier and Carrier. The collaboration model is
shown in Fig. 1. We don’t provide a detailed description of
the model here, because the meaning of each task should be
intuitive.

This collaboration scenario needs to fully consider the
model design of multiple participants and a large number
of message interactions among participants. Indeed, complex
model design and message flow configuration is an error prone
task. For example, in the collaboration between Carrier and
Supplier, messages are blocked due to the wrong configuration
of tasks and messages in the gateways, resulting in deadlock.
Once this model is translated and deployed directly, blockchain
may lose its essential meaning, that is, it cannot achieve
accurate collaboration with this supply chain scenario. More
detailed knowledge about BPMN, CSP# and blockchain is
provided in the technical report of the repository1.

1https://github.com/xthHub/SCG4IOPC

W
h
o
le

sa
le

r

M
an

u
fa

ct
u
r

er

B
ro

k
er

S
u
p

p
li

er
C

ar
ri

er

Send

ProductOrde

r

 Receive

ProductStatu

s

 Receive

DeliveryOrd

er

 Receive

ProductOrde

r

Send

SupplierOrd

er

 Receive

Receipt

Send

ProductStatu

s

Send

DeliveryOrd

er

 Receive

SupplierOrd

er

Send

TransportOr

der

Send

TurnSupplie

rOrder

 Receive

TransportOr

der

Send

Declaration

Request

Send

Confirmatio

n

Send

DeliveryReq

uest

 Receive

DeclarationF

orm

 Receive

TurnSupplie

rOrder

 Receive

Confirmatio

n

 Receive

Declaration

Request

 Receive

DeliveryReq

uest

Send

DeclarationF

orm

 Receive

DeliveryInfo

Send

DeliveryInfo

Send

Receipt

ProductOrder

SupplierOrder

TransportOrder

TurnSupplierOrder
DeliveryRequest

ProductStatus

DeliveryOrder

Confirmation

DeclarationRequest DeliveryInfo

DeclarationForm

Receipt

Fig. 1. BPMN Collaboration model of supply chain scenario.

System designers

Smart

contract

generating

CSP# model

generating

YModel

checking

1. Soundness

2. LTL formula

N

Modeling
CSP# model

compiling

Counter example

Framework

Front-

end UI

Modeling Translation Verification Generation Implementation

Agent

Blockchain

environment

Agent

Workflow
engine

Collaboration

process

Internal process

Fig. 2. The overview of integrated framework.

III. FRAMEWORK

The framework provides an end-to-end solution from mod-
eling to implementation for smart contract generation for
IPOC. It consists of 5 parts: Modeling, Translation (translate
BPMN to CSP# model), Verification, Generation (translate
CSP# model to smart contract), and Implementation. Fig. 2
shows the internal components of the framework and the user
interfaces/operations related to the system designers.

The special feature of framework is that the system design-
ers only need to focus on the modeling, optimization (e.g.,
adjusting the model according to the counter examples) and
monitoring, without mastering the formal language, verifica-
tion and parsing techniques. The framework is developed as a
stand-alone solution, but it can also be integrated as a service
accessed through RESTful interface or as a plug-in in existing
tools.

The modeling environment integrates a graphical modeling
tool Camunda bpmn.io [10] that supports BPMN standard.
Furthermore, considering the diversity of existing modeling
tools, the framework does not impose any restrictions on the

source of the graphical models. Input models (.bpmn file for-
mat) can be created by system designers using different BPMN
modeling tools, or retrieved from a common repository. In this
regard, the framework is not limited to specific modeling tools,
and is easy to use by system designers from different business
fields.

The framework provides an implementation environment, as
shown in the right part of Fig. 2. Workflow engines (BPMS)
are logically aggregated and physically dispersed. They per-
form the internal processes of participants and interact with the
Blockchain environment through Agents. The Solidity smart
contract deployed in blockchain is used to record transaction
data and control the order of interaction among participants.
Here, workflow engine extends the open source engine Zeebe2

to support the instantiation of BPMN model. Blockchain
environment is based on Ganache3 that is a node emulator
of Ethereum. The agent based on the interoperability protocol
Wf-XML 2.0 [11], is responsible for monitoring the state

2https://github.com/camunda-cloud/zeebe
3https://www.trufflesuite.com/ganache

C ::= pool(p, P) | C1||C2

P ::= start | end | andGate(T1,T2...Tn) | xorGate(T1,T2...Tn) | eventbaseGate(T1,T2...Tn) | task

| sndTask(M) | rcvTask(M) | sndInter(M) | rcvInter(M) | P1| P2

T ::= task | sndTask | rcvTask | andGate | xorGate | eventbaseGate | T1, T2

M ::= (ch(P1, P2) , m) | M1, M2

Fig. 3. The overview of integrated framework.

changes, initiating or receiving (actively subscribing) external
requests, and triggering task or event execution. The Front-
end UI provides a user-friendly web interface and supports
the complete data display.

IV. METHODS

This section introduces CSP# model translation and smart
contract generation in detail.

A. Translation from BPMN to CSP# Model and Formal Veri-
fication

This sub section describes the translation of BPMN to
CSP# model, and the property verification. To simplify CSP#
formalization, inspired by literature [6], we apply the general
syntax notation BNF to textual BPMN model.

a) Translation: The BNF syntax definition of the core
elements of the collaboration model is given, as shown in
Fig. 3. It maps model elements to structured text descriptions
to facilitate subsequent formalization. In this syntax, C, P, T
and M represent collaboration structure, participant structure,
element list and message list respectively.

A collaboration C represents a model composition that
associates pool (p, P) with the parallel operator ”||”. In the
pool, p is the name of the pool and P is the encapsulated
participant model (process). To simplify formalization, we
assume that each pool contains only one participant, and
treat the gateway as a structured whole containing split and
join mode, with unique input and output sequence flow. For
example, andGate (T1, T2...Tn) captures all the elements it
affects, where T1, T2...Tn respectively represent the element
list on each inner parallel edge. The message list M contains
a series of triple (ch(P1, P2) , m), where ch is the channel,
P1 is the sender, P2 is the receiver, and m is the designated
unique message name.

The above BNF syntax only provides a structured descrip-
tion. To describe the semantics, we employ the features of
structured representation supported by CSP#. Each graphi-
cal model element is mapped to a structured CSP# process
consisting of alphabet, operators and keywords, as shown in
Table 1. In task element, eventwork represents the work of the
task (i.e., eventwork -> Skip;). We assume that the send and
receive tasks (i.e., sndTask and rcvTask) are only responsible
for message interaction. According to task types, eventwork

can be mapped to channel operations (i.e., ch!m and ch?m,
respectively). Note that the channel can be seen as a FIFO
queue here.

A part of Translation Algorithm from BPMN to CSP# model

Input info: BPMN node

Output info: target_code

1: for each m messageFlow // processing message flow, message channel

2: define a new message

3: if channel_list[messageFlow] is new

4: define a new channel

5: end if

6: end for

7: for each p participant // processing participants with unique start and end events

8: find startEvent p

9: target_code return_temp_code;

10: end for

11: return target_code

12: Function return_temp_code //all branches are stopped at the corresponding

//gateway or end event

13: if type(node, startEvent) || type(node, task) || type(node, endEvent) || type(node, gate)

14: then

15: do conversion according to node type and mapping rules in Tables 1

16: return temp_code

17: end function

The gateway affects multiple elements. These elements
(e.g., multiple tasks) are associated by the sequential, parallel
or choice operators. Thus, according to the covered elements,
the gateway is represented as a composition of elements. For
example, the CSP# process of Broker participant (see Fig. 1)
is a composite process that contains three task elements.

Broker() =(evente1 -> Skip; cMB?SupplierOrder -> Skip;
evente2 -> Skip); ((evente2 -> Skip; cBS!TurnSupplierOrder-
> Skip; evente3 -> Skip) || (evente2 -> Skip;
cBC!TransportOrder -> Skip; evente3 -> Skip)).

This means that the Broker first receives message Suppli-
erOrder through channel cMB, and then it will perform the
parallel operation, sending messages TurnSupplierOrder and
TransportOrder through channels cBS and cBC, respectively.

The corresponding translation algorithm first reads the
BPMN model and stores the elements in the corresponding
nodes. Then it traverses the model and constructs NextEle-
ments. Finally, it adopts depth first traversal method to recur-
sively maps elements to CSP# process according to the rules
in Table 1. Limited by space, only part of the algorithm is
shown below.

b) Formal Verification: This paper focuses on the sound-
ness verification of collaboration model. It is a fundamental
requirement for IOPC [12]. The IOPC is sound if all partici-
pants are sound and there are no undelivered messages among
participants. The soundness of participants means that it is
terminable, there is no deadlock, and each task is reachable

TABLE I
A CSP# FORMALIZATION FOR CORE COLLABORATION MODEL ELEMENTS

Elements BPMN Syntax CSP#

Tasks
task(ei, eo) eventei ->Skip; eventwork ->Skip; eventeo ->Skip
sndTask(ei, M, eo) eventei ->Skip; ch!m ->Skip; eventeo ->Skip
rcvTask(ei, M, eo) eventei ->Skip; ch?m ->Skip; eventeo ->Skip

Gateways
andGate(ei, (T1,T2...Tn), eo) eventei ->Skip; (T1 || T2 || ... || Tn); eventeo ->Skip
xorGate(ei, (T1,T2...Tn), eo) eventei ->Skip; (T1 [] T2 []. . . [] Tn)); eventeo ->Skip
eventbaseGate(ei, (T1,T2...Tn), eo) eventei ->Skip; (T1 [*] T2 [*]. . . [*] Tn)); eventeo ->Skip

(executable). The formal definition is given below.
Formally, Soundness: ∀ participant ∈ P: deadlock-

free(participant) ∧ <> (∀ participant ∈ P: participant reaches
end ∧ ∀ ch ∈ channel: |ch|=0), where deadlockfree, nonter-
minating and reaches are CSP# based attribute assertions, end
is a given conditional proposition and “|ch| =0” indicates that
there is no message in the channel ch.

In fact, besides soundness, user-defined property verifica-
tion is also supported. For example, given a participant, the
following assertion asks whether participant satisfies the LTL
formula. Formally, #assert participant |= F, where F is the
LTL formula.

According to the selected properties, the framework auto-
matically completes formal verification. Once the verification
fails, it will feedback a counter example.

B. Translation from CSP# Model to Smart Contract
This section introduces the translation algorithm of mapping

CSP# model to Solidity smart contract. Inspired by the knowl-
edge of lexical and syntax analysis, a two-stage algorithm
is given. Firstly, a set of association relationships is defined
to specify the logical order among the elements within the
participants and among the participants. Secondly, the syntax
tree of the formal model is given, and a traversal algorithm is
used to capture the set of association relationships based on
the syntax tree.

a) Association relationships between CSP# Processes:
Association relationships describe the interaction (execution
order) among different model elements within participants
and among participants. These relationships are the basis of
automatic generation of smart contracts. Here we defines 6
kinds of relationships, including Next, End, Init, And, Xor
and Enable. The first five of them indicates the interaction
among the CSP# processes within the participants, while the
last one specifies the interaction logic constraints among the
participants. The 6 relationships are essentially the analysis of
process structure. They cover sequence, branch, parallel and
loop, and can combine any single entry and single exit process
structure.

• Next describes the sequential relationship between CSP#
processes within a participant. If CSP# process P1 ends,
then CSP# process P2[] will start. That is, Next (P1) =
[P2[]] where P2[] is a CSP# process array.

• End describes the end relationship between CSP# pro-
cesses within a participant. When a process ends, it
triggers other processes to end. If P1 ends, then P2[]
will end. Namely, End (P1) = [P2[]].

• Init describes the initialization relationship between CSP#
processes within a participant. If P1 begin, then P2[]
begins first. That is, Init (P1) = [P2[]].

• And describes the relationship among CSP# processes
involved in parallel gateway. If And (P1) = [P2[]], then
P1 ends only if P2[] ends.

• Xor describes the relationship among CSP# processes
involved in exclusive gateway. If P2 ∈ Xor (P1) is
executing, ∀ P3 ∈ Xor (P1) is disabled.

• Enable describes the enabling relationship of message
interaction between participants. The message flow M
specifies the enabling relationship between sender and
receiver. If M = (ch(P1, P2), m), Enable (P1) = [P2].

Fig. 4 shows the relationships of Broker participant in the
supply chain example. Broker is a composite process, so is
P2, which is composed of more than one atomic process like
P1, P3 and P4.

Init (Broker) = [P1], which means that when the Broker
is started, P1 will execute first. Next (P1) = [P2], which
means that when P1 is completed, P2 can start. End (P2) =
[Broker], which means that when P2 is completed, it triggers
the Broker to end. In addition to complying with the internal
relationships in Broker, whether P1 (responsible for receiving
SupplierOrder message) can be executed also depends on the
Enable relationship of the external participant (i.e., Enable
(external participant) = [P1]), because it requires the external
participant to complete the sending of the message first.
Because the focus of this paper is process collaboration, in
order to facilitate a clear analysis of the collaboration model,
here we ignore the internal events that do not participate in
the interaction.

Broker() = cMB?SupplierOrder -> Skip; (cBS!TurnSupplierOrder-> Skip

|| cBC!TransportOrder->Skip)

External

participant

Enable
P1 = cMB?SupplierOrder -> Skip

P3 = cBS!TurnSupplierOrder-> Skip P4 = cBC!TransportOrder->Skip

External participant External participant

Activate

EnableParallel

Activate

Enable

Fig. 4. The relationships of Broker participant.

Fig. 5. The syntax tree of Broker participant.

b) Relationship traversal algorithm: The relationship
traversal algorithm is based on syntax tree. To facilitate the
traversal and display of relationships, an syntax analysis tool
ANTLR (Another Tool for Language Recognition) [13] is
used to obtain the syntax tree of CSP# model. For exam-
ple, Fig. 5 shows the syntax tree of the Broker partici-
pant, in which the leaf nodes form its CSP# process from
left to right, i.e., Broker() = cMB?SupplierOrder -> Skip;
(cBS!TurnSupplierOrder-> Skip || cBC!TransportOrder ->
Skip). The spec, definition, simpleDefinition, definitionLeft,
defnCallLeft are the default reserved words. A part of the
algorithm is given here as an example. It traverses the syntax
tree to get the logical association relationships in the CSP#
processes.

C ::= pool(p, P) | C1||C2

P ::= start | end | andGate(T1,T2...Tn) | xorGate(T1,T2...Tn) | eventbaseGate(T1,T2...Tn) | task

| sndTask(M) | rcvTask(M) | sndInter(M) | rcvInter(M) | P1| P2

T ::= task | sndTask | rcvTask | andGate | xorGate | eventbaseGate | T1, T2

M ::= (ch(P1, P2) , m) | M1, M2

A part of Translation Algorithm from BPMN to CSP# model

1: Function handleText (bpmn_file) //read and preprocess the BPMN source file

2: Function selectNextElements (node) //find the successor element of each element

3: for each node_i in node

4: if node_i.type==task || node_i.type==gateway

5: then for each outgoing in node_i // outgoing is a sequence flow

6: NextElements_node_id = outgoing.targetRef

7: Function bpmn_to_csp#(node) //generate the CSP# process

8: for all messageFlow

9: if channel_list[messageFlow] is new

10: define a new channel;

11: for all paticipant

12: find paticipant startEvent //according to rules inTable 1, return CSP# process

13: target_code += return_recursive(node, startEvent);

A part of Relationship Traversal Algorithm

1: if IsSemicolon (𝑁𝑜𝑑𝑒.MiddleS) then //";"operator, sequential execution

2: add Node.RightS to Next[Node.LeftS];

3: add Node to 𝐸𝑛𝑑[Node.RightS];

4: add Node.LeftS to Init[Node];

5: if IsParllel(𝑁𝑜𝑑𝑒.MiddleS) then //"||" operator, parallel execution

6: add Node to End[Node.LeftS];

7: add Node to 𝐸𝑛𝑑[Node.RightS];

8: add Node.LeftS and Node.RightS to Init[Node];

9: add Node.LeftS and Node.RightS to And[Node];

10: if IsExclusive(𝑁𝑜𝑑𝑒.MiddleS) then // "[]"operator, exclusive execution

11: add Node to End[Node.LeftS];

12: add Node to 𝐸𝑛𝑑[Node.RightS];

13: add Node.LeftS and Node.RightS to Init[Node];

14: add Node.LeftS and Node.RightS to Xor[Node];

15: return Next, End, Init, And, Xor

Input info: Syntax tree node with 3 subtrees // Traverse the node with 3

subtrees //Node.LeftS: process corresponding to the left subtree

//Node.RightS: process corresponding to the right subtree

c) Reduction: Our goal is to generate smart contracts,
and the content of the contracts will affect the cost to execute
them, so we take some measures to reduce the cost as much
as possible. Note that the relationships defined above are used

to describe the association of all nodes in the syntax tree,
which contains many non-leaf nodes, corresponding to the
CSP# composite processes. However, leaf nodes are enough to
form the whole CSP CSP# composite process like Broker(). So
our strategy is to concentrate on the CSP# atomic processes
(leaf nodes in the syntax trees), and the relationships between
them. Here we define three new relationships to achieve our
reduction: Activate, Inactivate, Parallel.

• Activate describes the sequential relationship between
CSP# atomic processes within a participant. If atomic
process P1 finishes its execution, atomic processes in P2[]
will start, then we have Activate (P1) = [P2[]] where P2[]
is a atomic process array.

• Inactivate describes the inactivate relationship between
CSP# atomic processes within a participant. If atomic
process P1 finishes its execution, atomic processes in P2[]
can’t be executed in this business process instance, then
we have Inactivate (P1) = [P2[]]

• Parallel describes the relationship among CSP# atomic
processes involved in parallel gateway. If Parallel (P1) =
[P2[]], then the process must wait for atomic processes
P1 and P2[] finishing their execution to continue.

As mentioned above, the new relationships only concern
about atomic processes. The Reduction Algorithm helps us to
get the new relationships by removing the state transitions
involving the non-leaf nodes in the syntax trees. Now, we
use Activate, Inactivate, Parallel and Enable to describe the
interaction within and among participants. Fig. 6 shows the
new relationships of Broker participant. It can be observed
that, compared with Fig. 4, the state transition is more simple,
and composite processes like P2 have been removed.

Broker() = cMB?SupplierOrder -> Skip; (cBS!TurnSupplierOrder-> Skip

|| cBC!TransportOrder->Skip)

External

participant

Enable
P1 = cMB?SupplierOrder -> Skip

P3 = cBS!TurnSupplierOrder-> Skip P4 = cBC!TransportOrder->Skip

External participant External participant

Activate

Enable
Parallel

Activate

Enable

Fig. 6. New relationships of Broker participant.

A part of the Reduction Algorithm is given here as an exam-
ple. It starts with the CSP# processes and the old relationships,
ending with the new relationships.

d) Smart Contract Generation: Smart contract refers to
the program code running in the blockchain environment.
It controls the execution of the collaboration model in the
order specified in advance. Specifically, it drives the change
of process state by receiving external requests, judging the

A part of Relationship Reduction Algorithm

Input info: CSP# proc of the participant

 Relationships：Next, End, Init, And, Xor:

1: for proc in AtomicProcesses

2: search up with End[] recusively until find p that Next[End[p]] exists;

 // End[p] refers to an ancenstor of proc in the syntax tree

3: s = Next[End[p]];

4: for child in Init[s]

5: aps = FindAtomicProcessesWithInit(child);

 // find atomic processes in the subtree with Init

6: add aps to Activate[proc];

7: for proc in ExclusiveGatewayProcesses

 // find the first atomic processes in every outgoing path

8: LeftAtomicProcesses = FindAtomicProcessesWithInit(Xor[proc][1]);

RightAtomicProcesses = FindAtomicProcessesWithInit(Xor[proc][2]);

9: for left in LeftAtomicProcesses

10: add RightAtomicProcess to Inactivate[left];

11: for right in RightAtomicProcesses

12: add LeftAtomicProcess to Inactivate[right];

13: for proc in ParallelGatewayProcesses

 // find the last atomic processes in every outgoing path

14: LeftAtomicProcesses = FindTheLastAtomicProcesses(And [proc][1]);

RightAtomicProcesses = FindTheLastAtomicProcesses (And [proc][2]);

15: for left in LeftAtomicProcesses

16: add RightAtomicProcess to Parallel[left];

17: for right in RightAtomicProcesses

18: add LeftAtomicProcess to Parallel[right];

19: return Activate, Inactivate, Parallel

legitimacy of the request (e.g., whether the task can be
executed), and sending requests to other participants. Here, we
introduce the automatic generation method for Solidity smart
contract that is widely used Ethereum environment.

The core of smart contract generation is to respond to the
corresponding requests according to the states of CSP# process
and the relationships between CSP# processes. These requests
trigger changes in the states of CSP# process.

The states of CSP# process are defined as follows. Disabled
indicates that the process is silent and execution is not allowed.
Waiting indicates that the process is enabled and waiting to be
executed. Executing indicates that the process is executing.
Done indicates that the execution of the process is completed
and the process exits the executing state.

In this paper, the smart contracts generated are composed of
many functions used to handle external request.The external
request is responsible for handling message interaction and
event trigger. It checks the state of the CSP# process and
trigger the state change of other CSP# processes according to
the association relationships At the same time, it forwards the
message to the receiver (listening), and activates the receiving
condition of the receiver. The external request algorithm is
shown below.

V. EXPERIMENTS

This section tests a case set including 5 application cases
to illustrate the effectiveness of the framework. These cases

ExternalRequest Algorithm

Input info: CSP# atomic proc

1: if State(proc) is not Waiting then

 return false;

2: if Type(proc) is sender then // proc is a send task

3: stateChange(proc, Executing); //change the state to Executing

4: emit message event of rcvProc; // rcvProc = Enable[proc]

5: set RcvActivated[rcvProc] as true; // the receive condition is triggered

6: if Type(proc) is receiver and RcvActivated [proc] is true then

7: // proc is a receive task and the receive condition is triggered

8: stateChange(proc, Executing);

9: if Inactivate[proc] exists then // inactivate the xor procs

10: for xorProc Inactivate[proc]

11: stateChange(xorProc, Disabled);

12: stateChange(proc, Done); ////change the state of proc to Executing

13: if Activate[proc] exists then

14: if Parallel[proc] exists then // deal with the parallel procs

15: if all procs in Parallel[proc] is Done

16: for nextProc Activate[proc] // activate the next procs

17: stateChange(nextProc, Waiting);

18: else

19: for nextProc Activate[proc]

20: stateChange(nextProc, Waiting);

are from the existing literature [9], BPMN sample library and
BPMAI [14], covering different application scenarios, namely
supply chain (SC), booking travel (BT), online education
(OE), paper review (PR) and pastry cook (PC). Here, we
test each case (1) with smart contracts generated by our
method(labelled as A). Besides, we conduct a comparative
experiment (2) with contracts generated by the method of
[9](labelled as B) and manually contracts written in the way
inspired by [15](labelled as C). Note that B is a classic
method of smart contract automatic generation in the field
of IOPC. This mainly considers the following reasons: Firstly,
we want to observe whether the proposed framework meets
our expected objectives (for (1)); Secondly, by quantitatively
comparing the differences among the methods, we expect
for a feasible direction for subsequent optimization (for (2)).
Moreover, we provide a detailed analysis from the perspective
of methodology in Section 6.

Table 2 shows the statistics of the experiments. Note that we
have tested all the execution paths (branches) of each model
and report the transaction data with the longest execution path
in the order of message interaction.

One of advantages of our framework is that it provides
model verification by introducing a formal model. Consid-
ering the Verification, the framework automatically performs
model checking according to the selected properties. Once
the verification fails, the framework will give corresponding
counter examples to help users correct the problematic model.
In these 5 cases, SC and BT are detected not to meet the
soundness requirements, where Round 1 and Round 2 in
the table represent their first round verification (failed) and
modified verification (passed) respectively. If the verification
fails, the model designers need to modify the model according
to the prompt of counter example.

Only when the verification is passed, the framework gen-

TABLE II
STATISTICS OF EXPERIMENTS

Case Verification Contract Execution
Soundness(Y/N) Item Our Method(A) B C

Supply Chain (SC)
(Round 1) N — — — —

Supply Chain (SC)
(Round 2) Y

Total Gas Cost 1472682 1374716 1091035
Compared with C 135% 126% 100%

Initialization Gas Cost 1099479 1016856 767555
Initialization Gas Ratio 74.66% 73.97% 70.35%

Booking Travel (BT)
(Round 1) N — — — —

Booking Travel (BT)
(Round 2) Y

Total Gas Cost 673808 653868 505198
Compared with C 133% 129% 100%

Initialization Gas Cost 566762 548688 401313
Initialization Gas Ratio 84.11% 83.91% 79.44%

Online Education (OE) Y

Total Gas Cost 612334 567097 505198
Compared with C 127% 118% 100%

Initialization Gas Cost 474703 434975 346800
Initialization Gas Ratio 77.52% 76.70% 72.21%

Paper Review (PR) Y

Total Gas Cost 580467 600144 450903
Compared with C 128% 133% 100%

Initialization Gas Cost 475029 494899 347062
Initializations Gas Ratio 81.84% 82.46% 76.97%

Pastry Cook (PC) Y

Total Gas Cost 837937 741897 689443
Compared with C 121% 107% 100%

Initialization Gas Cost 628723 543578 460708
Initialization Gas Ratio 75.03% 73.27% 66.82%

erates the smart contract based on the formal model. After
manual inspection one by one, all smart contracts comply
with the original model specifications and can be executed
correctly. The APPENDIX shows a segment of the smart
contract code of the supply chain scenario. However, in the
comparative experiments, we find that it is not easy for
experimenters to find abnormalities (because both methods
don’t include verification phase), and most of them still convert
the problematic model directly into a smart contract. This
reminds us that a formal model is necessary and meaningful
as the input of smart contract generation. In this way, the
verified formal model can not only provide clear execution
semantics for the graphical model and eliminate ambiguity for
the accurate generation of smart contracts, but also identify
unqualified models in advance through model checking to
avoid undesired contract implementation.

It can be observed that in terms of Gas Cost, smart contracts
generated by automation method cost more gas than manual
written contracts. Both A (our method) and B bring more gas
consumption than C, because smart contracts in A and B need
to deal with more complex state transition conditions, leading
to a lot of data recording costs and data update costs.

From the perspective of contract auto-generation, our
method costs slightly more gas than B. However, our method
could detect flaws of the graphic models in advance, which
helps to avoid contract generation in the wrong base. Specifi-
cally, our method includes verification phase, and take as input
the formal models that have passed the verification, rather than
the manually designed graphic models that have a potential for
flaws. In general, though our method costs 4%-9% more than
B, we could save a lot of work of contract test, contract deploy
and contract revision.

Furthermore, when we compare the gas cost details of
the contracts, we find that in all groups of our experiments,
contract initialization, as the first transaction, is the most
expensive one, always taking up more than 70%. Taking the
SC in the experiment A as an example, the gas cost of its first
transaction is 1099479, which is much higher than the cost
of subsequent transactions (the gas used is among 34019 and
56952). From this point of view, the main cost of the contract
execution is contract initialization, while the gas cost caused
by message interaction is relatively small. This reminds us that
we should pay more attention to contract initialization in smart
contract generation and optimization, so as to further reduce
the cost.

VI. RELATED WORK

This section reviews the current work on smart contract
generation and formalization of BPMN collaboration model.

A. Researches on Translation of BPMN Model to Smart Con-
tract Generation

The existing work mainly focuses on two different technical
methods, namely the direct translation of BPMN models into
smart contracts and the translation of BPMN models into smart
contracts through intermediate formalisms.

Due to the difference of input model types and framework
configurations, it is difficult to provide a quantitative experi-
mental analysis for different methods from time or cost. Here
we make a comparative analysis from the aspects of method,
formalism, input model and intention. We add reference [7] be-
cause it is the latest representative on smart contract generation
and is most relevant to ours in terms of intention. Considering
direct translation, Weber et al. [9] for the first time propose

the implementation and monitoring solution of IOPC based on
blockchain to deal with the problem of mutual distrust among
participants. To this end, it provides a translation algorithm
and tool implemented in [16] to map BPMN choreography
elements to the corresponding smart contract. López-Pintado
et al. [17] combine the advantages of BPMS and blockchain
platform to design a business process engine Caterpillar that
can be executed on Ethereum. Different from other methods,
it is a complete block-chain collaboration platform. Besides
the smart contract of the collaboration model, other BPMS
components such as work item are also embedded in the
blockchain environment.

Furthermore, the work of Ladleif et al. [4] is an extension
of [9]. It points out the shortcomings of BPMN choreog-
raphy model in terms of ownership and local observability
according to the technical characteristics of blockchain (such
as shared data and smart contract). Then the authors provide
an extension and refinement of BPMN 2.0 choreography,
and propose a proof of concept framework to fill the gap
between modeling and implementation. From a model-driven
perspective, Corradini et al. [5] try to provide a bridge
between the graphical model description and the low-level
code executed on the blockchain. To this aim, the authors
propose an implementation framework based on blockchain,
as an infrastructure to support model management and Solidity
smart contract generation.

In fact, compared with graphical models, formal models
have advantages in accurately describing model behavior
specifications. More importantly, it can use model checking
to identify problematic models. These features help to avoid
the generation of undesired smart contracts and enhance the
confidence of blockchain-based IOPC (distributed systems)
in software quality. Thus, some studies try to explore the
indirect translation method through formal models to help
optimize and improve the implementation of IOPC. With
respect to indirect translation, Zupan et al. [7] point that smart
contract is very error-prone, and it is difficult to repair the
contract after implementation, and the formal model helps in
advance discovery of threats that cause insecurity. The authors
introduce Petri net into the smart contract generation to avoid
unexpected problems.

Garcı́a-Bañuelos [18] introduce Petri net as the intermediate
carrier of translation. This work focuses on how to reduce the
gas cost of transaction as much as possible while generating
smart contract. It proposes an optimization method for contract
initialization cost, execution cost and component throughput to
reduce the impact of data volume and data update frequency
on cost. It maps the BPMN model to a Petri net, and then
simplifies the model by eliminating invisible transitions and
redundant places.

It is worth mentioning that Nakamura et al. [15] introduce
statechart into the automatic generation of smart contracts.
It transforms a BPMN process with swimlanes into multiple
statecharts. In this way, the statecharts can be simplified
conveniently, thereby reducing the need for data exchange with
the blockchain in collaboration. Then the statecharts as input

are translated into the smart contracts.
The work [18] and [15] are different from ours in terms

of input model type and intention. Their focus is to reduce
the cost of contract generation and execution by using the
reduction technology of formal models, rather than focusing on
the possible impact of problematic models. Furthermore, our
work uses BPMN collaboration model to show the boundaries
and roles of different participants. Meanwhile, in the formal
method, we give a structured CSP# formalization that con-
siders message communication and process interaction, which
simplifies the formal model and contract generation.

B. Researches on CSP Formalization and Verification of
BPMN Collaboration Model

The formalization of BPMN model, and on a wider scale
the formal study of IOPC, is a hot research field. Many works
have explored from the perspective of formal language, e.g.,
PN/WF-net, Process algebra (Pi calculus), LTS, and First-
Order Logic (FOL) and so on. As described in Section 2.2,
CSP# has advantages in process communication and structured
representation, which help to reduce the complexity of smart
contract generation. Here we focus on the existing CSP
formalization and verification of BPMN collaboration related
to our work.

As far as BPMN is concerned, both BPMN choreography
and collaboration models could be used to model IOPC. The
former is widely regarded as purely descriptive from a global
point of view [4], while the latter has more advantages in
intuitively representing the boundaries and business respon-
sibilities of participants [3, p. 317]. More importantly, the
BPMN collaboration has been widely used in the develop-
ment of supporting software systems and serves as a starting
point for model-driven development of distributed systems [1].
Thus, we here choose the collaboration model to describe the
participants and their interactions.

Wong et al. [19] believe that a formal semantics for BPMN
can ensure accurate specification and help designers to im-
plement business processes correctly. To this end, the authors
introduce Z syntax to describe BPMN structures. In particular,
it employs the classic CSP and FOL to provide formalization
for a subset of BPMN1.1. This formalization contains a lot
of FOL and judgments (a lot of logic codes). This makes the
formal models too complex and increases the complexity of
smart contract generation.

Then, Corradini et al. [20] focuses on specific e-Government
digital service requirements, using CSP to represent collabo-
ration model of BPMN 1.1. In this work, a task is considered
to be an element that may directly associate multiple input
and output sequence flows. Its corresponding formalization
maps multiple parallel flow events (sequence flows) into a CSP
process. This way may make the generated formalization too
bloated. In our method, tasks, including sending and receiving
types, focus on the task itself and ignore the internal flow that
does not participate in the interaction, which helps to reduce
the complexity of formalization.

Furthermore, the work of Capel et al. [21] can be regarded
as an extension of [19]. It uses Z syntax and CSP + Time to
provide the formalization of Timed BPMN 2.0. Each model
element is attached with time constraints or rules, which is
mapped to the corresponding CSP process. This work focuses
on specific time constraints and cannot be directly applied to
smart contract generation.

VII. CONCLUSION

This paper proposes a prototype framework to automatically
generate smart contracts for IOPC. It provides an end-to-
end solution from modeling, verification, translation to im-
plementation. As one of the cores, a CSP# formalization
for BPMN collaboration model bridges the graphical model
with the smart contract. Another novelty is the translation
algorithm of smart contract. It takes the verified formal model
as input instead of graphical model, and translates it into
Solidity smart contract based on syntax tree. The proposed
framework identifies the abnormal model in advance through
model checking, preventing undesired contract generation and
implementation. In addition, the required formalism, verifica-
tion and translation techniques are transparent to users without
imposing additional burdens. In this regard, this reduces the
complexity of studying blockchain-based distributed systems
and model-driven software development.

Some observations on gas cost are obtained from the exper-
iment. Contract initialization is the most expensive, and its gas
cost accounts for a high proportion of the total execution cost.
This means that contract initialization should be an important
optimization point when considering gas cost. In fact, as
a hot topic, the combination of blockchain and IOPC is a
systematic work involving many aspects, such as privacy, data
storage, security and so on. This paper mainly discusses the
relationship between IOPC described by BPMN collaboration
models and smart contracts, and adopts the formal models to
avoid the undesired contract implementations caused by low-
quality models.

In the future, reducing the cost of smart contract generation
and execution is one of the directions we are interested in.
In addition, we plan to optimize the framework architecture,
providing more interfaces for external integration. And we also
seek support for more complex elements, such as complex
gateway and subprocesses.

ACKNOWLEDGMENT

This work was supported by the National Key Re-
search and Development Program of China under Grant
No.2020YFB1707603; the NSFC-Guangdong Joint Fund
Project under Grant No.U20A6003; the National Nat-
ural Science Foundation of China(NSFC) under Grant
No.61972427; the Research Foundation of Science and Tech-
nology Plan Project in Guangdong Province under Grant
No.2020A0505100030; the Research Foundation of Education
Bureau of Hunan Province under Grant No.22B0669.

REFERENCES

[1] O. Pastor, “Model-driven development in practice: from requirements
to code,” in International Conference on Current Trends in Theory and
Practice of Informatics. Springer, 2017, pp. 405–410.

[2] OMG, Business Process Model and Notation (BPMN), Version 2.0.2,
Object Management Group Std., Rev. 2.0.2, Dec. 2013. [Online].
Available: http://www.omg.org/spec/BPMN/2.0.2

[3] J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas,
F. Daniel, S. Debois, C. D. Ciccio, M. Dumas, S. Dustdar et al.,
“Blockchains for business process management-challenges and opportu-
nities,” ACM Transactions on Management Information Systems (TMIS),
vol. 9, no. 1, pp. 1–16, 2018.

[4] J. Ladleif, M. Weske, and I. Weber, “Modeling and enforcing
blockchain-based choreographies,” in International Conference on Busi-
ness Process Management. Springer, 2019, pp. 69–85.

[5] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, and
F. Tiezzi, “Engineering trustable choreography-based systems using
blockchain,” in Proceedings of the 35th Annual ACM Symposium on
Applied Computing, 2020, pp. 1470–1479.

[6] F. Corradini, C. Muzi, B. Re, L. Rossi, and F. Tiezzi, “Animating
multiple instances in bpmn collaborations: from formal semantics to tool
support,” in International Conference on Business Process Management.
Springer, 2018, pp. 83–101.

[7] N. Zupan, P. Kasinathan, J. Cuellar, and M. Sauer, “Secure smart
contract generation based on petri nets,” in Blockchain Technology for
Industry 4.0. Springer, 2020, pp. 73–98.

[8] J. Sun, Y. Liu, J. S. Dong, and C. Chen, “Integrating specification
and programs for system modeling and verification,” in 2009 Third
IEEE International Symposium on Theoretical Aspects of Software
Engineering. IEEE, 2009, pp. 127–135.

[9] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and
J. Mendling, “Untrusted business process monitoring and execution
using blockchain,” in International conference on business process
management. Springer, 2016, pp. 329–347.

[10] N. Rehwaldt, “Bpmn editor,” https://bpmn.io/.
[11] K. D. Swenson, S. Pradhan, M. D. Gilger, M. Zukowski, and P. Cap-

pelaere, “Wf-xml 2.0 xml based protocol for run-time integration of
process engines,” Workflow Management Coalition, 2004.

[12] S. Houhou, S. Baarir, P. Poizat, and P. Quéinnec, “A first-order logic
semantics for communication-parametric bpmn collaborations,” in Inter-
national Conference on Business Process Management. Springer, 2019,
pp. 52–68.

[13] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser generator,”
Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[14] M. Kunze, P. Berger, M. Weske, N. Lohmann, and S. Moser, “Bpm
academic initiative-fostering empirical research.” in BPM (Demos).
Citeseer, 2012, pp. 1–5.

[15] H. Nakamura, K. Miyamoto, and M. Kudo, “Inter-organizational busi-
ness processes managed by blockchain,” in International Conference on
Web Information Systems Engineering. Springer, 2018, pp. 3–17.

[16] A. B. Tran, Q. Lu, and I. Weber, “Lorikeet: A model-driven engineering
tool for blockchain-based business process execution and asset manage-
ment.” in BPM (Dissertation/Demos/Industry), 2018, pp. 56–60.

[17] O. Lòpez-Pintado, L. Garcı́a-Bañuelos, M. Dumas, I. Weber, and
A. Ponomarev, “Caterpillar: a business process execution engine on the
ethereum blockchain,” Software: Practice and Experience, vol. 49, no. 7,
pp. 1162–1193, 2019.

[18] L. Garcı́a-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber, “Opti-
mized execution of business processes on blockchain,” in International
conference on business process management. Springer, 2017, pp. 130–
146.

[19] P. Y. Wong and J. Gibbons, “A process semantics for bpmn,” in
International Conference on Formal Engineering Methods. Springer,
2008, pp. 355–374.

[20] F. Corradini, A. Polini, A. Polzonetti, and B. Re, “Business processes
verification for e-government service delivery,” Information Systems
Management, vol. 27, no. 4, pp. 293–308, 2010.

[21] M. I. Capel and L. E. Mendoza, “Automating the transformation from
bpmn models to csp+ t specifications,” in 2012 35th annual IEEE
software engineering workshop. IEEE, 2012, pp. 100–109.

http://www.omg.org/spec/BPMN/2.0.2
https://bpmn.io/

// SPDX-License-Identifier: MIT

pragma solidity >=0.4.24;

contract ServiceRegistry {

 event next(bytes from, bytes to, bytes activity);

 string public version;

 bool isActiveSendProductOrder = false;

 constructor(string memory _version) public {

 version = _version;

 isActiveSendProductOrder = true;

 }

bool isEnabledReceiveProductOrder = false;

bool isActiveReceiveProductStatus = false;

 function SendProductOrder() external {

 if (isActiveSendProductOrder) {

 isEnabledReceiveProductOrder = true;

 ReceiveProductOrder();

 }

 isActiveReceiveProductStatus = true;

 }

bool isActiveSendSupplierOrder = false;

function ReceiveProductOrder() public {

 if (isEnabledReceiveProductOrder) {

 emit next("", "", "ReceiveProductOrder");

 }

 isActiveSendSupplierOrder = true;

 }

bool isActiveReceiveReceipt = false;

bool isEnabledReceiveSupplierOrder = false;

function SendSupplierOrder() external {

 if (isActiveSendSupplierOrder) {

 isEnabledReceiveSupplierOrder = true;

 ReceiveSupplierOrder();

 }

 isActiveReceiveReceipt = true;

 }

 function ReceiveReceipt() public {

 if (isEnabledReceiveReceipt) {

 emit next("", "", "ReceiveReceipt");

 }

 isActiveSendProductStatus = true;

 }

APPENDIX

A. This shows a part code of smart contract in the supply
chain scenario

	I Introduction
	II Running Example
	III Framework
	IV Methods
	IV-A Translation from BPMN to CSP# Model and Formal Verification
	IV-B Translation from CSP# Model to Smart Contract

	V Experiments
	VI Related Work
	VI-A Researches on Translation of BPMN Model to Smart Contract Generation
	VI-B Researches on CSP Formalization and Verification of BPMN Collaboration Model

	VII Conclusion
	References

