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Abstract

The security problems of smart contracts have
drawn extensive attention due to the enormous fi-
nancial losses caused by vulnerabilities. Existing
methods on smart contract vulnerability detection
heavily rely on fixed expert rules, leading to low
detection accuracy. In this paper, we explore using
graph neural networks (GNNs) for smart contract
vulnerability detection. Particularly, we construct a
contract graph to represent both syntactic and se-
mantic structures of a smart contract function. To
highlight the major nodes, we design an elimination
phase to normalize the graph. Then, we propose
a degree-free graph convolutional neural network
(DR-GCN) and a novel temporal message propaga-
tion network (TMP) to learn from the normalized
graphs for vulnerability detection. Extensive ex-
periments show that our proposed approach signif-
icantly outperforms state-of-the-art methods in de-
tecting three different types of vulnerabilities.

1 Introduction

Blockchain technology is developing rapidly due to its decen-
tralization and tamper-free nature [Tsankov et al., 2018]. A
blockchain is essentially a distributed and shared transaction
ledger, maintained by all the miners in the blockchain net-
work following a consensus protocol [Sankar et al., 2017].
Smart contracts are programs automatically running on the
blockchain. However, ill-designed smart contracts expose
vulnerabilities, which are perfect targets for network attacks.
One notable example is the DAO event, where the hackers ex-
ploit the reentrancy bug of The DAO contract to steal 3.6 mil-
lion Ether (Cryptocurrency of Ethereum). The case is not iso-
lated and several security vulnerabilities are discovered and
exploited every few months †. According to the statistics of
SlowMist Hacked ‡, blockchain networks have suffered more

∗The first three authors are of equal contribution to this work.
Zhenguang Liu contributes to the idea, Yuan Zhuang and Peng Qian
contribute to implements and datasets. Zhenguang Liu is the corre-
sponding author.

†The dao website, 2016. http://etherscan.io/address/0xbb9bc244
d798123fde783fcc1c72d3bb8c189413

‡Slowmist hacked website, 2019. https://hacked.slowmist.io/en/.

than 10 billion USD losses due to the security issues of smart
contracts.

Current approaches for smart contract vulnerability detec-
tion are mainly inspired by existing testing methods from the
programming language community, revolving around sym-
bolic execution [Luu et al., 2016; Tsankov et al., 2018] and
dynamic execution methods [Jiang et al., 2018; Liu et al.,
2018b]. We scrutinized the released implementation of ex-
isting methods, and empirically observe that they suffer from
two key problems. First, existing methods heavily rely on
several expert-defined hard rules (or patterns) to detect smart
contract vulnerability. However, expert rules are error-prone
and some complex patterns are non-trivial to be covered.
Crudely using several hard rules leads to high false-positive
and false-negative rates, and crafty attackers may easily by-
pass the rules to perform attacks. Second, since the rules are
contributed by a few ‘centralized’ experts who develop the
detection tools, their scalability is inherently limited. As the
number of smart contracts is increasing rapidly, it is impossi-
ble for a few experts to sift through all the contracts to design
precise rules, while the knowledge of other ‘decentralized’
experts cannot be incorporated to improve the model.

Our method. To address these problems, we propose novel
methods beyond the rule-based framework. Specifically, we
characterize the source code of a smart contract as a con-
tract graph according to the data- and control- dependencies
between program statements. Nodes in the graph represent
critical function invocations or variables while edges capture
their temporal execution traces. Since most GNNs are in-
herently flat during information propagation, we design an
elimination phase to normalize the graph. We extend GCN
to a degree-free GCN (DR-GCN) to handle the normalized
graphs. Further, we take into account the distinct roles and
temporal relationships of different program elements and pro-
pose a novel temporal message propagation network (TMP).
We conducted extensive experiments on more than 300,000
real-world smart contract functions, results show that our ap-
proaches significantly and consistently outperform state-of-
the-art methods on the detection of different types of vulner-
abilities including reentrancy, timestamp dependence, and in-
finite loop vulnerabilities. Our implementations are released
to facilitate future research.
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Figure 1: The graph generation and normalization phases of our method. (a) shows the source code of a smart contract; (b) visualizes the
graph extracted from the source code. Nodes in circle denote major nodes and nodes in square represents secondary nodes. (c) demonstrates
the graph after normalization.

Contributions. To summarize, our key contributions are: i)
We introduce a novel temporal message propagation network
(TMP) and a degree-free GCN (DR-GCN) to automatically
detect smart contract vulnerabilities. ii) We propose to char-
acterize the contract function source code as contact graphs,
and explicitly normalize the graph for highlighting the key
nodes. iii) Our methods set the new state-of-the-art perfor-
mance on smart contract vulnerability detection, and overall
provide insights into the challenges and opportunities.

2 Problem Statement

Problem formulation. Presented with the source code of a
smart contract, we are interested in developing a fully auto-
mated approach that can detect vulnerabilities at the function
level. That is, we are to estimate the label ŷ for each smart
contract function SC, where ŷ = 1 represents SC has a vulner-
ability of a certain type while ŷ = 0 denotes SC is safe. In
this paper, we focus on three types of vulnerabilities:

Reentrancy is a well-known vulnerability that caused the
infamous DAO attack. In Ethereum, when a smart contract
function F1 transfers money to a recipient contract C1, the
fallback function of C1 will be automatically triggered. C1

may invoke back to F1 in its fallback function to reenter F1

for stealing money. Since the current execution of F1 waits
for the transfer to finish, C1 can make use of the intermediate
state F1 is in to succeed in stealing.

Infinite loop is a common vulnerability in smart contracts.
The program of a function may contain an iteration or loop
with no exit condition or the exit condition cannot be reached,
i.e., an infinite loop. The fallback mechanism in smart con-
tracts rises a new possibility of this non-termination bug,
namely a cycled call between functions and the fallback func-
tion. For example, function A invokes function B with in-
correct arguments, which will automatically trigger the exe-
cution of the fallback function in this contract. Suppose the
fallback function further invokes function A, this will leads
to a call loop between A and the fallback function.

Timestamp dependence vulnerability exists when a smart
contract uses the block timestamp as a triggering condition
to execute some critical operations, e.g., sending Ether or de-

termining the winner of a game. The miner in Ethereum has
the freedom to set the timestamp of a block within a short
time interval (< 900 seconds) [Jiang et al., 2018]. Therefore,
miners may manipulate the block timestamps to gain illegal
benefits.

3 Our Method

Method overview. The overall architecture of our method
consists of three phases: (1) a graph generation phase, which
extracts the control flow and data flow semantics from the
source code and explicitly models the fallback mechanism,
(2) a graph normalization phase inspired by k-partite graph,
and (3) novel message propagation networks for vulnerability
modeling and detection. Next, we introduce the three phases,
respectively.

3.1 Graph Generation

Existing work [Allamanis et al., 2018] has shown that pro-
grams can be transformed into symbolic graph representa-
tions, which are able to preserve semantic relationships be-
tween program elements. Inspired by this, we formulate a
smart contract function into a contract graph, and assign dis-
tinct roles to different program elements (nodes). Further, we
construct edges by taking their temporal order into consider-
ation. Figs. 1(a) & (b) demonstrate a contract snippet and the
graph constructed for its getBonus function, respectively.

Our first insight is that different program elements in a
function are not of equal importance. Therefore, we extract
three categories of nodes, i.e., major nodes, secondary nodes,
and fallback nodes.

Major nodes construction. Major nodes symbolize the in-
vocations to customized or built-in functions that are impor-
tant for detecting the specific vulnerability. For example, for
reentrancy vulnerability, a major node models the invocation
to a transfer function or the built-in call.value function, which
is key to detect reentrancy. For timestamp dependence vul-
nerability, the built-in function invocation block.timestamp
is extracted as a major node. For infinite loop, all the cus-
tomized functions within the contract are treated as major
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Symbol Semantic Fact Type

AH assert{X}

Control-flow edges

RG require{X}
IR revert
IT throw
IF if{X}

GB if{...} else {X}
GN if{...} then {X}
WH while{X} do{...}
FR for{X} do{...}
AG assign{X}

Data-flow edges
AC access{X}
FW natural sequential relationships Forward edge

FB interactions with fallback function Fallback edge

Table 1: Semantic edges summarization. All edges are classified
into 4 types, namely control-flow, data-flow, forward, and fallback.

nodes. Formally, we characterize all the critical functions as
major nodes, which are denoted by M1, M2, . . . , Mn.

Secondary nodes construction. While major nodes rep-
resent important invocations, secondary nodes are used to
model critical variables, e.g., user balance and bonus flag.
Formally, the critical variables are defined as secondary nodes
S1, S2, . . . , Sn.

Fallback node construction. Further, we construct a fall-
back node F to stimulate the fallback function of an attack
contract, which can interact with the function under test. The
fallback function is a special design in smart contracts, and is
the cause of many security vulnerabilities.

Edges construction. We further construct edges to model
the relationships between nodes. Each edge describes a path
that might be traversed through by the contract function un-
der test, and the temporal number of the edge characterizes
its order in the function. Specifically, the feature of an edge
is extracted as a tuple (Vs, Ve, o, t), where Vs and Ve repre-
sent its starting and end nodes, o denotes its temporal order,
and t the edge type. To capture rich semantic dependencies
between nodes, we construct four types of edges, namely con-
trol flow, data flow, forward and fallback edges. The details
of the semantic edges are listed in Table 1.

3.2 Contract Graph Normalization

Most graph neural networks are inherently flat when propa-
gating information, ignoring that some nodes play more cen-
tral roles than others. Moreover, different contract source
code yield distinct graphs, hindering the training of graph
neural networks. Therefore, we propose a node elimination
process to normalize graphs.

Nodes elimination. As introduced in Section 3.1, the node

of a graph is partitioned into major nodes {Mi}
|M |
i=1, sec-

ondary nodes {Si}
|M |
i=1, and the fallback node F . We remove

each secondary node Si but pass the feature of Si to its nearest
major node. Note that if Si has multiple nearest major nodes,
its feature is passed to all of them. The fallback node is also
removed similar to the secondary node. The edges connect-
ing to the removed node are preserved but with their starting
or end node moving to the corresponding major node.

Feature of major nodes. Features of major nodes are up-
dated by aggregating features from their neighboring re-
moved nodes. To distinguish between the original major node
and its corresponding major node after aggregation, we de-
note the new major node of Mi as Vi. The feature of Vi is
composed of three parts: i) self-feature, namely the feature
of major node Mi; ii) in-features, namely features of the sec-

ondary nodes {Pj}
|P |
j=1 that are merged to Mi and having a

path pointing from Pj to Mi; and iii) out-feature, namely fea-

tures of the secondary nodes {Qk}
|Q|
k=1 that are merged to Mi

and having a path directs from Qk from Mi. Fig. 1(c) illus-
trates the normalized graph of Fig. 1(b).

3.3 Message Propagation Neural Networks

In this subsection, we first extend the GCN to a degree-free
GCN (DR-GCN), then propose a novel temporal message
propagation network (TMP). Both the two proposed networks
take the normalized graph G of a smart contract function as
input, and output the label ŷ ∈ {0, 1} indicating whether the
function has a vulnerability of a certain type.

DR-GCN. [Kipf and Welling, 2017] proposes to apply con-
volutional neural networks to graph-structured data, which
develops a layer-wise propagation network as:

Xl+1 = σ
(

D̂− 1

2 ÂD̂− 1

2XlWl

)

(1)

where Â = A+ I is the adjacency matrix (A) enhanced with
self-loops (I), Xl is the feature matrix of layer l, and Wl is
a trainable weight matrix. In the equation, the diagonal node

degree matrix D̂ is used to normalize Â. We first increase
the connectivity between nodes in the normalized graph G by
using the square of A. Then, we further take into account
that the graph is already well normalized in our setting, and

therefore remove matrix D̂ from the equation. Finally, we
arrive at the solution: Xl+1 = σ

(

(A2 + I)XlWl

)

.

TMP. We also propose a TMP network, consisting of a
message propagation phase and a readout phase (Fig. 2).
In the message propagation phase, TMP passes information
along the edges successively by following their temporal or-
der. Then, TMP computes a label for the entire graph G by
using a readout function, which aggregates the final states of
all nodes in G. Formally, G = {V,E}, where V consists of
all the major nodes and E contains all the edges. Denote E =
{e1, e2, . . . , eN}, where ek represents the kth temporal edge.

Message propagation phase. Messages are passed along
the edges, one edge per time step. At time step 0, the hidden
state h0

i for each node Vi is initialized with the feature of Vi.

At time step k, message flows through the kth temporal edge
ek and updates the hidden state of Vek, namely the end node
of ek. Particularly, message mk is computed basing on hsk,
the hidden state of the starting node of ek, and the edge type
tk:

xk = hsk ⊕ tk (2)

mk = Wkxk + bk (3)

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3285



Figure 2: The overall architecture of our proposed TMP. (a) The input normalized graph; b) The message propagation phase; (c) The readout
phase that outputs the vulnerability detection result.

where ⊕ denotes concatenation operation, matrix Wk and
bias vector b are network parameters. The original message
xk contains information from the starting node of ek and edge
ek itself, which are then transformed into a vector embedding
using Wk and b. After receiving the message, the end node
of ek updates its hidden state hek by aggregating information
from the incoming message and its previous state. Formally,
hek is updated according to:

ĥek = tanh(Umk + Zhek + b1) (4)

h
′

ek = softmax(Rĥek + b2) (5)

where U , Z, R are matrices, while b1 and b2 are bias vectors.

Readout phase. After successively traversing all the edges
in G, TMP computes a label for G by reading out the final
hidden states of all nodes. Let hT

i be the final hidden state of

the ith node, we may generate the prediction label ŷ by

ŷ =

|V |
∑

i=1

f(hT
i ) (6)

where f is a mapping function, e.g., a neural network, and
|V | denotes the number of major nodes. However, we found
that the differences between the final hidden state hT

i and the
original hidden state h0

i are informative in the vulnerability
detection task. Therefore, we instead consider to compute ŷ
as follows:

si = hT
i ⊕ h0

i (7)

gi = softmax(W (2)
g (tanh(b(1)g +W (1)

g si)) + b(2)g ) (8)

oi = softmax(W (2)
o (tanh(b(1)o +W (1)

o si)) + b(2)o ) (9)

ŷ =

|V |
∑

i=1

Sigmoid(oi ⊙ gi) (10)

where ⊙ denotes element-wise product. Wj , b
(1)
j , and b

(2)
j ,

with subscript j ∈ {g, o} are model parameters to be learned.

Both the two networks DR-GCN and TMP are trained for
contract vulnerability detection. During training, networks
are fed with a large number of normalized graphs constructed

from smart contract functions, together with their ground
truth labels. Then, the trained models are employed to ab-
sorb a normalized graph and yield a vulnerability detection
label. We would like to point out that we developed automa-
tion tools for converting source code to normalized graphs,
therefore, the whole procedure is fully automated.

4 Experiments

4.1 Datasets and Experimental Settings

Datasets. Extensive experiments are conducted on all the
smart contracts that have source code on the Ethereum and
VNT Chain platforms. We denote the two real-world smart
contract datasets as ESC (Ethereum Smart Contracts) and
VSC (VNT chain Smart Contracts), respectively.

• ESC consists of 40,932 Ethereum smart contracts with
roughly 307, 396 functions in total. Among the func-
tions, around 5, 013 functions possess at least one invo-
cation to call.value, making them potentially affected
by the reentrancy vulnerability. Around 4, 833 functions
contain the block.timestamp statement, making them
susceptible to the timestamp dependence vulnerability.

• VSC consists of 4, 170 smart contracts collected from
the VNT Chain ∗, roughly containing 13, 761 functions.
VNT Chain is an experimental public blockchain plat-
form proposed by companies and universities from Sin-
gapore, China, and Australia.

Experimental settings. We compared our approaches
(DR-GCN and TMP) with a total of twelve other methods,
namely four existing smart-contract vulnerability detection
methods (Oyente [Luu et al., 2016], Mythril [Mueller, 2017],
Smartcheck [Tikhomirov et al., 2018], and Securify [Tsankov
et al., 2018]), four neural network based methods (Vanilla-
RNN, LSTM, GRU, and GCN), and four program loop detec-
tion methods (Jolt [Carbin et al., 2011], PDA [Ibing and Mai,
2015], SMT [Kling et al., 2012], and Looper [Burnim et al.,
2009]). For each dataset, we randomly pick 20% contracts
as the training set while the remainings are utilized for the
testing set. In the comparison, metrics accuracy, recall, pre-
cision, and F1 score are all involved. In consideration of the

∗Vntchain website, 2018. https://github.com/vntchain/go-vnt.
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Methods
Reentrancy Timestamp dependence

Methods
Infinite Loop

Acc(%) Recall(%) Precision(%) F1(%) Acc(%) Recall(%) Precision(%) F1(%) Acc(%) Recall(%) Precision(%) F1(%)

Smartcheck 52.97 32.08 25.00 28.10 44.32 37.25 39.16 38.18 Jolt 42.88 23.11 38.23 28.81
Oyente 61.62 54.71 38.16 44.96 59.45 38.44 45.16 41.53 PDA 46.44 21.73 42.96 28.26
Mythril 60.54 71.69 39.58 51.02 61.08 41.72 50.00 45.49 SMT 54.04 39.23 55.69 45.98
Securify 71.89 56.60 50.85 53.57 – – – – Looper 59.56 47.21 62.72 53.87

Vanilla-RNN 49.64 58.78 49.82 50.71 49.77 44.59 51.91 45.62 Vanilla-RNN 49.57 47.86 42.10 44.79
LSTM 53.68 67.82 51.65 58.64 50.79 59.23 50.32 54.41 LSTM 51.28 57.26 44.07 49.80
GRU 54.54 71.30 53.10 60.87 52.06 59.91 49.41 54.15 GRU 51.70 50.42 45.00 47.55
GCN 77.85 78.79 70.02 74.15 74.21 75.97 68.35 71.96 GCN 64.01 63.04 59.96 61.46

DR-GCN 81.47 80.89 72.36 76.39 78.68 78.91 71.29 74.91 DR-GCN 68.34 67.82 64.89 66.32
TMP 84.48 82.63 74.06 78.11 83.45 83.82 75.05 79.19 TMP 74.61 74.32 73.89 74.10

Table 2: Performance comparison in terms of accuracy, recall, precision, and F1 score. A total of fourteen methods are investigated in the
comparison, including state-of-the-art vulnerability detection methods, neural network based alternatives, our methods DR-GCN and TMP.
‘–’ denotes not applicable.

Metrics
Reentrancy Timestamp dependence Infinite loop

DR-GCN-WON DR-GCN TMP-WON TMP DR-GCN-WON DR-GCN TMP-WON TMP DR-GCN-WON DR-GCN TMP-WON TMP

Acc(%) 77.08 81.47 81.91 84.48 72.56 78.68 80.03 83.45 63.93 68.34 70.03 74.61
Recall(%) 76.83 80.89 80.49 82.63 74.38 78.91 81.30 83.82 63.16 67.82 71.82 74.32
Precision(%) 68.36 72.36 71.44 74.06 67.46 71.29 72.69 75.05 60.11 64.89 69.94 73.89
F1(%) 72.35 76.39 75.70 78.11 70.75 74.91 76.75 79.19 61.59 66.32 70.87 74.10

Table 3: Accuracy comparison between DR-GCN, TMP, and their variants on the three vulnerability detection tasks.

distinct features of different platforms, experiments on reen-
trancy vulnerability and timestamp dependence vulnerability
are conducted on the ESC dataset, while experiments on in-
finite loop vulnerability detection are conducted on the VSC
dataset.

4.2 Comparison with Existing Methods

In this subsection, we first benchmark the proposed ap-
proaches (DR-GCN and TMP) against state-of-the-art meth-
ods on the reentrancy, timestamp dependence, and infinite
loop vulnerabilities, respectively. Then, we compare our ap-
proaches with other neural network based methods.

Comparison on Reentrancy Vulnerability Detection

First, we compare our DR-GCN and TMP methods with
state-of-the-art smart contract vulnerability detection meth-
ods, namely Oyente [Luu et al., 2016], Mythril [Mueller,
2017], Smartcheck [Tikhomirov et al., 2018], and Securify
[Tsankov et al., 2018], on the reentrancy vulnerability detec-
tion task. The performance of different methods is presented
in the left of Table 2, where metrics accuracy, recall, preci-
sion, and F1 score are engaged.

From the quantitative results of Table 2, we have the fol-
lowing observations. First, we find that existing tools have
not yet achieved a satisfactory accuracy on reentrancy vulner-
ability detection, e.g., the state-of-the-art tool yields a 71.89%
accuracy. Second, TMP outperforms state-of-the-art methods
by a large margin. More specifically, TMP achieves an ac-
curacy of 84.48%, gaining a 12.39% accuracy improvement
over state-of-the-art tools. Besides, the F1 score of TMP is
24.54% higher than existing methods. Thirdly, DR-GCN also
achieves better results than other existing methods in terms
of all the four metrics. The strong empirical evidences reveal
the great potential of applying graph neural networks to smart
contract vulnerability detection.

Comparison on Timestamp Dependence Vulnerability
Detection

We then compare the proposed methods with state-of-the-art
smart contract vulnerability detection tools on the timestamp
dependence vulnerability detection task. The comparison re-
sults are demonstrated in the middle of Table 2. The state-
of-the-art method has obtained a 61.08% accuracy on times-
tamp dependence vulnerability detection, which is quite low.
This may stem from the fact that most of existing methods
detect timestamp dependence vulnerability by crudely check-
ing whether there is block.timestamp statement in the func-
tion. Moreover, in consistent with the results on reentrancy
vulnerability detection, TMP keeps delivering the best perfor-
mance in terms of all the four metrics, while DR-GCN ranks
the second. In particular, TMP gains a 22.37% accuracy im-
provement over state-of-the-art method.

We further look into the existing smart contract vulnerabil-
ity detection tools to investigate the reasons behind the obser-
vations. Smartcheck fundamentally depends on a few rigid
and simple logic rules to detect vulnerabilities, which leads
to low accuracy and F1 score. Oyente employs data flow
analysis to improve the accuracy, while its underlying pat-
terns for detecting vulnerabilities are not so accurate. Regard-
ing Mythril, it requires sophisticated techniques such as taint
analysis or manual audit, which attains a medium accuracy.
Unlike other methods, Securify classifies smart contract func-
tions into violations, warnings, and compliances, where vio-
lation denotes the function is guaranteed to have the vulnera-
bility (positive), and compliance denotes the function is safe
(negative). We treat all warnings as negative since users are
usually attracted by violations while ignoring a lot of warn-
ings. Securify performs better than other existing methods,
but has a high false negative rate.

Comparison on Infinite Loop Vulnerability Detection

For the infinite loop vulnerability detection, we compare our
methods against available tools including Jolt [Carbin et al.,

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3287



(a) (b) (c) (d) (e) (f)

Figure 3: Visually comparison: (a) & (b) present comparison results of reentrancy vulnerability detection on the ESC dataset, while (c) & (d)
present comparison results of timestamp dependence detection, (e) & (f) show comparison results of infinite loop vulnerability detection on
the VSC dataset. In (a) & (c), the 6 rows from front to back denote the Smartcheck, Oyente, Mythril, Securify, DR-GCN, and TMP methods,
respectively. In (e), the 5 rows from front to back denote the Jolt, PDA, SMT, Looper, DR-GCN, and TMP methods, respectively. In (b) &
(d) & (f), the 6 rows from front to back denote the Vanilla-RNN, LSTM, GRU, GCN, DR-GCN, and TMP methods, respectively. For each
row in the figures, accuracy, recall, precision, and F1 score are respectively demonstrated from left to right.

(a) Reentrancy (b) Timestamp (c) Infinite loop

Figure 4: ROC analysis for DR-GCN, TMP, and their variants on the three vulnerability detection tasks. AUC stands for area under the curve.

2011], SMT [Kling et al., 2012], PDA [Ibing and Mai, 2015],
and Looper [Burnim et al., 2009]. We empirically find that
almost all existing methods fail to detect the infinite loop bug
caused by the fallback mechanism of smart contracts. In con-
trast, our methods can successfully identify this vulnerability.
This is because we explicitly model the fallback mechanism
of smart contracts and consider data dependencies and con-
trol dependencies between program elements. Quantitative
results are illustrated in the right of Table 2. From the table,
we see that TMP consistently and significantly outperforms
the other methods on the infinite loop vulnerability detection
task. In particular, TMP and DR-GCN respectively achieve a
15.05% and 8.78% accuracy improvement over state-of-the-
art methods.

We further visualize the comparison results in Fig. 3(a), (c),
and (e). Fig. 3(a) and Fig. 3(c) present comparison results
of reentrancy vulnerability detection and timestamp depen-
dence vulnerability detection, respectively. The 6 rows (in
different colors) from front to back denote the Smartcheck,
Oyente, Mythril, Securify, DR-GCN, and TMP methods, re-
spectively. For each row in the figures, accuracy, recall, pre-
cision, and F1 score are respectively demonstrated from left
to right. Fig. 3(e) shows comparison results of infinite loop
vulnerability detection, where the the 6 rows from front to
back denote the Jolt, PDA, SMT, Looper, DR-GCN, and TMP
methods, respectively. We can clearly observe that DR-GCN
and TMP outperform existing methods.

Comparison with Neural Network Based Methods

In order to seek out which neural network architectures could
succeed in smart contract vulnerability detection, we also
compare our methods with other neural network alternatives.
Specifically, Vanilla-RNN, LSTM, GRU, and GCN are com-
pared with our DR-GCN and TMP networks. For fair com-
parison, all the methods are presented with the vector repre-
sentation of the normalized graph extracted from the source
code and are required to detect the corresponding bugs. We
illustrate the results of different models in terms of accuracy,
recall, precision, and F1 score in Table 2. Fig. 3(b), (d), and
(f) further visualize the results.

Interestingly, experimental results show that conventional
recurrent neural networks Vanilla-RNN, LSTM, and GRU
perform no better than existing vulnerability detection meth-
ods. In contrast, graph neural networks GCN, DR-GCN, and
TMP, which are capable of handling graphs, achieve signif-
icantly better results than existing methods. This suggests
that blindly treat the source code as a sequence is not suit-
able for the vulnerability detection task, while modeling the
source code into graphs and adopting graph neural networks
is promising. We conjecture that conventional recurrent mod-
els lose valuable information from smart contract code since
they ignore the structural information of contract programs,
such as the data-flow and invocation relationships.

We would like to highlight that the proposed TMP and DR-
GCN model consistently and significantly outperforms other
neural network models in terms of all the 4 metrics. Besides
TMP and DR-GCN, the GCN model performs the best. The
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accuracies of GCN and DR-GCN are lower than TMP. We
attribute this to the fact that GCN fails to capture the temporal
information induced by data flow and control flow, which is
explicitly addressed in our TMP model using ordered edges.

4.3 Study on The Effect of Graph Normalization

By default TMP adopts the graph normalization module to
highlight the major nodes in the graph, it is interesting to see
the effect of removing this module. We removed the graph
normalization phase from TMP and DR-GCN, and compared
them with the default TMP and DR-GCN. The two variants
are respectively denoted as TMP-WON and DR-GCN-WON,
where WON is short for without normalization. Quantita-
tive results are summarized in Table 3. We can see that with
the proposed normalization module, the performance of both
DR-GCN and TMP is better. For example, on the reentrancy
vulnerability detection task, the DR-GCN model obtains a
4.39% and 4.04% improvement in terms of accuracy and F1
score, respectively, while TMP gains a 2.57% and 2.41% im-
provement in accuracy and F1 score.

Fig. 4 further plots the ROC curves of DR-GCN, TMP, and
their variants. We adopt Receiver Operating Characteristic
(ROC) analysis to show the impact of the graph normaliza-
tion module. AUC (area under the curve) is used as the mea-
sure for performance, the higher AUC the better performance.
Fig. 4(a) demonstrates that DR-GCN and TMP achieve better
results on the reentrancy detection task with the normaliza-
tion module, namely the AUC increases by 0.07 and 0.03,
respectively. Regarding the timestamp dependence detection
task, DR-GCN and TMP obtain a 0.05 and 0.03 improvement
in AUC (shown in Fig. 4(b)). For the infinite loop detection
task, DR-GCN and TMP gain a 0.08 and 0.05 improvement in
AUC (shown in Fig. 4(c)). The experimental results suggest
that program elements should contribute distinctly in vulner-
ability detection rather than having equal contributions.

5 Related Work

Smart contract vulnerability detection. Smart contract
vulnerability detection is one of the fundamental problems in
blockchain security. Current work mainly relies on symbolic
execution methods, such as Oyente [Luu et al., 2016], Ma-
ian [Nikolić et al., 2018] and Securify [Tsankov et al., 2018],
which suffer from high false negative rates due to the inability
to explore all possible program paths. Recent work [Jiang et
al., 2018] explores dynamic execution for vulnerability detec-
tion, but requires a hand-crafted agent contract for reentrancy
detection, preventing it from fully automated application.

Graph neural networks (GNNs). With remarkable suc-
cess of neural networks in various fields [Cheng et al., 2019]
[Liu et al., 2018a], graph neural network has received in-
creasing attention. Existing approaches roughly cast into two
categories: (1) Spectral-based approaches generalize well-
established neural models like CNNs for graph data. For in-
stance, GCN [Kipf and Welling, 2017] implements a first-
order approximation of spectral graph convolutions [Deffer-
rard et al., 2016], while [Li et al., 2018] proposes a graph
CNN capable of processing input data of arbitrary graph

structure. (2) Spatial-based methods inherit ideas from re-
current GNNs and adopt message passing for graph convo-
lutions. [Micheli, 2009] directly sums up a node’s neighbor-
hood information for graph convolutions, while recent work
[Veličković et al., 2017] and [Zhang et al., 2018] learn dif-
ferent weights of neighboring nodes using attention mecha-
nisms.

6 Conclusion

In this paper, we have proposed a fully automated vulnerabil-
ity analyzer for smart contracts. In contrast to existing meth-
ods, we explicitly model the fallback mechanism of smart
contracts, consider rich dependencies between program ele-
ments, and explore the possibility of using novel graph neural
networks for vulnerability detection. Extensive experiments
show that our method significantly outperforms state-of-the-
art methods and other neural networks. We believe our work
is an important step towards revealing the potential of deep
learning methods on smart contract vulnerability detection
tasks.
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