
Franke et al. Journal of Internet Services and Applications (2015) 6:27

DOI 10.1186/s13174-015-0040-6

RESEARCH Open Access

Smart crowds in smart cities: real life, city
scale deployments of a smartphone based
participatory crowdmanagement platform
Tobias Franke1*, Paul Lukowicz1 and Ulf Blanke2

Abstract

We describe a platform for smart, city-wide crowd management based on participatory mobile phone sensing and

location/situation specific information delivery. The platform supports quick and flexible deployments of end-to-end

applications for specific events or spaces that include four key functionalities: (1) Mobile phone based delivery of

event/space specific information to the users, (2) participatory sensor data collection (from app users) and flexible

analysis, (3) location and situation specific message multicast instructing people in different areas to act differently in

case of an emergency and (4) post mortem event analysis. This paper describes the requirements that were derived

through a series of test deployments, the system architecture, the implementation and the experiences made during

real life, large scale deployments. Thus, until today it has been deployed at 14 events in three European countries (UK,

Netherlands, Switzerland) and was used by well over 100,000 people.

Keywords: Crowd management, Crowd sourcing, Large scale cooperative sensing, Smartphones

1 Introduction
Pedestrian crowds are an integral part of cities. Planing

for crowds, monitoring crowds and managing crowds,

are fundamental tasks in city management. As a conse-

quence, crowd management is a sprawling R&D area (see

related work) that includes theoretical models, simulation

tools, as well as various support systems. There has also

been significant interest in using computer vision tech-

niques to monitor crowds. However, overall, the topic of

crowd management has been given only little attention

within the smart city domain. In this paper we report on

a platform for smart, city-wide crowd management based

on a participatory mobile phone sensing platform. Origi-

nally, the apps based on this platform have been conceived

as a technology validation tool for crowd based sens-

ing within a basic research project. However, the initial

deployments at the Notte Bianca Festival1 in Malta and

at the Lord Mayor’s Show in London2 generated so much

interest within the civil protection community that it has

*Correspondence: tobias.franke@dfki.de
1German Research Center for Artificial Intelligence (DFKI), Kaiserslautern,

Germany

Full list of author information is available at the end of the article

gradually evolved into a full-blown participatory crowd

management system and is now in the process of being

commercialized through a startup company. Until today it

has been deployed at 14 events in three European coun-

tries (UK, Netherlands, Switzerland) and used by well over

100,000 people.

1.1 Contributions

In this paper we describe the design, implementation and

experiences with a large scale participatory platform for

city wide crowd management. The platform enables the

quick and flexible deployment of end-to-end applications

for specific public spaces or events that include four key

functionalities:

1. Mobile phone based delivery of event/space specific

information to the users. In a nutshell, this is the

classic city/event information app functionality that

motivates users to download and run the App.

2. Participatory sensor data collection from app users

(on an opt-in basis) and translation of that data into

an appropriate representation of the crowd state and

its evolution. This provides responsible crowd

managers with a “heat map-like”, concise, real time

© 2015 Franke et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-015-0040-6-x&domain=pdf
mailto: tobias.franke@dfki.de
http://creativecommons.org/licenses/by/4.0/

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 2 of 19

overview of the spatial and temporal evolution of the

state of the crowd in the entire area.

3. Support for location and situation specific messaging

allowing the messages to instruct people in different

areas to act differently in case of an emergency. This

allows for smart, adaptive emergency response and

evacuation strategies to be implemented in real time.

4. The ability for post mortem analysis of an event as

means of future planning.

On the research level, this paper makes the following

specific contributions:

1. The concept of crowd management as a use case for

participatory smart city technology including a

requirements analysis based on several real life

deployments of different prototypes.

2. The architecture and implementation of a

corresponding platform comprising of

• A generic, configurable, multi-platform app to

facilitate collaborative, city-wide sensing as well

as location and situation sensitive information

delivery
• A data processing backend that collects and

stores the sensor data from the participants and

converts them into situational awareness of the

crowd state.
• A configuration front end that allows the

generic app platform to be quickly instantiated

according to the specific event/space.
• An event management front end that provides

the visualization of the crowd state and allows

for an easy creation of situation and location

specific messages.

All of the above is implemented in a modular way

allowing easy integration of additional functionality

(e.g. new sensor data analysis and visualization

schemes).
3. Results and experiences from large scale real life

deployments ranging from the information that the

system can deliver about an event over the statistics

of app usage to quantitative and qualitative results of

user interviews (with both event visitors and civil

protection personnel).

1.2 Related work

Obtaining knowledge about the current size and density

of a crowd is one of the central aspects of crowd monitor-

ing [1]. For the last decades, automatic crowd monitoring

in urban areas has mainly been performed by means of

image processing [2]. One use case for such video-based

applications can be found in [3], where a CCTV camera-

based system is presented that automatically alerts the

staff of subway stations when the waiting platform is

congested. However, one of the downsides of video-based

crowdmonitoring is the fact that video cameras tend to be

considered as privacy invading. Therefore, [4] presents a

privacy preserving approach to video-based crowd mon-

itoring where crowd sizes are estimated without people

models or object tracking.

With respect to the mitigation of catastrophes induced

by panicking crowds (e.g. during an evacuation), city

planners and architects increasingly rely on tools simulat-

ing crowd behaviors in order to optimize infrastructures.

Murakami et al. [5] presents an agent based simulation for

evacuation scenarios. Shendarkar et al. [6] presents a work

that is also based on BSI (believe, desire, intent) agents –

those agents however are trained in a virtual reality envi-

ronment thereby giving greater flexibility to the modeling.

Kluepfel et al. [7] on the other hand uses a cellular automa-

ton model for the simulation of crowd movement and

egress behavior.

With smartphones becoming everyday items, the con-

cept of crowd sourcing information from users of mobile

application has significantly gained traction [8]. Roitman

et al. [9] presents a smart city system where the crowd

can send eye witness reports thereby creating deeper

insights for city officials. Szabo et al. [10] takes this

approach one step further and employs the sensors built

into smartphones for gathering data for city services such

as live transit information. Ghose et al. [11] utilizes the

same principle for gathering information on road con-

ditions. Pan et al. [12] uses a combination of crowd

sourcing and social media analysis for identifying traffic

anomalies.

We have previously published papers focusing on the

sensing part of our system. In [13] we describe in details

how the data gathered using the mobile phones is being

processed and visualized. In [14] the accuracy of our

data processing and visualization method is evaluated

using video footage from an event where the system was

deployed. It is shown that while the user penetration of

our system was below 1% during this event our method-

ology nevertheless achieved a correlation factor of 0.83

between the actual crowd density (obtained by counting

people on videos) and our system’s calculated crowd den-

sity. While our previous work dealt with the matter of

assessing crowd parameters in detail, this paper is con-

centrating on presenting the entire approach as a whole

by providing insights into use cases, the overall system

architecture and lessons learned.

2 The crowdmanagement use case
Crowd phenomena are a well studied yet by far non-trivial

example of collective human behaviors [15, 16]. Under-

standing and controlling such phenomena has significant

practical relevance in civil protection applications such as,

for example, the management of large scale public events

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 3 of 19

Fig. 1 Crowd state parameters visualized in form of a heat map. It can be clearly seen how the crowd state evolves over the duration of an event

and emergency evacuation. Problems with crowd man-

agement can have disastrous consequences. Well known

examples of crowd disasters include the 1990 stampede in

Mecca (where 1426 people died inside a pedestrian tun-

nel) [17] or the 2010 German Love Parade disaster where

21 people were trampled to death (with more than 500

having been injured) when a mass panic broke out [18].

Two key requirements for successful crowd manage-

ment are situational awareness and the ability to exert

influence on the crowd.

2.1 Situational awareness

In planning and managing crowds at large scale events,

situational awareness goes far beyond the mere ability to

observe the area in question [14, 19]:

1. Individual observations must be put together into a

coherent picture that provides information about

relevant global parameters such as density

distribution, motion directions, turbulence etc.

2. Developments and trends need to be monitored and

analyzed as they evolve over time so that problems

cannot only be spotted when they occur, but be

foreseen in time to be prevented.

3. It should be possible to review the entire course of an

event retrospectively to identify problems and

irregularities and understand their causes. While,

fortunately, major accidents are rare, deviations from

the plan, unexpected behaviors and potentially

dangerous situations are common. Understanding

how and why they happened is critical for reducing

the probability of major incidents in the future.

Traditionally, situational awareness during public events

has been based on observations and reports from civil

protection forces deployed on site. Obviously, this lead to

patchy, non-real time information with limited reliability

as people sporadically report via radio what they see. As

a consequence, CCTV cameras have nowadays become

an indispensable tool, providing timely, reliable informa-

tion that can be recorded and replayed later on. However,

even with a large number of cameras, the information

tends to be patchy (one rarely has complete coverage of

the entire area) and most of all requires complex interpre-

tation in terms of the overall coherent picture and global

parameters. Thus, going from seeing dozens of parallel

video streams from isolated locations to having a reliable

global picture of the overall crowd density and motion is

not trivial. Deriving trends, making predictions, or find-

ing causes for problems in such streams is even more

difficult. As a consequence, tools are needed that collect,

aggregate and interpret information from the entire event

area (and possibly beyond it) and automatically generate

an easily understandable representation of the relevant

global crowd state parameters and their evolution in time

and space (see Fig. 1). One possible approach is the auto-

matic evaluation of video streams to count people and

even track their movement. Another one – pursued in

our system – is to rely on (voluntarily provided) sensor

information from peoples’ smartphones.

2.2 Crowd control

The main tool of crowd management during large

scale public events is the physical layout of the space

defined and implemented in advance. It includes barri-

ers, entrances, exits, gangways etc. In general, the layout

is based on theoretical models and simulations [15]. Given

(1) an initial crowd state (e.g. size, initial distribution),

(2) a physical space layout, and (3) a certain general crowd

behavior (e.g. everyone heading towards the nearest exit,

or most people moving in one direction) such models

can predict the evolution of global parameters such as

the density distribution, evacuation time or average phys-

ical pressure within the crowd. During the event, crowd

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 4 of 19

management needs to react to changes in the crowd’s

state and behavior in order to make sure that key parame-

ters remain within acceptable bounds and no undesirable

phenomena (e.g., panic, stampede, blockages, jams, etc.)

occur. To this end two main types of actions can be taken:

(1) dynamic changes in space configuration (e.g. closing

entrances, opening new exits, creating new barriers) and

(2) issuing instructions to the crowd in order to influ-

ence its behavior. While, within certain limits given by

the venue, physical space reconfiguration can be prepared

beforehand (e.g. placing removable and movable barri-

ers, or posting security personnel to redirect people) and

executed effectively, issuing complex instructions to the

crowd and ensuring compliance is a difficult problem.

Today, it often involves “primitive” approaches such as

security forces shouting through megaphones and raising

improvised signposts. Obviously, the amount and com-

plexity of information that can be delivered this way is

limited. In particular it is difficult to deliver differentiated

instructions (e.g. send different parts of the crowd to dif-

ferent exits) and background information explaining the

necessity of certain measures (crucial to ensure compli-

ance). By contrast, a location and activity sensitive App

can deliver complex, personalized and situation adapted

instructions and convincing explanations in real time.

3 Participatory app based crowdmanagement
system

Our work is based on the observation that more and more

cities, tourist resorts, sports clubs, concerts and parades

have their own apps and people increasingly rely on such

apps to plan and manage their visit. Many such apps

already use sensors (in particular location) for context and

situation adapted information delivery. As a consequence

they are a potentially perfect vehicle for both collecting

data about a crowd and delivering personalized, situa-

tion specific information and instructions. A key research

question addressed in this paper is what is needed to

realize this potential. The answer is based on a series of

deployments during which our system has been incre-

mentally evolved and validated building on feedback from

various stakeholders (for details, see the box “Howwas the

System perceived?”) and usage by around 100,000 people

until now [20, 21].

3.1 Basic considerations

The core functionality of the proposed system is the esti-

mation of crowd density distribution from individual loca-

tion fixes provided by a subset of users (the ones who have

installed the app). From the point of view of practicality

the two main questions are:

1. How many users need to install the app to provide a

useful estimate?

2. How much communication load does the system

generate?

3.1.1 Required number of users

In simple terms density estimation means that, for any

given area within the relevant space, we can provide the

percentage of visitors who are located there. Our sys-

tem determines this percentage from the sample of users

who are running our app: if x percent of the users run-

ning our app are within a given area, we assume the

same to be true for all users. Thus, we essentially per-

form statistical sampling which is a common technique for

example in opinion surveys and for which the relationship

between sample size and the accuracy of the estimate is

well understood.

For a sufficiently large sample size n, the distribution of

a population proportion will be closely approximated by a

normal distribution and therefore the margin of error for

the estimation of a population proportion (MEp) can be

calculated with the Wald method using the formula

MEp =

√

p̂(1 − p̂)

n
· zα/2

where p̂ is the sample proportion and zα/2 is the 100

(1−α/2)th percentile of the standard normal distribution

(the confidence level). Since we are aiming for a confi-

dence level of 95% and we do not know the actual sample

proportion, we use zα/2 = 1.96 and set p̂ to the worst-case

percentage 50%. Hence, the formula becomes

MEp =

√

0.25

n
· 1.96

Thus, if theMEp computed from the above formula is for

example 1% then, with the probability of 0.95 (our chosen

confidence), the true number of people within a given area

will be within ±1% of the percentage estimated from the

data provided by the app users.

Looking at the deployment during the 2013 Zurich festi-

val as an example, a total of 28,000 people were uploading

location data into our system – with about 4,000 simul-

taneous uploaders at peak times (see Fig. 11 towards the

end of this paper for reference). Setting n = 4,000 leads

to MEp = 0.0155 – an error margin of roughly 1.5%. The

total number of visitors over the three day festival period

was roughly 2 million, which equals about 660,000 unique

visitors per day with a peak of approximately 300,000 peo-

ple being at the festival area at the same time. Hence, at

a confidence level of 95% our system has an error margin

of roughly 0.0155 × 300,000 = 4650 people during peak

times.

To understand the significance of this number we need

to look at the type of density effects that are relevant

for event planning and crowd management. According to

[22], large scale events are planning with an average crowd

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 5 of 19

density of 2 persons per square meter. In some countries

(e.g. Germany) this value is even part of the law. While 4

persons per square meter are considered as very crowded,

[22] furthermore states that in reality the crowd density

hardly ever surpasses 6 persons per square meter (which

is considered as critically crowded). In order to provide a

feeling for those density values, Fig. 2 shows two examples

of crowd densities recorded during public viewing events.

Summarizing the above, for crowd management pur-

poses we need to be able to reliably distinguish between a

number of different density states (e.g. less than 2, around

2, around 4, around 6 persons per square meter, etc.). How

does that relate to the margin of error described above?

The answer is: through spatial resolution. The margin of

error is given as absolute number of people. Integrating

the density over an area also gives us an absolute num-

ber of people. The larger the area the larger not only the

absolute number of people but also the absolute number

of people by which the relevant density states differ.

Coming back to the specific example from the Zurich

festival, we consider a zone with an area of 75 m by 75 m.

This leads to 11,250 people per zone in case of a density of

2 persons per square meter. The worst-case number of 6

persons per square meter leads to 33,750 people per zone.

With our margin of error we can estimate the number of

people within a given area to within ±4650 people. This

allows us to easily distinguish the relevant states, as the

distance between them is more than double the margin of

error.

In the following we want to give a better general feel-

ing for the parameters. Table 1 shows how different zone

sizes influence the number of people within each cell and

consequently the minimal sample size that’s needed in

order to detect critical states with the same quality as

it was achieved in the Zurich example. In summary, the

Fig. 2 Examples of different crowd densities during public viewing

events. Top: 3.8 persons perm2 , bottom: 5.0 persons perm2

Table 1 Influence of zone size on the number of people within a

zone and the minimal sample sizeminn which is needed to

detect critical states

Persons per m2 minn

2 4 6

25 m x 25 m 1250 2500 3750 320,000

50 m x 50 m 5000 10,000 15,000 20,000

75 m x 75 m 11,250 22,500 33,750 4000

100 m x 100 m 20,000 40,000 60,000 1260

125 m x 125 m 31,250 62,500 93,750 520

more people are in a cell, the more levels of density our

system can distinguish. Of course the trade-off is that this

higher resolution in crowd density comes with a loss of

spatial resolution. Figure 3 demonstrates the influence of

the sample size onMEp at a fixed confidence level of 95%.

3.1.2 Communication load

The second point we want to discuss with respect to basic

considerations is our approach’s data consumption. If the

system uses too much of the user’s data plan, it will not

be accepted on a wide basis. As it will be shown later on

in this paper, there are two main data streams which need

to be analyzed for this: (1) location data being uploaded

to our server and (2) content updates (i.e. event specific

information such as schedules, maps, etc.) and messages

which are sent from the event organizers to the app users.

With respect to content updates and messages, making

a general statement is impossible as that amount of data

very much depends on the specific event. Usually, apps

are delivered with all the contents already on board, hence

Fig. 3 Influence of sample size onMEp

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 6 of 19

the amount of additional data traffic required for con-

tent updates depends largely on how much information

needs to be added to the app after its publication to an

app store. The same is true for messaging: it is impossible

to generalize the messaging behavior of an event orga-

nizer. However, given that messages and content updates

are consisting of 90% textual information, the data volume

is definitely not exuberant. However, since the apps poll

the server backend for content updates and messages, it is

possible to quantify the amount of data that is being used

for those update requests.

Table 2 summarizes the amount of data traffic caused by

our system. Please note that those numbers include both

the amount of data consumed for sending the request as

well as for receiving the server reply. It can be seen that

even in cases where the system is active for 24 h, the result-

ing traffic is very low – especially considering the fact that

most smartphone users have flat rate contracts nowadays.

3.2 Evolution and deployment history

As described in the introduction, the system was orig-

inally developed as a participatory data collection test

platform. As such, it was first deployed during the Notte

Bianca festival in Malta. In a simple festival information

application it embedded the ability to collect (with user

informed consent) time stamped location data and trans-

mit it to a remote data server. In addition, CCTV cameras

were set up at key locations to collect crowd density

ground truth.

After the event, a simple visualization of the crowd den-

sity from the smartphone data was compared with the

video footage (see Fig. 4) and a survey was conducted

to asses how users perceived the system. Both were dis-

cussed with the civil protection forces in charge of the

festival. Two main conclusions have emerged from the

above:

• Despite a very low penetration of the software (only

less than one percent of the visitors had used it), at

least at a qualitative level, the estimate of the crowd

density was surprisingly accurate.

• The system was very well received by the civil

protection forces (Civil Protection Department of

Malta and the Ministry of Home Affairs). They

particularly emphasized the importance of the real

Table 2 Data traffic consumed by app-based crowd management

system

Upload Update

Traffic per call 1.0 KB 1.1 KB

Traffic per hour 60.0 KB 66.0 KB

Traffic per day 1.4 MB 1.6 MB

time crowd density information for identifying areas

where incidents might be most likely to occur.

From the above conclusions it was decided to move

from a mere data collection platform to a full blown

crowd and event management application. Therefore, a

presentation was given to decision makers responsible for

public safety in the City of London. Its goal was to find

the right event that would (1) be willing to support our

team during the creation of the application with feed-

back from an organizer’s point of view and (2) have the

ability to deploy and evaluate the application at a large

scale.

The LordMayor’s Show was identified as an ideal candi-

date. During a series of workshops with the event’s orga-

nizers, the following main requirements were elaborated

for the event management system:

1. It should not only consider emergency aspects but

instead cover the whole bandwidth of event

information. This also included the application’s

ability to adapt to last minute changes which are

quite common in event management.

2. It should facilitate a unidirectional communication

channel from the event organizers to the event

visitors to be able to control the crowd efficiently by

sending commands to the visitors’ smartphones.

Special emphasis was given to the need for location

based messages which allow for sending a message

only to those people located in a specific geographic

area.

Given that during the time of the workshops several new

opportunities for deployments arose (e.g. at the West End

Live Festival in London or within the Westminster 2012

Olympics app), it became quickly apparent that creating

a new standalone app for each deployment would not

be feasible. Consequently, the decision was made to add

another requirement for the event management system:

3. It should be based on a generic framework which

could be quickly adapted to the requirements of each

event without the need for any programming

whatsoever.

Since the smartphone app part of the system should be

usable by as many people as possible, it would have to run

on the majority of smartphones. In practice, this means

that the app needed to support the Android and the iOS

operating systems which currently make up for roughly

96% of the smartphonemarket. As themain scientific goal

of the application was gathering sensor data, the smart-

phone apps needed to be implemented natively since the

hybrid development approach has too many disadvan-

tages with respect to accessing platform specific hardware

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 7 of 19

Fig. 4 Crowd density visualized compared with video footage recorded at the Notte Bianca festival 2011 in Valetta, Malta

features. Consequently, a fourth and last requirement was

added to the list:

4. The framework should support the creation of native

smartphone apps for the iOS and Android operating

systems.

Based on the findings of the workshops and the list of

requirements mentioned above, the system presented in

this article was created. It mainly consists of two compo-

nents. Firstly, a web application focusing on the needs of

event organizers and emergency and civil protection staff

offers the means to (1) define the design and the func-

tionality of the smartphone app to be deployed and (2) to

analyze the collected data from the crowd and to interact

with the crowd via messages. For details about the web

application’s functionality, please refer to the sections 4.2

and 4.3.

The second main component of the system is the

generic app for the iOS and Android operating system

which is deployed at the events. Based on the outcome of

the workshops, a set of modules for the app was defined

(see section 4.1 for a complete list). At runtime, the

generic app receives information about its design, menu

structure and activated modules enabling it to present

itself to the user in exactly the way intended by the event

organizers. This ability of the app to reconfigure itself at

runtime allows event organizers to change contents of the

app at any time – even when the event is already taking

place can information or features be added remotely to

react to the current circumstances.

During the first deployments, the user base of the sys-

tem was quite small (a couple of thousand app users

per event). However, the deployment during the inau-

guration festivities in Amsterdam for King Willem of

the Netherlands in April 2013 was the big breakthrough:

thanks to an integration of the app into the event’s

publicity campaign a total of more than 70,000 people

downloaded the app (about 10% of the event specta-

tors). Regardless of these numbers we were unable to

actually perform any data recordings during the event

because the largest Dutch telecommunication provider

opposed to the system due to fears of network con-

gestion on the highest political level. While these fears

were cleared eventually, it was too late to perform a data

recording.

Therefore, the first big impact deployment of the system

was during the 2013 Zurich festival with a total of 28,000

active app users contributing data over a period of three

days [21]. The resulting data set is the largest of its kind

according to our knowledge.

Since the Zurich deployment, the system has been

routinely used in several European events and the inter-

est in the technology is rapidly growing. Furthermore, a

Windows Phone app has been added to the framework.

Table 3 gives an overview about the deployments that

have been carried out until the end of 2014. Please note

that a sizable part of the deployments were labelled as

“minor deployments” where the research team had no

control about app distribution and merely provided the

technology for interested partners. As a consequence of

this, no solid numbers with respect to number of visi-

tors and number of app downloads are available since this

information was not disclosed. Only the “major deploy-

ments” were under full control of the researchers. Also,

the number of visitors for each event (where available) are

estimates as all of them were non-ticketed events without

access control – hence, no overall ground truth data was

available.

4 Basic functionality
Summarizing the above, the system’s functionality can be

divided into three categories: (1) features for the event

visitors, (2) features directed at the event organizers and

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 8 of 19

Table 3 Overview of the system’s deployments between 2011 and 2014

Event name # Visitors # App downloads # Data contributors

Major Deployments

Notte Bianca, 2011 ≈ 100,000 ≈ 1000 ≈ 340

Lord Mayor’s Show, 2011 ≈ 500,000 ≈ 3000 ≈ 830

Lord Mayor’s Show, 2012 ≈ 500,000 ≈ 1000 ≈ 920

Zurich New Year’s Eve, 2012 n.a. ≈ 5000 ≈ 3000

Dutch Coronation, 2013 ≈ 750,000 ≈ 70,000 n.a.

Zurich Festival, 2013 ≈ 2,000,000 ≈ 56,000 ≈ 28,000

Minor Deployments

West End Live Festival, 2012 n.a. n.a. ≈ 950

Westminster Olympics App, 2012 n.a. n.a. ≈ 2300

Vier Daagse Feesten, 2013 n.a. n.a. ≈ 2100

Amsterdam Gay Pride, 2013 n.a. n.a. ≈ 1800

Tilburgse Kermis, 2013 n.a. n.a. ≈ 1500

Koningsdag, 2014 n.a. n.a. ≈ 4600

Vier Daagse Feesten, 2014 n.a. n.a. ≈ 2200

Leids Ontzet, 2014 n.a. n.a. ≈ 1700

(3) features for the emergency and civil protection

services.

4.1 Visitor features

Visitors of an event are exclusively using the app ele-

ment of the system. From their point of view, the

app provides the services they need in order to get

all the necessary information about the event. The

actual feature set of the app differs between events

and also depends on the event’s requirements (see

Fig. 5 for some examples). The following list contains

all features which can be included in apps using our

framework:

• The Map Module displays geographic contents

such as points of interest (POIs) and routes either

Fig. 5 Screenshots of selected app features from the Westminster

2012 Olympics app (from left to right: London travel planner, map,

event information)

on a platform specific map (i.e. Google Maps,

Apple Maps or Bing Maps) or on a custom map

provided by the event organizers. POIs can be

annotated with extra information such as images,

texts and links. Furthermore, the user can navigate

to POIs.

• The Event Calendar Module gives users an overview

about the details of events that stretch out over a

longer period of time. In case of the app for the

London 2012 Olympics for example, it contained all

competitions, concerts and other relevant events with

detailed information such as maps, images, texts and

links.

• The One Day Event Module provides a list based

overview about the proceedings of short events.

• The Contact Module allows users to contact the

event organizers and other important entities via

phone or email and also gives them the option to visit

their website.

• The Checklist Module can be used to inform visitors

about items they need to bring along. The City of

London Police for example uses this module in their

app to tell people about the items they should have in

their houses in case of emergencies.

• The Messaging Module acts as a generic inbox for

broadcast and location based messages sent by the

event organizers and the emergency forces. Messages

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 9 of 19

are being received via several channels (travel,

general, emergency, location specific) to allow for an

easy prioritization by the users.
• The RSS Reader allows app users to read

event-relevant news that are being published as RSS

feeds.

• In some cases, event organizers want to make Static

Contents available for the visitors via the app. One

example for this might be the map of a city’s subway

system.

• The City of London Police had a special module

made for their app: the Street Level Crime Viewer.

This module allows app users based in the UK to

view the crimes that took place in an area of one

kilometer around their current position allowing

them for example to check if an area is known for

frequent burglaries before moving there.

• Given the fact that most app users are very

enthusiastic about social media, a Twitter Module

was added to our framework to give users access to

news spread this way.

• One of the easiest ways to add existing contents to

our apps is by using the Web Content Module. The

app for the London 2012 Olympics for example,

incorporated the city’s public transport information

system using this module.

• A special case of the Web Content Module is the

Mobile Heat Map Module which displays the crowd

density heat map with a fixed view port.

• The Badge Collector is a great module to motivate

event visitors to use the app more frequently. It sets

certain goals for the users (e.g. spending a certain

amount of time in a certain region) and awards them

with badges if they reached that goal.

• The Friend Finder is another motivational module: it

allows to select some of the user’s Facebook friends

and share the user’s location with them. This enables

app users to coordinate their stay at the event better

with their friends.

• The app framework’s Privacy Modules have the

purpose of informing the app users about what

exactly the app is doing. They give a detailed

overview about the status of each sensor, show

information on when and where a recording is being

performed and also give the option to opt out of the

crowd sensing feature.

4.2 Event organizer features

Event organizers mostly interact with the web application

element of our system. Before an event, their main task is

to create apps and fill them with content. To learn more

about this process, please refer to the box “How toManage

a King’s Coronation?”.

During an event, our system gives event organizers the

option to change their app’s behavior and content with

the click of a button. This way, organizers can add for

example geographical contents to the app’s map section

to mark certain locations as closed or to highlight routes

people should take to move to different parts of the

venue.

Furthermore, event organizers need to be able to com-

municate with the visitors directly via messages. This task

is also accomplished through the web UI. Messages can

either be sent as broadcasts (please also see the box “How

to Manage a King’s Coronation” for details) in which case

they are received by all app users or as location based

messages, meaning that they are only received by people

who are located within the geographic area targeted by the

message.

4.3 Emergency and civil protection features

Like event organizers, emergency forces mostly use the

system’s Web UI component for their work during an

event. They too can change the behavior of the app –

however, the reason for doing so is much more serious.

Imagine an actual incident where important safety

advice needs to be sent out to event visitors as quickly

as possible. Using the Web UI, the emergency responders

can disable all app features that are not directly relevant

to the mitigation of the potentially hazardous situation,

thereby focusing the users’ attention on the important

information.

The messaging features – especially the location based

messages – can be used to steer different parts of the

crowds into different directions to decrease the crowd

density in critical locations. Adding geographic contents

such as escape routes and safety zones to the app’s map

module is another valuable feature for crowd managers

during an incident.

The most frequently used feature from an emergency

and civil protection officer’s point of view however, is the

crowd density heat map. It enables those officers to gain

an instant overview about the crowd behavior through

an easy to understand visualization. This feature allows

crowd managers to deploy their personnel on the ground

in an efficient and sensible fashion as they can react to the

crowd’s movements. Figure 6 shows an example of such a

heat map.

After an event is over, our system can play back the

recorded crowd data allowing for a “post-mortem” anal-

ysis of the event. During numerous deployments, this

feature proofed itself to be a unique tool to learn from

an event and to improve crowd management related mea-

sures for future events.

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 10 of 19

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 11 of 19

Fig. 6 Sample heat map

5 System architecture and implementation
In the following, we are describing the architecture of

the system’s three main components: the generic app

which can be easily customized to the events’ specific

requirements, the data processing back-end and the web

front-end which is used by event organizers to access the

system’s features. In contrast to existing crowd sourcing

solutions (see related work section for examples) which

are tailor made for one specific use case, our system archi-

tecture allows for a quick adaptation to the requirements

of the user. This allows for flexible deployments in all

sorts of events and smart city scenarios (where crowd

control and targeted messaging are also of high value)

without the need to re-engineer either the app component

or the back-end. The entire process of creating an app (for

details, please refer to the box “How to Manage a King’s

Coronation?”) only takes a couple of hours at most with

the biggest effort being the entering of event specific data

(schedules, geographic information, etc.) into the system

via the web front-end. Details about the system’s unique

flexibility are mentioned in the following sections.

5.1 Generic app

The generic app is the foundation of all event apps gen-

erated with our framework (see Fig. 7). It consists of four

major parts: (1) the central appmanager, (2) a sensorman-

ager dealing with all tasks related to sensing and uploading

data, (3) a statistics manager responsible for gathering

usage data and sending it to the system’s cloud based back-

end and (4) layout and update managers responsible for

dynamically reconfiguring both the apps’ look & feel and

their contents.

The biggest challenge was to make the generic app as

dynamically reconfigurable as possible in order to quickly

deploy event apps. At the same time the entire configu-

ration process must be executable by people without pro-

gramming skills. We reached that goal by encapsulating

all the information about the app’s layout, used modules

and contents for each module in JavaScript Object Nota-

tion (JSON). The JSON files are generated through the

web application element of the system (see section 5.3) in

a user friendly fashion.

The updating mechanism of the app is realized by its

update manager which controls a whole host of so-called

update channels. Each update channel corresponds to one

modality of the app – e.g. layout, map content, techni-

cal information, etc. The update channels poll the cloud

based backend in regular intervals to check if the infor-

mation the app has stored is still up to date. In case of an

update, the new JSON file is passed to the update manager

which stores it in the central data store object and noti-

fies all relevant objects of the new data. These objects are

then responsible for (1) retrieving the new data and (2) for

reconfiguring themselves accordingly.

The layout manager is responsible for setting the app

up according to its layout JSON file and is one of the first

objects to be created during the app’s startup procedure. It

parses the JSON to get the information about the basic app

structure – i.e. colors of UI elements, icons and names of

tabs, menus, menu items and background pictures. When

a user selects a menu item, the layout manager creates the

corresponding object in an “get instance by name style”.

Consequently, the different event apps are always com-

piled with all modules “on board” – only at runtime it is

decided which objects are actually needed and which ones

aren’t.

The app modules all inherit from a MainView object

which encapsulates common functionalities such as noti-

fying the statistics manager when a feature has been

invoked. Furthermore, all app modules implement an

interface defining the proper initialization routines. Dur-

ing its initialization, an app module reads the startup

information delivered with the layout JSON to present

itself correctly. For example in case of the web content

module, this startup information consists of nothing more

than a URL that should be displayed by the module.

The sensor manager is not only responsible for record-

ing data from different sensor modalities and for forward-

ing this data to the upload manager. It is also responsible

for deciding when and where the sensors must be acti-

vated and deactivated – in light of recent privacy dis-

cussions this is an especially important task. Based on

the recording schedule JSON, the sensor manager enables

the phone’s rough location sensing modalities (i.e. energy

aware location sensing through WiFi and GSM triangula-

tion). Once the user is near the recording zone, the sensor

manager switches to precise location sensing to get a clear

idea about whether or not the user is in that zone. If

the user is in the recording zone and has also consented

to sharing his phone’s sensor data, the sensor manager

enables the recording of data. This whole process is also

time triggered meaning that if the user is in a recording

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 12 of 19

Fig. 7 Architecture of the generic app

zone but there’s no recording scheduled at the current

time, the sensor manager won’t activate the data record-

ing. Furthermore, the entire checking process happens on

the device. In other words, this means that the devices are

responsible for checking their geographic location and the

current time and for comparing those parameters to the

recording schedule. Consequently, no data is leaving the

phone at any time until the user agrees to participating in

the recording.

During a recording the data is stored in an upload buffer

by the upload manager. This buffer is sent to the server

once every minute. At the moment, the recorded sensor

data is platform specific. On iOS and Windows Phone,

our system only records GPS data including the user’s

heading, speed and the GPS fix’s accuracy. On Android

however, the app also offers the option to record the num-

ber of Bluetooth devices in the phone’s vicinity. This data

offers some valuable insights into the crowd density in the

user’s direct proximity.

The statistics manager has the simple job of keeping

track of when and where each feature of the app has been

used. Each module sends a corresponding notification to

themanager. If a user stays on a screen formore than three

seconds, the manager considers the feature as having been

used and creates a record for it. This record contains the

name of the feature, the time of use and the location of the

usage. In case of navigation and POI information requests,

the record also contains the location of the navigation’s

target or the POI’s name and location. This information

can be used to gain greater insights into how the app was

used and allows for a more detailed post-event analysis.

Once every three minutes, the statistics manager sends

the collected data to the system’s backend. For the sake

of privacy, the user ID is not being sent along with the

data so it’s impossible to create a precise usage record of

individual people.

Finally, the central app manager is responsible for con-

trolling the app’s run loop. It registers with the smart-

phone platform’s push notification service, initializes the

main objects and controls the app’s transition between

background and foreground behavior.

5.2 Data processing backend

The system’s backend needs to be considered as two sep-

arate sub-systems: (1) the system for administrating the

smartphone apps (i.e. for creating the layout and content

JSON files) and (2) the system for collecting and analyzing

the recorded sensor data whose output is, for example, the

crowd density heat map.

The administration system consists of an application

server, an SQL database and a dispatching cluster. In all

deployments up to now, we used Amazon S3 as storage

system for binary files tominimize the load on the system’s

backend.

The application server runs the web application which

will be described in the next section. The outputs of

the web application are the app configurations which are

being stored in the SQL database.

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 13 of 19

Fig. 8 Overview of the backend architecture

The dispatching cluster is the component with the heav-

iest load in this sub-system as all deployed event apps con-

tact the cluster in order to check for updates. Versioning of

app configuration data has been implemented using revi-

sion numbers – the app’s update channels send a request

to the dispatching cluster containing the app’s dispatch

ID and the revision number of the update channel. The

dispatching cluster then compares the received revision

number with the content’s current revision number and

sends back the new data in case of an update. Otherwise, it

sends back an empty reply, thereby signaling to the client

that the data is still up to date.

In order to perform as strongly as possible, the dispatch

nodes try to keep the app contents in memory at all times.

Whenever there’s a change in the SQL database, the dis-

patch nodes get a notification letting them know that there

is new data to dispatch. The nodes then create new JSONs

for each affected update channel and keep that data in

memory. This way, each update request can be handled

by simply comparing two integers and potentially sending

back pre-computed data.

The entire app administration sub-system is being

hosted on Amazon’s AWS cloud services for reasons

of cost effectiveness and to make sure that there are

always enough computing resources available to be able

to cope with peaks in user load. Following the advise of

Amazon consultants we decided to employ a multitude

of smaller computing instances instead of a small num-

ber of large instances. When using small Amazon EC2

instances (roughly comparable to single core 1.5 GHz

CPU machines with 1.7 GB of RAM) each instance is

able to handle approximately 800 users. The dispatch

cluster scales automatically based on the average load

on all dispatch nodes. When the average load is greater

than 0.8, an instance is being added – when it is lower

than 0.4 an instance is shut down. Spinning up a new

instance typically takes around 3 min. In all deploy-

ments up to now, this infrastructure worked without any

problems that would have affected the experience of the

end user.

For the heat map sub-system used for receiving

and aggregating the recorded data we relied on the

CoenoSense system [19] developed at ETH Zurich’s

Wearable Computing Lab until mid 2013.

In June 2013 we began migrating apps to a custom

made solution. Both systems have a sharded MongoDB3

at their core which was designed for maximum perfor-

mance and scalability from the beginning making it more

suitable than alternatives such as CouchDB (which uses

REST over HTTP compared to MongoDB’s much quicker

binary protocol between the DB server and the client

application).

Compared to CoenoSense, the new solution relies on

Lighttpd4 as a web server which provides a higher perfor-

mance. Another addition was the introduction of a queue

layer. The data packets received by the web server are

being passed on to a pool of input workers realized in the

Python programming language. These workers write the

data in a Beanstalkd5 queue where it’s being buffered. The

data is then being processed by output workers which are

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 14 of 19

also written in Python. The output workers store the data

in the sharded MongoDB. Benchmarks with 10,000 sim-

ulated concurrent users have shown that this solution for

the backend reaches a request response time of around

0.04 s.

The application server in this sub-system hosting the

web front end is explained in more detail in the following

section.

5.3 Web front end

Both the administration and the heat map sub-systems

offer an easy-to-use web interface to allow for a maximum

compatibility with client devices. The interfaces have been

tested with the latest builds of Firefox, Chrome and Safari.

Therefore, they can be run on a multitude of device cat-

egories ranging from desktop PCs to tablets and even

smartphones.

The administration front end is realized as a lightweight

Rails application. More complex UI elements such as the

map drawing tools and the calendar administration inter-

faces have been implemented using JavaScript and HTML

5 components. Each module’s administration tool stores

the user inputs into the SQL database. Simple modules

trigger the creation of their corresponding JSON files

after each change performed by the user. More complex

modules (e.g. the App Builder or the Map Editor) have

a “Publish” button that needs to be pressed by the user

before the current content of the module is published as a

JSON file.

The heat map web interface is realized using the Django

framework which is written in Python and requires an

additional SQL database (which has been omitted in Fig. 8

for reasons of clarity as it is unimportant to the heat

map itself) to store its administrative data. The frame-

work approach simplifies tasks such as user manage-

ment, URL handling and session security greatly. Usually,

heat map parameters such as initial zoom level etc. are

being set automatically via a REST API accessed by the

administration sub-system upon creating or editing a

recording period. However, the heat map web interface

allows for manual corrections of these values if the need

should arise. As this part of the system is only accessed

by administrators, it has been designed much more

simplistic compared to the app administration system

(see Fig. 9).

The heat map GUI itself requests the latest informa-

tion about crowd conditions in regular intervals from the

application server where it is stored in aMongoDB.When

doing so, it sends a timestamp along with the request spec-

ifying which data it is interested in. The application server

then fetches all the available location data from theMongo

DB cluster and returns a data structure that contains one

location for each user that contributed data at that specific

time.

The data is delivered by the application server to the

GUI in a compact JSON format. Only when that data

arrives at the GUI is it rendered. Offloading the heat map

rendering task to the client (i.e. the GUI) saves consider-

able resources on the server side thereby making sure that

the heat map can be accessed by many clients simultane-

ously. If the server was delivering rendered heat maps or

tiles to the clients, it would need to be scaled much larger

and thereby become much more expensive.

As mentioned earlier, the heat map view provides a time

slider for inspecting past data. Technically, this has been

implemented using an AJAX approach (a background call

to the server) which allows for an almost instant displaying

of the required data without a page refresh.

To provide a standard level of security against unau-

thorized access, the heat map is protected with a token

only known to the administrative backend which seam-

lessly integrates the heat map view provided by the heat

map sub-system’s front end. However, it is worth noting

that this view can also be accessed individually if the situa-

tion calls for it (e.g. if a police officer on the ground wants

to access it on a tablet device). Therefore, the heat map

Fig. 9 Screenshots of the web front ends (left: app management, right: heat map configuration)

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 15 of 19

administration system can generate a URL which gives

access to a webpage containing only the heat map without

any other elements of the system.

6 Results and lessons learned
As mentioned above, our system has been deployed at a

series of events throughout Europe and was used by well

over 100,000 people. Since a more detailed description

and evaluation of the crowd density estimation as it was

performed in Chapter 3.1.1 goes beyond the scope of this

system overview and experience paper – and has already

been published in [13] – we want to focus on a broader

description of the results of the deployments and report

on the user feedback.

As Figs. 1 and 4 demonstrate, visualizing the crowd

density in form of a heat map generated by crowd

sourced real-time location data provides a good repre-

sentation of the situation on the ground. Furthermore,

the visualization gives a good insight into the tempo-

ral and spatial evolution of the crowd, thereby facili-

tating situational awareness, prediction and post event

analysis.

One of the most important lessons learned during the

numerous deployments was that it is absolutely vital to

have a solid PR strategy for the distribution of the event

apps. Chapter 3.1.1 clearly shows that the system performs

well with only a few percent of the visitors sending data to

our backend. Our system has shown to work reliably with

a user penetration of around 1 or 2% – a user penetra-

tion of 10% would even allow for a very detailed analysis.

However, depending on the size of the event, even a small

percentage of app users can be a sizable absolute number.

During our first deployments, visitors were only made

aware of the app via social medial channels and the event

website. The resulting number of downloads (see Table 3)

based on this PR approach was not very satisfying. Over

time we learned to better deal with this situation and

during the deployment at the coronation of the Dutch

King in 2013, roughly 10% of the event visitors had down-

loaded the app (about 70,000). The PR campaign respon-

sible for this success was employing numerous channels

ranging from online articles, social media campaigns and

print articles to actual TV coverage. As this might bemore

effort than some event organizers are willing to put into

PR for an app, the Zurich festival proved that there are

also simpler ways to achieve a solid number of downloads:

on top of a social media campaign and a prominent down-

load section on the event’s website, the app was simply

mentioned on all event posters and in event brochures.

In summary, it can be said that the event apps should be

made an integral part of the event planning process if the

system is to deliver reliable results.

The relevance of the data recorded with our system is

furthermore underlined by Fig. 10. It can be seen that the

estimated crowd size correlates with real life events using

the example of the 2013 Zurich festival. Furthermore, the

figure demonstrates one of the system’s weaknesses: net-

work outages. The fireworks are always one of the high-

lights of the Zurich festival. During the fireworks on July

5, so many people gathered on the bridge facing the Lake

Zurich, that parts of the cellphone network collapsed. This

can be clearly seen in Fig. 10. Possible solutions for deal-

ing with this problem are presented in the final section of

this paper.

Fig. 10 Plot of the crowd size at one particular location during the 2013 Zurich festival annotated with real life events

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 16 of 19

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 17 of 19

With respect to user acceptance of the system,

we performed debriefing sessions with civil protection

authorities and surveys with app users. While details

about both can be found in the box “How is the System

perceived?”, it seems particularly worth mentioning that

all participating authorities were keen on deploying the

system at a larger scale and also wanted to explore further

use cases for it. From an event management point of view,

it is very encouraging to know that 82% of all survey par-

ticipants would actively consult such an app in case of an

emergency, 94% would follow the app’s advice and only

less than 1% generally don’t trust advice given out on a

phone.

In the previous section we gave an overview of the sys-

tem’s architecture – in particular we described the generic

app’s main components. Amongst those components, the

Statistics Manager was mentioned. This object’s purpose

goes a lot further than just sending information about

how popular each feature of an app is. Instead, it collects

information about how the app is being used and which

requests have been made.

Specifically, it is being logged what feature is being used

where and when. Also, for requests concerning points

of interest (i.e. navigation requests or requests for more

information about the item), it is being logged when and

where the request was made, what was requested and

where the requested item is located at. Evaluating this

information on the system’s backend gives an insight into

what the crowd is currently interested in. This informa-

tion in turn, can be used as an even earlier predictor for

future crowd characteristics. For example, if a meaning-

ful part of the crowd is interested in a certain concert at

an event, the system could make an estimate about the

growth of the crowd in front of the concert stage.

Fig. 11 Correlation between the size of the crowd and the app usage

Figure 11 visualizes this approach using again the exam-

ple of the 2013 Zurich festival. The grey line represents

the evolution of the size of the crowd as measured by our

system – please note that for this particular event there

was no ground truth available as we had no access to video

footage and the event was also open to anybody, hence

there was no information about the number of tickets

available. The blue line represents the usage of the event

app. It can be clearly seen that changes in the app’s usage

curve antedate corresponding changes in the curve of the

crowd size.

We consider this representation of user interest an

important factor for predicting crowd behavior. Future

research will focus on further developing this approach.

7 Conclusion and future work
In this work we presented the evolution of a smartphone

based crowd management system from a simple research

prototype to a full blown event management solution

which is currently being commercialized. The system was

deployed at multiple large scale events throughout Europe

and was used by several civil protection authorities – all

of which highly valued the impact the system had on their

work.

The app element of the system was downloaded by well

over 100,000 people who collectively contributed over 100

million data points. The general public responded very

well to the concept of event apps collecting anonymous

data for the greater good.

We furthermore demonstrated the principal architec-

ture of all system components, thereby presenting a sys-

tem design for reconfigurable, scalable smartphone based

crowd sourcing systemswhich could also be used for other

purposes.

While our work’s outcomes show that the system is gen-

erally up to its task, there are a number of issues which

need to be addressed during future work:

One of the main problems we experienced is related

to network connectivity. Complete network failures were

never experienced during our deployments. However,

during a New Year’s Eve event, a 15 min blackout did

occur in an isolated area. During those times, the crowd

density heat map stayed empty in the affected area

for obvious reasons. Also, this area couldn’t be con-

tacted with messages during the outage. In case of an

emergency, such a network blackout could have drastic

consequences.

Therefore, one focus of future work should be on the

implementation of alternative means of communication

in case of network blackouts. The most obvious solution

seems to be the implementation of an AdHoc/Mesh-like

opportunistic networking approach to bridge those areas

without network connectivity.

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 18 of 19

Secondly, at one point our research work suffered from

the interference of a telecommunication provider who

claimed that the network wouldn’t support the traffic

caused by our app. While those arguments could be coun-

tered eventually, it still proved the point that we failed

to include telecommunication providers as an impor-

tant stakeholder in our concept. We’re therefore cur-

rently implementing means for providers to define critical

thresholds for their infrastructure which will not be

exceeded by our system.

Thirdly, future versions of our system will take feed-

back we received from civil protection authorities into

account. For example, GLA (Greater London Authority)

expressed the wish to have multiple agencies feed con-

tents into the same system so that it would allow for an

integrated workflow.

Finally, the system will be used to establish a living

lab at the Technical University of Kaiserslautern. There-

fore, a university app is currently being created which is

based on our framework. The goal is to establish a plat-

form that will enable research groups to run large scale

experiments using crowd sourced data from participating

students.

Endnotes
1http://www.nottebiancamalta.com
2http://www.lordmayorsshow.org
3http://www.mongodb.org
4http://www.lighttpd.net
5http://kr.github.io/beanstalkd/

Competing interests

The authors confirm that they have read SpringerOpen’s guidance on

competing interests and state that none of them have any competing

interests in the manuscript.

Authors’ contributions

TF designed the system under the supervision of PL and carried out most of

the deployments. UB organized and carried out the system’s deployment at

the 2013 Zurich festival and contributed to data analysis. TF and PL wrote the

manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank all student helpers – especially Torben

Schnuchel – who contributed to the creation of the system with countless

hours of programming work. The initial steps of this work were supported by

the Socionical project, funded under the European Commission’s FP7

program (grant: 231288). Further funding was received from the European

Commission’s FP7 program under grant agreement #600854 “Smart Society -

hybrid and diversity-aware collective adaptive systems: where people meet

machines to build smarter societies” and by the CoCoRec (Collaborative

Context Recognition in Dynamic, Multimodal Smart Environments) project

supported by the German Federal Ministry of Education and Research.

Author details
1German Research Center for Artificial Intelligence (DFKI), Kaiserslautern,

Germany. 2ETH Zurich, Zurich, Switzerland.

Received: 26 May 2015 Accepted: 5 November 2015

References

1. Rahmalan H, Nixon MS, Carter JN. On crowd density estimation for

surveillance: IET; 2006. http://digitallibrary.theiet.org/content/

conferences/10.1049/ic_20060360.

2. Davies AC, Yin JH, Velastin SA. Crowd monitoring using image

processing. Electron Commun Eng J. 1995;7(1):37–47.

3. Lo B, Velastin S. Automatic congestion detection system for underground

platforms. In: Intelligent Multimedia, Video and Speech Processing, 2001.

Proceedings of 2001 International Symposium on. IEEE; 2001. p. 158–61.

4. Chan AB, Liang Z-S, Vasconcelos N. Privacy preserving crowd

monitoring: Counting people without people models or tracking. In:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on. IEEE; 2008. p. 1–7.

5. Murakami Y, Minami K, Kawasoe T, Ishida T. Multi-agent simulation for

crisis management. In: Knowledge Media Networking, 2002. Proceedings.

IEEE Workshop on. IEEE; 2002. p. 135–9.

6. Shendarkar A, Vasudevan K, Lee S, Son Y-J. Crowd simulation for

emergency response using bdi agent based on virtual reality. In:

Proceedings of the 38th conference on Winter simulation, Winter

Simulation Conference. IEEE; 2006. p. 545–53.

7. Kluepfel HL. A cellular automaton model for crowd movement and

egress simulation. Fakultät für Physik: PhD thesis, Universität

Duisburg-Essen; 2003.

8. Asimakopoulou E, Bessis N. Buildings and crowds: Forming smart cities

for more effective disaster management. In: Innovative Mobile and

Internet Services in Ubiquitous Computing (IMIS), 2011, Fifth International

Conference on. IEEE; 2011. p. 229–34.

9. Roitman H, Mamou J, Mehta S, Satt A, Subramaniam L. Harnessing the

crowds for smart city sensing. In: Proceedings of the 1st international

workshop on Multimodal crowd sensing. ACM; 2012. p. 17–8.

10. Szabo R, Farkas K, Ispany M, Benczúr A, Batfai N, Jeszenszky P, et al.

Framework for smart city applications based on participatory sensing. In:

Cognitive Infocommunications (CogInfoCom), 2013,IEEE 4th International

Conference on. IEEE; 2013. p. 295–300.

11. Ghose A, Biswas P, Bhaumik C, Sharma M, Pal A, Jha A. Road condition

monitoring and alert application: Using in-vehicle smartphone as

internet-connected sensor. In: ervasive Computing and Communications

Workshops (PERCOMWorkshops), 2012, IEEE International Conference on.

IEEE; 2012. p. 489–91.

12. Pan B, Zheng Y, Wilkie D, Shahabi C. Proceedings of the 21st ACM

SIGSPATIAL International Conference on Advances in Geographic

Information Systems. ACM; 2013. p. 344–53.

13. Wirz M, Franke T, Roggen D, Mitleton-Kelly E, Lukowicz P, Troster G.

Inferring crowd conditions from pedestrians’ location traces for real-time

crowd monitoring during city-scale mass gatherings. In: Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2012,

IEEE 21st International Workshop on. IEEE; 2012. p. 367–72.

14. Wirz M, Franke T, Roggen D, MitletonKelly E, Lukowicz P, Tröster G.

Probing crowd density through smartphones in city-scale mass

gatherings. EPJ Data Sci. 2013;2(1):1–24.

15. Helbing D, Buzna L, Johansson A, Werner T. Self-organized pedestrian

crowd dynamics: Experiments, simulations, and design solutions.

Transport. Sci. 2005;39(1):1–24.

16. Helbing D, Farkas IJ, Molnar P, Vicsek T. Simulation of pedestrian crowds

in normal and evacuation situations. Pedestrian Evacuation Dyn. 2002;21:

21–58.

17. Ngai KM, Burkle FM, Hsu A, Hsu EB. Human stampedes: a systematic

review of historical and peer-reviewed sources. Disaster Med Publ Health

Preparedness. 2009;3(04):191–5.

18. Helbing D, Mukerji P. Crowd disasters as systemic failures: analysis of the

love parade disaster. EPJ Data Sci. 2012;1(1):1–40.

19. Wirz M, Franke T, Mitleton-Kelly E, Roggen D, Lukowicz P, Tröster G.

Coenosense: A framework for real-time detection and visualization of

collective behaviors in human crowds by tracking mobile devices. In:

Proceedings of the European Conference on Complex Systems 2012.

Springer; 2013. p. 353–61.

20. Franke T, Lukowicz P, Wirz M, Mitleton-Kelly E. Participatory sensing and

crowd management in public spaces. In: Proceeding of the 11th annual

international conference on Mobile systems, applications, and services.

ACM; 2013. p. 485–6.

http://www.nottebiancamalta.com
http://www.lordmayorsshow.org
http://www.mongodb.org
http://www.lighttpd.net
http://kr.github.io/beanstalkd/
http://digitallibrary.theiet.org/content/conferences/10.1049/ic_20060360
http://digitallibrary.theiet.org/content/conferences/10.1049/ic_20060360

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 19 of 19

21. Blanke U, Troster G, Franke T, Lukowicz P. Capturing crowd dynamics at

large scale events using participatory gps-localization. In: Intelligent

Sensors, Sensor Networks and Information Processing (ISSNIP), 2014, IEEE

Ninth International Conference on. IEEE; 2014. p. 1–7. http://ieeexplore.

ieee.org/xpl/login.jsp?tp=&arnumber=6827652&url=http%3A%2F

%2Fieeexplore.ieee.org%2Fiel7%2F6820824%2F6827478%2F06827652.

pdf%3Farnumber%3D6827652.

22. Oberhagemann D. Statische und dynamische Personendichten bei

Grossveranstaltungen. Technical Report of the Association for the

Improvement of German Fire Protection TB 13-01. 2012. http://www.vfdb.

de/download/TB_13_01_Grossveranstaltungen.pdf.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6827652&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6820824%2F6827478%2F06827652.pdf%3Farnumber%3D6827652
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6827652&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6820824%2F6827478%2F06827652.pdf%3Farnumber%3D6827652
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6827652&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6820824%2F6827478%2F06827652.pdf%3Farnumber%3D6827652
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6827652&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6820824%2F6827478%2F06827652.pdf%3Farnumber%3D6827652
http://www.vfdb.de/download/TB_13_01_Grossveranstaltungen.pdf
http://www.vfdb.de/download/TB_13_01_Grossveranstaltungen.pdf

	Abstract
	Keywords

	1 Introduction
	1.1 Contributions
	1.2 Related work

	2 The crowd management use case
	2.1 Situational awareness
	2.2 Crowd control

	3 Participatory app based crowd management system
	3.1 Basic considerations
	3.1.1 Required number of users
	3.1.2 Communication load

	3.2 Evolution and deployment history

	4 Basic functionality
	4.1 Visitor features
	4.2 Event organizer features
	4.3 Emergency and civil protection features

	5 System architecture and implementation
	5.1 Generic app
	5.2 Data processing backend
	5.3 Web front end

	6 Results and lessons learned
	7 Conclusion and future work
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

