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Users and Internet service providers (ISPs) are constantly affected by denial-of-service (DoS) attacks. �is cyber threat continues
to grow even with the development of new protection technologies. Developing mechanisms to detect this threat is a current
challenge in network security. �is article presents a machine learning- (ML-) based DoS detection system. �e proposed
approach makes inferences based on signatures previously extracted from samples of network traffic. �e experiments were
performed using four modern benchmark datasets.�e results show an online detection rate (DR) of attacks above 96%, with high
precision (PREC) and low false alarm rate (FAR) using a sampling rate (SR) of 20% of network traffic.

1. Introduction

In recent years, distributed denial-of-service (DDoS) attacks
have caused significant financial losses to industry and
governments worldwide, as shown in information security
reports [1]. �ese records are in line with the growing
number of devices connected to the Internet, especially
driven by the popularization of ubiquitous computing,
materialized through the Internet of �ings (IoT) [2] par-
adigm and characterized by the concept of connecting
anything, anywhere, anytime. In most Internet scenarios,
devices interact with applications that run remotely on the
network, which enables malicious agents to take control of
devices. In this way, it is possible to have the interruption of
services or the use of devices as a launching point of attacks
for diverse domains, as is the case of the DDoS attack [3],
which has been consolidated for several reasons, such as (i)
simplicity and facility of execution, not requiring vast
technological knowledge on the attacker side, and (ii) variety
of platforms and applications for facilitated attack orches-
tration. Many of these attacks succeeded in disrupting

essential Internet services such as DNS, affecting millions of
users around the world [4], and commercial platforms such
as the GitHub [5], prompting severe financial losses to the
organizations that depend on those services.

One of the most dangerous malicious traffic on the
Internet is the DDoS volumetric attack, which is responsible
for more than 65% of all such attacks [6]. In a volumetric
DDoS attack, several attackers coordinate the sending of a
high rate of useless data in an attempt to overload the
victim’s computing resources or the near network links. On
the one hand, the high success rates for this type of attack
occur because the main Internet routers typically use the
FIFO (First-In-First-Out) and DROP-TAIL queuing disci-
plines, which do not differentiate between types of traffic,
imposing equal loss rates for attacks and legitimate traffic.
Although legitimate traffic tends to retreat to prevent further
congestion, attack traffic does not have this commitment and
causes the links to be exceeded. As a consequence, legitimate
traffic is also obstructed [6]. On the other hand, the attackers
are using more advanced techniques to potentiate attacks
and flood the victim such as DDoS-for-hire, IoT-based
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DDoS attacks, and reflection DDoS attacks [7–9], profiting
from the computational capability and geographical dis-
tribution promoted by the wide variety of devices and its
diverse mobility patterns, typically founded in IoT and
mobile IoT scenarios.

In addition to the volumetric DDoS attack, low-volume
attacks are on the radar of security experts. It is a more
sneaky attack that uses few invading hosts; events are fast,
sometimes lasting only a few minutes and usually less than
an hour. For these reasons, security teams do not know that
their sites are under attack because common tools do not
detect this type of threat [10]. Typically, low-volume DDoS
exploits application layer protocols, respects other protocols,
does not overload links, but causes exhaustion of victim
resources.

1.1. Problem Statements. DDoS detection and mitigation
have been under study in both the scientific community and
industry for several years. (e related literature reveals that
several studies have undertaken to propose solutions to deal
with this problem in a general way [6, 11–15]. Another
group of works dedicated themselves to presenting specific
solutions for high-volume and low-volume DDoS attacks
[8, 13, 16]. Furthermore, despite the diverse recommen-
dations for mitigating DDoS attacks proposed by the
Computer Emergency Response Team (CERT) and guide-
lines documented through Request for Comments (RFC),
these attacks still occur with high frequency.

A study carried out years ago [17] revealed that the
ineffectiveness of detecting and mitigating DDoS attacks is
directly related to constant configuration errors and wasted
time due to the lack of tools that follow the dynamics of the
network without constant human interference. (is has led
researchers to use autonomous solutions that can operate
(detect and mitigate) based on the behavior and charac-
teristics of the traffic. In this sense, the adoption of solutions
with techniques based on artificial intelligence, mainly
machine learning (ML), has been distinguished by offering
high flexibility in the classification process, consequently
improving the detection of malicious traffic [18, 19].

(e industrial sector offers DDoS protection as a service
through large structures, usually operated by specialized
providers [6] such as Akamai, Cloudflare, and Arbor Net-
works, which have large processing capacity and proprietary
filtering mechanisms. But the industry also has problems,
such as fragility in routing traffic, usually via Domain Name
System (DNS) or Border Gateway Protocol (BGP), difficulty
detecting slow attacks, and privacy issues, which drive away
some customer segments as governments.

Finding the balance between academic propositions and
the industrial practice of combating DDoS is a big challenge.
(e academy invests in techniques such as machine learning
(ML) and proposes to apply them in areas such as DDoS
detection in Internet of (ings (IoT) [20, 21] sensors,
wireless sensors [22], cloud computing [23] and software-
defined networking (SDN) [18] and work on producing
more realistic datasets [24, 25] and more effective means of
result validation [26, 27]. On the other hand, industry

segments gradually invested in new paradigms in their
solutions such as network function virtualization (NFV) and
SDN [28, 29] to apply scientific discoveries and modernize
network structures. Even so, the incidents of DDoS still
happen daily, reinforcing that the problem is not solved.

1.2. Proposal. Realizing these issues, this article proposes
Smart Detection, a novel defense mechanism against DDoS
attacks. (e system architecture was designed to detect both
high- and low-volume DDoS attacks. (e proposed system
acts as a sensor that can be installed anywhere on the
network and classifies online traffic using an MLA-based
strategy that makes inferences utilizing random traffic
samples collected on network devices via stream protocol.
(e proposed approach is compatible with the Internet
infrastructure and does not require software or hardware
upgrades. Besides, user data privacy is guaranteed at all
stages of system operation.

1.3. Contributions. In summary, the significant contribu-
tions of Smart Detection are as follows:

(i) (e modeling, development, and validation of the
detection system are done using a customized dataset
and other three well-known ones called CIC-DoS,
CICIDS2017, and CSE-CIC-IDS2018, where the
system receives online random samples of network
traffic and classifies them as DoS attacks or normal.

(ii) (e proposed detection system differs from other
approaches by early identification of a variety of
volumetric attacks, such as TCP flood, UDP flood,
and HTTP flood, as well as stealth attacks such as
HTTP slow headers, HTTP slow body, and HTTP
slow read, even with a low traffic sampling rate. In
addition, Smart Detection is compatible with the
current Internet infrastructure and does not require
any software or hardware upgrades on ISPs. At the
same time, the proposed system uses advanced
technologies such as ML and NFV.

(iii) Unlike existing security service providers, the
proposed system does not require traffic redirection
or connection intermediation. Data privacy is
guaranteed at all stages. First, the system randomly
processes only a small part of the network traffic.
Second, it does not do packet deep inspection.
Instead, Smart Detection parses only network layer
header data.

(iv) (e pattern recognition of normal network traffic
and several DoS attack types are addressed. As a
result, a novel signature database is created, which is
used by Smart Detection and can be applied to other
systems.

(v) An approach to automatic feature selection has been
developed using the cross-validation technique for
model searches that meet specific classification
quality criteria.(is approach was used to define the
signatures adopted by Smart Detection.
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2. Related Works and Background

(e research on intrusion detection in computer networks is
widely discussed in the literature. Several detection tech-
niques and protection strategies have been proposed in
recent years. Studies in the literature classify the IDSs as
signature-based, anomaly-based, and hybrid systems. (e
first type identifies potential attacks by comparing current
observed events with its stored signatures. (e second one
detects anomalies by identifying significant deviations be-
tween the preestablished normal profile and the current
events. In all cases, an alert will be generated if any signature
is matched or if a deviation occurs above a set threshold.(e
main advantage of the signature-based approach is the low
false alarm rate. However, the challenge is to write signatures
that cover all possible attack variations. In contrast, the
anomaly-based approach has the ability to detect unknown
attacks, but it requires more computational resources and
often produces more false alarms. Hybrid solutions try to
exploit the benefits of both techniques [11, 30]. DoS attacks
are a specific type of network intrusion that has drawn the
attention of academia, as highlights recent surveys on
network applications, wireless networks, cloud computing,
and big data [8, 13, 14, 31].

Several classification strategies of DDoS attacks have
been proposed in the literature in the last decade. However,
DDoS flooding attacks have been further studied, being
classified into two categories based on the protocol level that
is targeted [3]:

(i) Network/transport-level DDoS flooding attacks: such
attacks are mostly launched using Transmission Con-
trol Protocol (TCP), User Datagram Protocol (UDP),
Internet Control Message Protocol (ICMP), and Do-
main Name System (DNS) protocol packets.

(ii) Application-level DDoS flooding attacks: such at-
tacks are focused on disrupting legitimate user
services by exhausting the server resources, e.g.,
sockets, central processing unit (CPU), memory,
disk/database bandwidth, and input/output (I/O)
bandwidth. Application-level DDoS attacks gener-
ally consume less bandwidth and are stealthier in
nature than volumetric attacks since they are very
similar to benign traffic.

(e biggest challenge in combating DDoS attacks lies in
the early detection and mitigation of attacks as close as
possible to their origin; however, the implementation of a
comprehensive solution that addresses these features has not
yet been achieved [3, 32].

Some recent work has inspired the development of the
Smart Detection system. (ese approaches are listed in
Table 1 for comparative purposes.

A Hypertext Transfer Protocol- (HTTP-) based tech-
nique [16] was proposed to detect flood attacks in web
servers using data sampling. (e authors used the CUM-
SUM algorithm to determine whether the analyzed traffic is
normal or a DoS attack by focusing on two features: the
number of application layer requests and the number of

packets with payload size equal to zero. (e results showed a
detection rate between 80 and 88% using a sampling rate of
20%. Although it has made important advances, the pro-
posed method does not seem applicable in automatic mit-
igation systems, especially in production environments that
do not support high sampling rates.

D-FACE is a collaborative defense system [34] that uses a
generalized entropy (GE) and generalized information
distance (GID) metrics in detecting different types of DDoS
attacks and flash events (FEs). In this context, an FE is
similar to a volumetric DDoS wherein thousands of legiti-
mate users try to access a particular computing resource
such as a website simultaneously. (e results show that
D-FACE can detect DDoS attacks and FEs. Although the
work presents relevant contributions, the validation used
obsolete datasets. In addition, the proposed collaboration
approach requires a high degree of ISP engagement, so it
restricts the industrial use of the solution.

Antidose system [33] presents a means of interaction
between a vulnerable peripheral service and an indirectly
related Autonomous System (AS), which allows the AS to
confidently deploy local filtering rules under the control of
the remote service. (e system was evaluated using Mininet,
but no benchmark dataset was used. (e approach proposed
by the authors faces strong resistance from ISPs for two
reasons: the first is software and hardware update re-
quirement and the second is having no control over local
traffic control policies.

(e SkyShield system [35] has been proposed to detect and
mitigate DDoS attacks on the application layer. In the de-
tection phase, SkyShield exploits the divergence between two
hash tables (Sketches) to detect anomalies caused by attacker
hosts. (e mitigation phase uses filtering, whitelisting,
blacklisting, and CAPTCHA as protection mechanisms. (e
systemwas evaluated using customized datasets. SkyShield has
focused on the application layer, more specifically on the
HTTP protocol, so the proposed system is vulnerable to
flooding at the network layer and transport layer.

Umbrella [36] develops a multilayered defense archi-
tecture to defend against a wide spectrum of DDoS attacks.
(e authors proposed an approach based on detection and
protection exclusively on the victim’s side. (e system was

Table 1: Recent related works.

References Dataset Online
L/H
DoS

Sampling

[16] CIC-DoS 7 ✓ ✓
[33] None ✓ 7 7

[34]
MIT Lincoln, FIFA98,
DDoSTB, CAIDA

✓ ✓ 7

[35]
Customized (developed

by the authors)
✓ ✓ 7

[36]
Customized (developed

by the authors)
✓ ✓ 7

[37] CICIDS2017 7 ✓ 7

(e
proposed
approach

CIC-DoS, CICIDS2017,
CSE-CIC-IDS2018,

Customized
✓ ✓ ✓
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evaluated using the customized testbed in terms of traffic
control. (e authors claim that the system is capable of
dealing with mass attacks. However, this approach is widely
used in industry and proved to be inefficient against truly
massive DDoS attacks.

Recently, a semi-supervised machine learning system
addressed the classification of DDoS attacks. In this ap-
proach, CICIDS2017 dataset was used to evaluate system
performance metrics [37]. Although the work addresses the
recent DoS vectors, the online performance of the method
has not been evaluated. Finally, Table 1 summarizes these
recent works whose approach is related to the proposal of
this article.

In Table 1, Online indicates that the proposed system has
been tested in online experiments and dataset informs the
dataset used for validation, while L/H DoS indicates whether
it detects slow and high DDoS attacks. Sampling indicates
whether some network traffic sampling method is used.

Based on the open questions in the literature and recent
specialized reports, DoS attacks may remain on the Internet
for some time. (e solution to this problem includes the
adoption of detection and mitigation strategies that are
practical and economically viable. Besides, these approaches
should leverage existing provider infrastructure and be
implemented in light of new scientific and technological
trends.

3. Smart Detection

Smart Detection is designed to combat DDoS attacks on the
Internet in a modern collaborative way. In this approach, the
system collects network traffic samples and classifies them.
Attack notification messages are shared using a cloud
platform for convenient use by traffic control protection
systems. (e whole process is illustrated in Figure 1.

(e core of the detection system consists of a Signature
Dataset (SDS) and a machine learning algorithm (MLA).
Figure 2 shows the crucial steps from model build to system
operation.

First, normal traffic and DDoS signatures were extracted,
labeled, and stored in a database. SDS was then created using
feature selection techniques. Finally, the most accurate MLA
was selected, trained, and loaded into the traffic classification
system.

(e architecture of the detection system was designed to
work with samples of network traffic provided by industrial
standard traffic sampling protocols, collected from network
devices. (e unlabeled samples are received and grouped in
flow tables in the receiver buffer. (us, when the table length
is greater than or equal to the reference value, they are
presented to the classifier responsible for labeling them, as
shown in Figure 3. If the flow table expires, it may be
processed one more time. (e occurrence of small flow
tables is higher at lower sampling rates or under some types
of DoS attacks, e.g., SYN flood attacks. Table 2 details the
parameters for fine tuning of the system.

(e complete algorithm of the detection system is
summarized in Figure 4. During each cycle of the detection
process, traffic samples are received and stored in a flow

table. For each new flow, a unique identifier (FlowID) is
calculated based on the 5-tuple (src_IP, dst_IP, src_port,
dst_port, and transport_protocol) in steps 1 and 2. If this is a
new flow, i.e., there is not any other flow table stored with the
same FlowID, the flow table is registered in a sharedmemory
buffer. Otherwise, if there is a flow table registered with the
same FlowID such as the previously calculated one, the data
of the new flow will be merged with the data in the existing
flow table in steps 3 and 4. After themerging operation, if the
table length is greater than or equal to the reference value
(Tl ≥Tmax), the flow table is classified, and if it is found to be
an attack, a notification is emitted. Otherwise, it is inserted
back into the shared memory buffer. Meanwhile, in step 7,
the cleanup task looks for expired flow tables in the shared
buffer, i.e., flow tables that exceed the expiration time of the
system (E>ET). For each expired flow table, the system
checks the table length. If the flow table length is less than or
equal to the minimum reference value (Tl ≤Tmin), this flow
table will be processed by step 8. A new FlowID is calculated
using the 3-tuple (src_IP, dst_IP, and transport_protocol),
as the flow table is routed back to steps 3 and 4.

3.1. Traffic Sampling. Smart Detection uses a network traffic
sampling technique because processing all the packets in the
network can be a computationally expensive task, even if
only the packet headers are parsed. In many cases, per-
forming a deep inspection and analyzing the data area of the
application layer is unfeasible for detection systems. Among
the protocols adopted by the industry for sampling network
traffic, the sFlow protocol is widely used in current devices.
(e technique used by sFlow is called n-out-of-N sampling.
In this technique, n samples are selected out of N packets.
One way to achieve a simple random sample is to randomly
generate n different numbers in the range of 1 to N and then
choose all packets with a packet position equal to one of the n
values. (is procedure is repeated for every N packets.
Besides, the sample size is fixed in this approach [38].

(e sFlow monitoring system consists of an agent
(embedded in a switch, a router, or an independent probe)
and a collector. (e architecture used in the monitoring
system is designed to provide continuous network moni-
toring of high-speed switched and routed devices. (e agent
uses the sampling technology to capture traffic statistics
from the monitored device and forward them to a collector
system [39].

3.2. Feature Extraction. In supervised classification strate-
gies, a set of examples is required for training the classifier
model. (is set is commonly defined as the signature da-
tabase. Each instance of the database has a set of charac-
teristics or variables associated with a label or a class. In this
work, the goal is to identify characteristics in network traffic
that are able to distinguish the normal network behavior
from DoS attacks. (e study is focused on the analysis of the
header variables of the network and transport layer packets
of the TCP/IP architecture because it allows saving com-
putational resources and simplifies the deployment in the
ISP networks.
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In IPv4-compliant networks, the network and transport
layer protocols are IP, TCP, and UDP, which are specified in
RFC 791 [40], RFC 793 [41], and RFC 768 [42], respectively.
Together, such protocols have a total of 25 header variables.
However, widely used network traffic sampling protocols
such as NetFlow [43] and sFlow [39] use only a portion of

these variables in the sampling process. Commonly, the
seven used variables are the source and destination IP ad-
dresses, source and destination ports, transport layer pro-
tocol, IP packet size, and TCP flags.

(e source and destination IP addresses are not very
useful for identifying the network traffic behavior in the
Internet environment, which reduces the number of vari-
ables available for analysis to five in the most common cases.
Based on the five variables mostly used by the flow moni-
toring protocols, 33 variables were derived, as described in
Table 3, which use statistical measures that express data
variability. In the calculation context of the database vari-
ables, the references to themean, median, variance (var), and

Network traffic
samples

Traffic control
system

Network devicesCloud pub/sub

3-protection

Network traffic
classifier

Notification

2-sharing1-detection

Figure 1: Operation scenario overview of the Smart Detection system.

Feature and MLA
selection

Train

Model

Model buildSystem operation

Network traffic
classifier

Network traffic
sample

Traffic
signatures

SDS

Notification
alert

Figure 2: Detection system overview.

Flow table

Unlabeled

traffic flow

samples

Labeled

flow

Normal

Attack
Receiver buffer Classifier

FlowID Var1 Var2 VarN

x

x

v1 v2 vN

... ... ...

Figure 3: Overview of traffic classification scheme.

Table 2: Detection system parameters.

Parameter Description

Tmin Minimum flow table length
Tmax Maximum flow table length
ET Flow table expiration time
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standard deviation (std) should be interpreted as sample
measures.

(e variable named protocol is a simple normalization of
the protocol field extracted from the transport layer packet
headers in the form:

ip proto �
Nproto

K
, (1)

where Nproto is the code of the protocol and K is an nor-
malization constant set to the value 1,000. For instance,
Nproto � 6 and Nproto � 17 in TCP and UDP protocols,
respectively.

With the main four variables mostly used in flow
monitoring, it is possible to calculate the following associ-
ated statistic measurements:

(i) Entropy: the entropy of the variable is calculated by

Entropy(X) � − 
i

p Xi( log2 p Xi( , (2)

where X is the variable of interest, e.g., the source
port.

(ii) Coefficient of variation: the coefficient of variation is
calculated by

cv(X) �
std(X)

mean(X)
, (3)

where std(X) is the estimated standard deviation
and mean(X) is the estimated average of the
variable.

(iii) Quantile coefficient: this parameter is defined
herein by

cvq(X) �
QX(1 − p) − QX(p)
QX(1 − p) + QX(p)

, (4)

where QX(p) is the sample p-quantile, p ∈ (0, 0.5),
expressed by [44]

QX(p) � X(k) + X(k+1) − X(k) ∗f, (5)

Start

(1) Receive samples

(2) Create
5-tuple flow table

(4) Merge New flow? (3) Store

Tl ≥ Tmax Bu�er

(5) Classify (7) Cleanup

E > ET

and
Tl ≥ Tmin

(8) Create
3-tuple flow table

Is it attack?

(6) Notify

Finish

No

Yes

No

Yes

Yes

No

Yes

No

Figure 4: Detection system algorithm.

Table 3: Extracted variables.

# Variable Detail

01 ip_proto Normalized protocol number
02 ip_len_mean Mean of IP length
03 ip_len_median Median of IP length
04 ip_len_var Variance of IP length
05 ip_len_std Stand. deviation of IP length
06 ip_len_entropy Entropy of IP length
07 ip_len_cv Coeff. of variation of IP length
08 ip_len_cvq Quantile coeff. of IP length
09 ip_len_rte Rate change of IP length
10 sport_mean Mean of src port
11 sport_median Median of src port
12 sport_var Variance of src port
13 sport_std Stand. deviation of src port
14 sport_entropy Entropy of src port
15 sport_cv Coeff. of variation of src port
16 sport_cvq Quantile coeff. of src port
17 sport_rte Rate change of src port
18 dport_mean Mean of dest. port
19 dport_median Median of dest. port
20 dport_var Variance of dest. port
21 dport_std Stand. deviation of dest. port
22 dport_entropy Entropy of dest. port
23 dport_cv Coeff. of variation of dest. port
24 dport_cvq Quantile coeff. of dest. port
25 dport_rte Rate change of dest. port
26 tcp_flags_mean Mean of TCP flags
27 tcp_flags_median Median of TCP flags
28 tcp_flags_var Variance of TCP flags
29 tcp_flags_std Stand. deviation of TCP flags
30 tcp_flags_entropy Entropy of TCP flags
31 tcp_flags_cv Coeff. of variation of TCP flags
32 tcp_flags_cvq Quantile coeff. of TCP flags
33 tcp_flags_rte Rate change of TCP flags
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with being X(1), . . . , X(n)  the order statistics of
independent observations, X1, . . . , Xn ,
k � ⌊p∗ n⌋, and f is the fractional part of the index
surrounded by X(k) and X(k+1).

(iv) Rate of change: this metric is given by

rte(X) �
UX
SX
, (6)

(v) where UX is the amount of unique values and SX is
the overall number of X values.

(e data traffic with normal activity behavior was
extracted from the ISCXIDS2012 dataset [45]. (e data
traffic with DoS behavior was obtained in a laboratory
controlled environment using tools such as hping3 [46],
hulk [47], Goldeneye [48], and slowhttptest [49].

Processes such as extracting, transforming, and labeling
the database instances are summarized in Figure 5. (e raw
network traffic was extracted from the capture files, as the
packets were then grouped into sessions. For each session,
one instance of the descriptor database containing all var-
iables listed in Table 3 was calculated. In this study, only the
sessions with five hundred packets or higher were consid-
ered to better represent each network traffic type.

(e final database contains examples of normal traffic
(23,088 instances), TCP flood attacks (14,988 instances),
UDP flood (6,894 instances), HTTP flood (347 instances),
and HTTP slow (183 instances).

3.3. Feature and MLA Selection. Feature selection is an
important step in the pattern recognition process and
consists of defining the smallest possible set of variables
capable of efficiently describing a set of classes [50]. Several
techniques for variable selection are available in the litera-
ture and implemented in software libraries as scikit-learn
[51]. In this work, the selection of variables was performed in
two stages. First, Recursive Feature Elimination with Cross-
Validation (RFECV) was used with some machine learning
algorithms widely used in the scientific literature, i.e.,
random Forest (RF), logistic regression (LR), AdaBoost,
stochastic gradient descent (SGD), decision tree (DTree),
and perceptron. RF obtained higher precision using 28
variables, while AdaBoost selected seven variables, but ob-
tained lower accuracy, as shown in Table 4. In the second
stage, a new feature selection test was performed with RF
using proposed Algorithm 1.

In the proposed feature selection approach using RF, the
number of variables was reduced from 28 to 20 with a small
increase in accuracy, as shown in Table 5. (e proposed
algorithm was executed using the following input param-
eters: 1,000 rounds, 99% of variable importance, 95% of
global accuracy, and 85% of per-class accuracy. Figure 6
shows that most models tested used 20 variables. However,
each model used specific sets of variables. In order to choose
the most relevant variables from the selected models, the RF
variable importance criterion was used, as described in line

25 of Algorithm 1. (e final result of feature selection is
shown in Figure 7.

(e results show that RF obtained higher accuracy than
the other algorithms. Although it uses more variables than
SGD and AdaBoost, a low false alarm rate is a prime re-
quirement in DDoS detection systems. In this case, RF
proved to be the best algorithm option for the Smart De-
tection system. Random forest is a supervised learning al-
gorithm that builds a large number of random decision trees
and merges them together to make predictions. Each tree is
trained with a random subset of the total set of labeled
samples. In the classification process, the most voted class
among all the trees in the model indicates the result of the
classifier [52]. In the proposed detection system algorithm
shown in Figure 4, RF is used to classify online network
traffic, a task that requires computational efficiency and high
hit rates.

4. Results

(enetwork traffic was classified by the detection system in a
controlled network environment using different sampling
rates. In the experiments, raw network traffic of the CIC-DoS
[16], CICIDS2017 [25], and CSE-CIC-IDS2018 [25] datasets
and the raw network traffic captured in the customized
testbed experiments were employed. (e Smart Detection
system has reached high accuracy and low false-positive rate.
Experiments were conducted using two Virtual Linux boxes,

Normal traffic
capture

Attack traffic capture

Extract packets and
group by session

Calculate variables
and label instances

Signature
database

Figure 5: Process of network traffic extraction, transformation, and
labeling.

Table 4: 10-fold RFECV results.

# MLA No. of features Accuracy

1 RF 28 0.996010
2 DTree 25 0.994182
3 LR 26 0.972327
4 SGD 16 0.969474
5 Perceptron 28 0.937256
6 AdaBoost 7 0.931131
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Input: database descriptors, variable importance threshold, accuracy threshold, and number of rounds
Output: selected variables

(1) begin
(2) Create empty optimized model set;
(3) for i⟵ 1 to Number of rounds do
(4) Define all the descriptor database variables as the current variables;
(5) while True do
(6) Split dataset in training and test partitions;
(7) Create and train the model using training data partition;
(8) Select the most important variables from the trained model;
(9) Calculate the cumulative importance of variables from the trained model;
(10) if max (cumulative importance of variables)<Variable importance threshold then
(11) Exit loop;
(12) end
(13) Train the model using only the most important variables;
(14) Test the trained model and calculate the accuracy;
(15) if Calculated accuracy<Accuracy threshold then
(16) Exit loop;
(17) end
(18) Add current model to optimized model set;
(19) Define the most important variables from the trained model as the current variables;
(20) end
(21) end
(22) Group the models by number of variables;
(23) Remove outliers from the grouped model set;
(24) Select the group of models with the highest frequency and their number of variables “N”;
(25) Rank the variables by the mean of the importance calculated in step 7;
(26) Return the “N” most important variables;
(27) end

ALGORITHM 1: Feature selection.
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Figure 6: Number of variables versus number of models.
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each one of them using 8 virtual CPUs (vCPUs) with 8GB
RAM.

4.1. Description of the Benchmark Datasets. Many different
datasets such as DARPA (Lincoln Laboratory 1998-99),
KDD′99 (University of California, Irvine 1998-99), and
LBNL (Lawrence Berkeley National Laboratory and ICSI
2004-2005) have been used by the researchers to evaluate the
performance of their proposed intrusion detection and
prevention approaches. However, many such datasets are
out of date and unreliable to use [25]. In this study, the
datasets CIC-DoS, CICIDS2017, and CSE-CIC-IDS2018 and
customized dataset were used since they include modern
threats and DoS techniques.

4.1.1. >e ISCXIDS2012 Dataset. (e Information Security
Center of Excellence (ISCX) IDS 2012 dataset (ISC-
XIDS2012) was built in at the University of New Brunswick
to provide a contemporary benchmark. (e dataset traced
real packets for seven days of network activity, including
HTTP, SMTP, SSH, IMAP, POP3, and FTP protocols
covering various scenarios of normal and malicious activ-
ities. ISCXIDS2012 consists of labeled network traces, in-
cluding full packet payloads in pcap format and is publicly
available (https://www.unb.ca/cic/datasets/ids.html) [45].
(is work focuses on the normal activities of the ISC-
XIDS2012 pcap file for extraction of signatures, more spe-
cifically data file of Friday, 11/6/2010.

4.1.2. >e CIC-DoS Dataset. (e CIC-DoS dataset focuses
on application layer DoS attacks mixed with the ISC-
XIDS2012 dataset attack-free traces. Four kinds of attacks
were produced with different tools, yielding 8 different DoS
attack strokes from the application layer [16]. (e resulting
set contains 24 hours of network traffic with a total size of

4.6GB and is publicly available (https://www.unb.ca/cic/
datasets/dos-dataset.html). A summary of the attack events
and tools used in the CIC-DoS is presented in Table 6.

In the execution of the low-volume attacks using tool
slowhttptest [49], the default value of 50 connections per
attack was adopted, thus making the attacks more sneaky
according to [16].

4.1.3. >e CICIDS2017 Dataset. CICIDS2017 dataset was
recently developed by ISCX and contains benign traffic and
the most up-to-date common attacks. (is new IDS dataset
includes seven common updated family of attacks that met
the real-world criteria and is publicly available (http://www.
unb.ca/cic/datasets/IDS2017.html) [25].

(is work focuses on the malicious DoS activities of the
Wednesday, July 5, 2017, capture file, which consist of five
DoS/DDoS attacks and a wide variety of normal network
traffic. (e resulting set contains 8h of network traffic with a
total size of 13G. (e attack tools used include slowloris,
Slowhttptest, Hulk, GoldenEye, and Heartbleed.

4.1.4. >e CSE-CIC-IDS2018 Dataset. (is dataset is a col-
laborative project between the Communications Security
Establishment (CSE) and the Canadian Institute for
Cybersecurity (CIC). (e final dataset includes seven dif-
ferent attack scenarios: brute force, Heartbleed, Botnet, DoS,
DDoS, web attacks, and infiltration of the network from
inside. (e attacking infrastructure includes 50 machines,
and the victim organization has 5 departments and includes
420machines and 30 servers. A research document outlining
the dataset analysis details and similar related principles has
been published by [25]. All data are publicly available
(https://www.unb.ca/cic/datasets/ids-2018.html).

(is work focuses on the malicious DoS/DDoS activities
of Friday, February 16, 2018, and Tuesday, February 20,
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2018, capture files. (e attack tools used include Slow-
HTTPTest, Slowhttptest, Hulk, LOIC, and HOIC.

4.1.5. >e Customized Dataset. (e customized dataset was
developed in a controlled network environment, as shown in
Figure 8. VLANs 10, 20, 30, and 40 are used as victim hosts.
VLAN 165 is dedicated to the users of an academic unit.
VLAN 60 is used as an attacking host, while monitoring
occurs in VLAN 1. All networks have regular access to the
Internet.

(e attack plan was configured so that one attack is
generated every 30 minutes, in a total of 48 attack events in
24 hours, starting at 00 h00m00 s and ending at
23 h59m00 s. All attacks were executed by attacker host
172.16.60.100, during which it did not transmit legitimate
traffic to the victims. (e attack tools were parameterized to
produce sneaky low-volume, medium-volume or light
mode, and massive high-volume attacks. Ten variations of
protocol-based and application-based attacks were adopted
using four attack tools, as shown in Table 7. (e duration of
protocol-based and high-volume application-based attacks
was 30 seconds, while low-volume application-based attacks
ranged from 30 to 240 seconds.

In the accomplishment of low-volume attacks using tool
slowhttptest [49], the number of connection parameters was
adopted as 1,500, instead of the default option corre-
sponding to 50 connections.

4.2. Online Experiments. Online experiments were per-
formed in a controlled laboratory environment according to
the following validation methodology:

(1) Raw data of the network traffic are obtained for
analysis in pcap file format.

(2) (e attack plan indicating the origin, destination,
attack type, and respective duration for the traffic
indicated in step 1 is drawn.

(3) (e environment for reprocessing and classifying the
traffic is configured.

(4) (e traffic is processed and classified.

(5) (e system performance is properly evaluated by
comparing the output from step 4 with the attack
plan described in step 2.

Following this validation methodology, the sources of
traffic capture were used: CIC-DoS, CICIDS2017, CSE-CIC-
IDS2018, and customized dataset, thus fulfilling steps 1 and 2.

(e environment for traffic reprocessing and classification as
described in step 3 was configured using two Virtual Linux
boxes running Open Virtual Switch (OVS) [28], TcpReplay
software [53], and the Smart Detection system, as shown in
Figure 9.

In the reprocessing, classification, and evaluation of the
traffic during steps 4 and 5, the raw data traffic was replayed
by TcpReplay software in a specific OVS port and sampled by
the sFlow agent for OVS. (e sampled traffic was sent to the
Smart Detection system and the classification result was
compared with the attack plan. Figure 9 summarizes the
procedures carried out by the proposed validation meth-
odology. (e raw network traffic file is reprocessed on VM-
01, and the sFlow agent collects traffic samples and sends
them to Smart Detection on VM-02.

4.2.1. System Setup. (e smart Detection system has three
main parameters that directly influence its performance.
(ese parameters shown in Table 1 allow the user to calibrate
the detection system according to the operating environ-
ment. In scenarios where the SR is too low and the Tmax is
too large, for example, traffic samples are discarded before
processing by the classifier. On the other hand, if Tmax is too
small, the FAR increases because the classifier has few data to
analyze. In the case of slow DDoS, low SR and largeTmax also
reduce the attack detection rate due to in-memory flow table
expiration time (ET � 2).

So, several experiments to calibrate the system were
performed using (i) SR of 1%, 5%, 10%, and 20%; (ii) Tmax

parameter of 25, 50, and 100; and (iii) ET of 2, 5, and 10
seconds in the testing environment. (e most balanced
result was obtained with SR � 10%, Tmax � 50, and ET � 2.

4.2.2. Evaluation Metrics. System performance was evalu-
ated using the Precision (PREC), Recall (REC), and
F-Measure (F1) metrics present in the literature [54, 55].
PREC measures the ability to avoid false positive, while REC
measures system sensitivity. F1 is a harmonic average be-
tween PREC and REC. In this context, (i) true positive (TP)
is the attack traffic predicted correctly, (ii) true negative
(TN) is normal traffic also predicted correctly, (iii) false
positive (FP) is the normal traffic predicted incorrectly, and
(iv) false negative (FN) is the attack traffic predicted in-
correctly. (ese metrics were computed by the following
expressions:

PREC �
TP

TP + FP
,

REC �
TP

TP + FN
,

F1 � 2 ×
PREC × REC

PREC + REC
.

(7)

Besides, the detection rate (DR) and false alarm rate
(FAR) metrics were used. (e DR is the ratio between the
number of attacks detected by the system and the actual
number of attacks performed. FAR is the ratio between FP

Table 5: 10-fold cross-validation results using the variables selected
by the proposed algorithm.

# MLA No. of features Accuracy

1 RF 20 0.999363
2 DTree 20 0.999011
3 Perceptron 20 0.996000
4 SGD 20 0.986989
5 LR 20 0.982704
6 AdaBoost 20 0.956512
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and the sum of FP and TN.(ese metrics were computed by
the following expressions:

DR �
AD

TA

, (8)

where AD is the number of detected attacks and TA is the
total number of performed attacks.

FAR �
FP

FP + TN
, (9)

where FP corresponds to the false-positive classifications
and TN is the true-positive classifications.

(e DR and FAR calculations assume that only mali-
cious traffic was sent from the attacker to the victim at the
time of the attack.

4.3. Results and Discussion. (e proposed approach has been
evaluated using the aforementioned datasets, system setup,
and metrics. Table 8 summarizes the system performance for
each dataset.

As can be observed, the best performance was obtained
in the CSE-CIC-IDS2018 dataset, with a DR of 100%, an
FAR of 0.000%, and a PREC of 100%. During the analysis,
there was a low occurrence of normal network traffic and
well-defined bursts of malicious traffic.(is type of behavior
facilitates detection by the system and justifies the high hit
rates achieved. However, a slightly lower performance was
obtained in the customized dataset and CIC-DoS dataset,
with a DR of 96.5% and 93.6%, an FAR of 0.2% and 0.04%,
and a PREC of 99.5% and 99.9%, respectively. In those
datasets, there is a higher volume of normal traffic and
various types of attacks, including stealth application layer
attacks. In this more realistic scenario, the proposed system
presented some detection failures, but still obtained a
competitive performance. On the other hand, the worst
result was obtained with the CICIDS2017 dataset with 80%
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Figure 8: Customized testbed topology.

Table 6: CIC-DoS dataset events and tools.

Attack and tool Events

ddossim (ddossim) 2
DoS improved GET (Goldeneye [48]) 3
DoS GET (hulk [47]) 4
Slow body (slowbody2) 4
Slow read (slowread) 2
Slow headers (slowheaders) 5
Rudy (rudy) 4
Slowloris (slowloris) 2
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Figure 9: Smart Detection online validation scheme.

Table 7: Customized dataset events and tools.

Attack and tool Events

TCP SYN flood (hping3 [46]) 4
TCP SYN flood-light mode (hping3 [46]) 4
TCP ACK flood (hping3 [46]) 4
UDP flood (hping3 [46]) 4
UDP flood-random dst port (hping3 [46]) 4
DoS improved GET (Goldeneye [48]) 5
DoS GET (hulk [47]) 4
Slow headers (slowhttptest [49]) 5
Slow body (slowhttptest [49]) 5
Range attack (slowhttptest [49]) 4
Slow read (slowhttptest [49]) 5
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DR, 2% FAR, and 99.2% PREC. (is dataset expresses a
more realistic network scenario, which includes normal
traffic mixed with high-volume and low-volume malicious
traffic with sneaky behavior, such as slow application layer
attacks. Even so, the proposed system detected 4 out of 5
attacks with PREC greater than 90% and FAR less than 1%,
showing that the method is feasible.

To discuss online detection and consumption of com-
puting resources during experimentation, the CICIDS2017
dataset was chosen because it is quite realistic, recent, and
summarizes the major vectors of DoS attacks. Even in the
most adverse scenario, the experiment was completed
normally, as shown in Figures 10 and 11. Overall network
traffic is demonstrated in Figure 10(a), while Figure 10(b)
highlights the sampled traffic sent to the detection system. As
can be seen, for network traffic of 81.3Mbps, the detection
system receives only 1.74Mbps, making this approach
scalable. Overall traffic rating is shown in Figure 11(a), while
Figure 11(b) exclusively highlights malicious traffic rating. It
can be said that the system was efficient in distinguishing the
normal traffic from the DoS attacks because of all the attacks

performed, only the Heartbleed attack was not detected,
highlighted in Figure 10(b) between 15 h and 16 h. (is kind
of attack is primarily intended to collect data by exploiting
OpenSSL software vulnerabilities as described in CVE-2014-
0160, although it can also assume the behavior of a DDoS
attack, as in any application. However, in this case, the
system raised a false negative. (e most obvious reasons for
this FN are (i) the execution of the Heartbleed attack without
DoS exploitation, or (ii) statistical coincidence in traffic
sampling. In the first case, the attack is performed using
legitimate and regular connections, while in the second case,
the collected samples coincide with legitimate traffic
signatures.

In terms of resource use, the system remained stable
during the experiment, as shown in Figure 11(c), with small
swings in CPU usage.

Finally, the Smart Detection system was tested using
online network traffic in four distinct scenarios. (e results
presented in Table 8 show that the system can distinguish
legitimate traffic from various types of DoS/DDoS attacks,
such as TCP flood, UDP flood, HTTP flood, and HTTP slow,
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Figure 10: Network traffic in online experiment using the CICIDS2017 dataset. (a) Overall network traffic. (b) Sampled network traffic.
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with significant rates of accuracy. (e experiments also
highlighted the importance of adjusting the Tmax and ET

parameters.(ese variables correlate with the network traffic
sampling rate (SR) and directly influence the detection rate
and system accuracy.

4.3.1. Additional Comparison. Compared with some recent
similar works available in the literature, the approach in-
troduced in this work is quite competitive in terms of the
evaluated performance metrics, as shown in Table 9.

(e comparison is not completely fair because the ex-
perimental scenarios and data were slightly different, but it is
sufficient to allow an evaluation of the obtained results. For
instance, in the offline experiments performed with the CIC-
DoS dataset in [16], DR was 76.92% using an SR of 20%,
while the proposed system obtained an online DR of 90% for
the attacks with a FAR of 1.8% using the same sampling
technique. In [37], a PREC of 82.1% was obtained using the
CICIDS2017 dataset in the offline and unsampled analysis.
In this work, the proposed method obtained a PREC of
99.9%, which can be considered competitive for an online
detection system based on samples of network traffic. Be-
sides that, in the CICIDS2017 dataset experiments, where the
legitimate traffic rate is similar to that of attack traffic,
according to Figures 10(b), 11(a), and 11(b), the system was
also able to distinguish malicious traffic from normal traffic,
such as studied in the lecture [34].

5. Conclusion

(is article has presented the Smart Detection system, an
online approach to DoS/DDoS attack detection. (e soft-
ware uses the Random Forest Tree algorithm to classify
network traffic based on samples taken by the sFlow protocol
directly from network devices. Several experiments were

performed to calibrate and evaluate system performance.
Results showed that the proposed method is feasible and
presents improved performance when compared with some
recent and relevant approaches available in the literature.

(e proposed system was evaluated based on three in-
trusion detection benchmark datasets, namely, CIC-DoS,
CICIDS2017, and CSE-CIC-IDS2018, and was able to
classify various types of DoS/DDoS attacks, such as TCP
flood, UDP flood, HTTP flood, and HTTP slow. Further-
more, the performance of the proposed method was com-
pared against recent and related approaches. Based on the
experimental results, the Smart Detection approach delivers
improved DR, FAR, and PREC. For example, in the CIC-
DoS and CSE-CIC-IDS2018 datasets, the proposed system
acquired DR and PREC higher than 93% with FAR less than
1%. Although the system has achieved significant results in
its scope, it needs some improvements, such as a better hit
rate among attack classes and an automatic parameter
calibration mechanism that maximizes the detection rate of
attacks.
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Figure 11: Traffic classification and CPU usage in online experiment using the CICIDS2017 dataset. (a) Overall traffic rating. (b) Malicious
traffic rating. (c) Detection system CPU utilization.

Table 8: Evaluation of system performance for all datasets.

Dataset DR FAR PREC F1

CIC-DoS 0.936 0.0004 0.999 0.999
CICIDS2017 0.800 0.002 0.992 0.992
CSE-CIC-IDS2018 1.000 0.000 1.000 1.000
Customized 0.965 0.002 0.995 0.995

Table 9: Comparison with research approaches of related works.

Work Dataset DR FAR PREC

[16] CIC-DoS 0.7690 N/A N/A
[37] CICIDS2017 N/A N/A 0.8210
(e proposed approach CIC-DoS 0.9360 0.0004 0.9990
(e proposed approach CICIDS2017 0.8000 0.0020 0.9920
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Future works include analysis of DDoS attacks based on
the vulnerabilities of services such as Heartbleed and web
brute force attack, enhancement in the multiple-class clas-
sification, self-configuration of the system, developing
methods for correlating triggered alarms, and formulating
protective measures.

Data Availability

We produced a customized dataset and a variable selection
algorithm and used four additional datasets to support the
findings of this study. (e customized dataset used to support
the findings of this study has been deposited in the IEEE Data
Port repository (https://doi.org/10.24433/CO.0280398.v2). (e
feature selection algorithm used to support the findings of this
study has been deposited in the Code Ocean repository (https://
doi.org/10.24433/CO.0280398.v2). (e benchmark datasets
used to support the findings of this study have been deposited in
the Canadian Institute for Cybersecurity repository publicly
available as follows: (1) the ISCXIDS2012 dataset (https://www.
unb.ca/cic/datasets/ids.html), (2) the CIC-DoS dataset (https://
www.unb.ca/cic/datasets/dos-dataset.html), (3) the CICIDS2017
dataset (http://www.unb.ca/cic/datasets/IDS2017.html), and (4)
the CSE-CIC-IDS2018 dataset (https://www.unb.ca/cic/datasets/
ids-2018.html).
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