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Abstract  The Economic Load Dispatch (ELD) problem is an optimization task with emphasis on how power 
generating companies (GENCOs) will be able to meet the power demands of the distribution companies (DISCOs) 
and electricity consumers, and at the same time minimize both under/over generation of electricity, and also 
minimize the operational costs of running the units in their various stations. This paper implemented a Smart 
Evolutionary Algorithm, which combines a standard Evolutionary Algorithm with a smart mutation operator that is 
applied to the Static ELD problem. It also investigated and analyzed three distinct variants of the smart mutation 
operator. The operator focused mutation on genes contributing mostly to cost of generation and penalty violations in 
the fitness function. Rather than using a generic off-the-shelf optimization package, the paper demonstrated a novel 
approach to solving certain kinds of real-world problems, contributing a method that have advanced the state of the 
art in solving a specific optimization problem in the area of economic load dispatch. 
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1. Introduction 
Evolutionary Algorithm (EA) is both a bio-inspired, as 

well as nature-inspired computational intelligent approach 
to solving real-life optimization problems [1]. It is a non-
deterministic population-based algorithm that is analogous 
to Darwin’s theory of natural evolution and selection, 
inspired by nature’s principle of survival of the fittest [2]. 
In the recent years, EA is an actively growing research 
area in the entire field of artificial/computational 
intelligence, especially in solving electrical power 
problems. Static Economic Load Dispatch (SELD) 
problem handles a single load optimization period 
(typically one hour), in which the variables (generator 
outputs) do not vary with time [3,4,5]. This work presents 
a novel Evolutionary Algorithm (EA) approach in 
realizing optimal solutions for SELD problems in the 
electricity generating station. The method combines a 
standard EA with a “smart mutation” operator. The key 
aspect of the method that improves performance is that the 
operator targets mutation on genes according to their 
respective contributions to the cost function and penalty 
violation. The work considers instances of the ELD 
problem, with practical generator constraints. Violation of 
either of these constraints introduces the concept of 
penalties, and these in turn provide the basis for the smart 
mutation operator. The “Smart” EA was compared with a 
previously implemented Basic EA (BEA) and with 
reported results for other recent EAs involving a generator 
with 6 units.  

In traditional EA design, mutation operator is the major 
source of genetic variation, needed to avoid genetic 
stagnation [4]. It is a background operator applied to the 
resulting children solutions after the crossover, and allows 
new genetic patterns to be introduced, whether desirable 
or undesirable. Mutation could be viewed as a transition 
from a current solution to its neighbourhood solution in 
local search algorithms, as it randomly changes the value 
of a part of the solution to another. It usually occurs with a 
low probability, typically between 0 and 1. The process 
could be very detrimental if the mutation rate is set too 
high, as it will force the population to adapt to a new 
environment, and will not necessarily produce optimal 
individuals due to the instability of the population [2].  

In its simplest form of operation, genes undergoing 
mutation are randomly selected, but they could also be 
‘targeted’. Different forms of mutation operators exist for 
the different encoding methods: Single-gene mutation, N-
random gene mutation, uniform mutation, boundary 
mutation and Gaussian mutation, bit-flip mutation, swap 
mutation, insertion mutation, inversion mutation, scramble 
mutation, displacement mutation, real-valued mutation, 
etc [6]. Single gene mutation chooses a gene at random, 
and changes it to a new value, with a probability, called 
the “mutation rate”. N-random gene mutation repeats the 
single-gene mutation N times. Uniform mutation replaces 
the value of the selected gene with a uniform random 
value chosen between user-defined upper and lower limits. 
Non-uniform mutation increases the probability that the 
amount of mutation will be close to zero with increased 
number of generation. Boundary mutation randomly 
selects a gene, and replaces it with either the lower or 
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upper limit. Gaussian mutation adds a unit Gaussian 
distributed random value to the selected gene.  

Recent researches are progressing towards the area of 
adaptive mutation, applied to the problem requirements 
and domain [7]. There are two levels of adaptations in 
mutation – top level and bottom level [8]. The top-level 
approach adapts the mutation and crossover ratio in a 
given EA run [9,10]. In COBRA (COst Based operator 
Rate Adaptation), developed in [10], the EA swaps a 
given k fixed mutation probabilities periodically between 
k operators, giving highest probability to the operator that 
has high fitness value. The bottom-level performs a 
deterministic self-adaptive mutation, probability uniformly or 
non-uniformly over each gene position [8,11]. The self-
adaptive mutation, developed in [11], was achieved by 
adding a probability vector for each individual. The operator 
first mutates the mutation probability with itself, and the 
resulting probability was used to mutate a targeted gene.  

The remaining parts of the paper are organized as 
follows: Section 2 formulates the SELD problem, while 
Section 3 describes the various processes involved in 
constraints handling for generating limit, power balance, 
ramp-rates limit and prohibited operating zones 
constraints. Section 4 describes the proposed approach in 
this paper – the smart evolutionary algorithm, including 
the smart mutation operators and their variants. Section 5 
describes the experimental set up, results and discussion 
of findings, while Section 6 concludes the paper with 
appropriate recommendations. 

2. Problem Formulation 
Traditionally, ELD problems are assumed to have 

quadratic, convex, but smooth cost functions. Consider a 
thermal generating plant with N units, and power outputs 
Pg1, Pg2 to PgN, connected through a transmission network, 
with PD as the total power demand. Each unit has its own 
cost function, Ci. The task here is to find the combination 
of the real power generation for all the units such that the 
total generation cost, CT is minimized: 
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[Where: ai, bi, ci are the cost coefficients of unit, i;] 
The real power generated by each generator must be 

between minimum and maximum defined capacities, 
represented by the following inequality constraints: 

 ,min ,max 1, 2,...,i i iPg Pg Pg i N≤ ≤ ∀ =    (2) 

The total power generated must be balanced, and equal 
to the sum of total power demand and power loss: 
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The power loss, PL is calculated using the Kron’s 
formula (also known as the B-matrix loss formula) [12], as: 
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[Where: Bij is the ijth element of the loss coefficient square 
matrix of the same dimension as Pgi; B0i is the ith element 
of the loss coefficient vector of the same length as Pgi; B00 
is the loss coefficient constant]. 

3. Constraints Handling 
A functional generator has four operational constraints: 

power balance, generating limit, ramp-rates limit and 
prohibited operating zone constraints. Power balance 
constraint is global (applying to all the generating units), 
while others are local to each unit. The smart mutation 
operator focuses mutation on units contributing mostly to 
cost and violates either of the local constraints. One of the 
ways to investigate the overall performance of an 
algorithm is by evaluating its constraints handling 
capabilities. The random initialisation of chromosomes 
(potential solutions to a problem) sets the genes (outputs 
of generating units) of each chromosome in the initial 
population to random double numbers representing the 
generators’ outputs, between their minimum and 
maximum generating limits. During fitness evaluation 
(computation of the cost function) of each chromosome, 
various checks are performed to ensure that the units’ 
outputs obey all operational constraints. Violation of any 
of the constraints constitutes a penalty, which augments 
the initial objective cost function to form the generalised 
fitness function:  
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This helps guide the search process towards repairing 
that solution. A description of how the four operational 
constraints are handled is presented here: 

i). Generating Limit: A random small positive number 
less than 1 (scaling factor), ensures that outputs of the 
generating units are within the allowable minimum and 
maximum limits: 

 min max min. ()*( )i i i iPg Pg Math random Pg Pg= + −  (6) 

ii) Power Balance: If the equality constraint of (3) is 
not satisfied, a penalty factor, q1, is used to normalize 
and maintain an overall power balance, ensuring that 
the terms in the bracket equal to zero: 
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iii) Ramp-rates Limit: The generating units’ ramp-rates 
limit restricts their operating range in a given 
generation period. A ramp-rate is the rate of change in 
output from a power plant. It is the amount of load 
added to the generating plant to keep it from being 
“overloaded”. Based on these rates, the subsequent 
outputs of the units should be within their ranges, with 
(2) modified as: 

 0 0
min maxmax( , ) min( , )i i i i i i iP P DR P P P UR− ≤ ≤ +  (8)  

The power output of a unit at the current time depends 
on the output at the previous time, ramp up value (UR) 
and ramp down value (DR) of the generator. The power 
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output of a unit due to the ramp-rates limit is defined as 
follows: 
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If the inequality constraint of (8) is not satisfied, a 
penalty factor, q2, is assigned to the affected units 
outside the feasible regions, using: 
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iv) Prohibited Operating Zones: Practical operations of 
the power plant involve adjusting the power output of 
the units such that they must be outside the prohibited 
zones. The prohibited operating zone penalty function 
counts the number of units that fall within such 
prohibited zones, according to the following rules: 

 ,
1,

0,
i
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PZ
otherwise

= 
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If the prohibited zones are not violated, the ELD is 
solved in a straightforward process, otherwise, a 
number ‘1’ is assigned to such occurrence, and the 
constraint is processed using: 
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[Where: q3 = penalty factor, k = number of prohibited 
zones in i, N = number of generating units].  

4. Smart Evolutionary Algorithm 
The approach of capturing gene-specific contributions 

to costs of generating electrical power, and using this 
information to help target the mutation operator, is what is 
referred to in this paper as “smart evolutionary algorithm” 
(SEA). The method basically combines a standard EA 
with a smart mutation operator. In the standard EA, single 
mutation per chromosome is used. Occurring at a low 
probability called mutation rate, it chooses a gene at 
random and changes it to a new value. It works as a 
background operator, introducing new genetic patterns in 
the population by randomly modifying some building 
blocks to maintain population diversity, thereby helping 
solutions to escape local optima. This mutation scheme 
has severally been used and shown in the literature to 
produce near-optimal results [13], including a real-life 
virology application [14]. The generic SEA pseudo-code 
for SELD is shown below: 
START  
DEFINE parameters and INPUT data   
INITIALIZE a random population of chromosomes   

FOR i = 1 to N (N = No of Generating Units) 

 _ min _ max _ min. *( )i i i iPg Pg Math Random Pg Pg= + −  

END FOR 

EVALUATE Objective function (For each chromosome in 
the population) 
FOR i = 1 to N 

 2( )i i i i i if Pg a Pg b Pg c= + +  

Check for constraints violations 
Violation of a constraint leads to penalty 
treatment, defined as: 
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IF no constraint is violated,  
Penalty = 0  
Fitness function = Objective function 

ELSE   
Fitness function = Objective function + 
Penalty  

END IF 
END FOR 
WHILE (stopping criteria is not reached)  
 From the entire population 

 SELECT parent pairs for breeding 
 CROSSOVER the genes of selected parents 
 Create an array to return children 
 Crossover parents to create children 
 Return the children in an array 

         Perform SMART MUTATION 
       EVALUATE   
       REPLACE parent population with children 
population  
       Perform ELITISM (Keep a percentage of best 
individuals) 
  FOR i = 1 to Population size 
Sort Chromosomes according to their fitness (highest   to 
lowest) 
 Calculate Number of Elites (based on elitism rate) 

 Copy Elites onto next Generation  
     END FOR 
END WHILE 
OUTPUT (The optimum/best compromising solution 
vector) 
 FOR i = 1 to N 

 1, 2, 3,[ ]NPg Pg Pg Pg Pg=    
 END FOR 
 Output Total Generation = Sum of all Generators’ 
Output  
 Output Total cost = Sum of Costs of generation 
STOP.  

4.1. The Smart Mutation 
The total number of units selected for mutation in 

addition to the highest cost producing one depends on the 
number of local constraints violated. Therefore a 
minimum of one and maximum of three genes are 
involved. Perhaps in some problem cases, either or all of 
the local constraints may not be present. In some other 
cases, the unit with the highest cost may also violate a 
constraint, while in some other cases, no constraint may 
be violated. But where violation exists, the numerical 
(penalty) value augments the problem’s objective function 
to form a generalised fitness function. 
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The magnitude of the constraints as well as the cost 
produced by each of the units contributes to the overall 
fitness. As the penalties values gradually reduce to 0, total 
cost equals total fitness, which is the optimal value. By 
targeting the unit with the highest cost, the mutation 
operator attempts to minimise the total cost of producing 
an optimal power. It was found out that reducing the 
values of those units reduces over generation of power, 
and consequently minimises power loss. Mutating the 
units that violate local constraints has a tendency of 
forcing them into the feasible regions. Besides, the small 
random deviation subtracted from the units ensures that 
the changes introduced are not too significant, thereby 
distorting the generating unit. The following is a pseudo 
code of the smart mutator. 
START 
INITIALIZE costs  
Calculate the costs produced by all the units  
SET cost of the first unit (i = 1) as the highest cost 
FOR i = 2 to N (where N = number of generating units)   

IF (cost[i] > highest cost) 
Highest cost = cost[i] 

  Highest position = i 
 END IF 

Pgi = value of unit at highest position 
Mutate this Pgi by subtracting a small random 
deviation from the unit: 
Pgi (new) = Pgi – (Math.random ()  * Pgi)  
(Where: Math.random () is a random number 
between 0 and 1, e.g. 0.2) 
Replace Pgi with Pgi (new) 

 Check for violation of local constraints 
 Ramp-rate limits violation: 
 IF Generation decreases 
  Pgi = (Pgi-1 – DR)  
  IF Generation increases 

   Pgi = (Pgi-1 + UR) 
(Where: Pgi = current value; 
Pgi-1 = previous value; UR = 
up-ramp rate limit) 

         ELSE 
  Pgi = Pgi-1  
 END IF 

        END IF 
IF (Pgi < Max (lower limit, (Pgi-1 – DR))) OR (Pgi > 
Min (upper limit, (Pgi-1 + DR))) 
(Where: lower limit and upper limit = legal lower and     
upper limits of the unit) 
  Pgi violates ramp-rates limit 
Mutate this Pgi by subtracting a small random   
deviation from the unit: 
 Pgi (new) = Pgi – (Math.random () * Pgi) 
 END IF 
 Replace Pgi with Pgi (new) 
 Prohibited operating zones violation 
FOR k = 1 to zi (where: zi = number of prohibited zones 
of   unit, i) 
 IF (Pgi > Pgl

i,k) AND (Pgi < Pgu
i,k)  

(Where: Pgl
i,k  and Pgu

i,k are the lower and upper   
bounds of the kth prohibited zone) 

Mutate this Pgi by subtracting a small random    
deviation from the unit 
     Pgi (new) = Pgi – (Math.random () * Pgi)  

Assign the number “1” for every Pgi that    violates      
prohibited operating zone  
    (i.e. counting every occurrence) 
  END IF 
 END FOR 
 Replace Pgi with Pgi (new) 
Ensure that all the units’ outputs are within feasible 
limits (Generating limit constraint): 
Pgi = Pgi_min + (scaling_factor * (Pgi_max – Pgi_min)) 

END FOR   
STOP 

4.2. SEA Variants 
Several variants of the smart mutator are possible. In 

this paper, an investigation is made of the following three 
smart evolutionary algorithms: SEA1, SEA2 and SEA3, 
resulting from three distinct variants of the smart mutator. 
SEA1 involves the use of tournament selection based on 
the penalty values (costs and numerical values of the 
constraints) to decide which gene to mutate. It works in 
direct analogy to the tournament method of selecting 
parents from an initial population to go into breeding in 
order to generate an offspring during an evolutionary 
process [4]. But while the EA selection method chooses 
chromosomes (the entire generating units) from the 
population uniformly at random, with replacement, and 
the fittest of those individuals is the one returned as 
selected, the SEA1 chooses genes from the chromosome, 
by targeting those with the highest operating cost and 
violate constraint(s). This is the basis of the new 
chromosome, a potential solution to the problem. The 
number of units selected (tournament size) as well as the 
size of the problem case has combined effect on selective 
pressure [4,5]. In SEA2, there is a mutation probability, 
called smart mutation probability, different from the 
normal mutation rate of an EA. The smart mutation 
probability biases the mutation operation, such that when 
the probability is met, smart mutation is done; otherwise, a 
single-gene, uniform random mutation is done. This gene-
specific mutation probability in SEA2 is also a random 
number between ‘0’ and ‘1’. In contrast with the mutation 
rate which usually occurs with a much lower probability, 
and aims to maintain diversity in the entire population of 
individuals; the smart mutation probability is a fixed, 
higher-level probability operator that targets a particular 
gene based on the criteria of merit; uniformly or non-
uniformly, deterministically and adaptive [8], [11]. SEA3 
is an extension of SEA2, but rather than having a fixed 
value of the smart mutation probability, it is computed (as 
the ratio of generation number over the maximum 
generation). Therefore, the mutation probability value 
starts at ‘0’, and gradually moves to ‘1.0’ in a linear 
fashion towards the maximum number of generations. 
This is a simple linear adaptation that works by linearly 
increasing the smart mutation probability from beginning 
to end of an optimization run. 

5. Experiments, Results and Discussion 
The work described in this paper is concerned with 

optimization of electrical power generator outputs. 
Optimization is a way of making things better; a method 
of adjusting the inputs to, or characteristics of a device, 
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mathematical process, or experiment to find the minimum 
or maximum output/result; an art of allocating resources to 
the best possible effect [15]. Optimization is analogous to 
the root-finding process in calculus, but while the latter 
searches for zeros of a function, the former finds zeros of 
the function derivatives. But a major difficulty with 
optimization, unlike root-finding is determining if a given 
minimum or maximum is a global optimum (the best 
possible solution available) or a local optimum. Three 
SEA variants were investigated and compared with an 
earlier developed BEA [4] on the basis of efficiency, 
validity and robustness of the algorithms in a problem 
case involving 6 generating units. In [3], the SELD 
problem was solved using Differential Evolution (DE), 
allocating power output to 6 thermal generators, taking 
into account the effects of transmission losses. Total load 
demand was set at 283.40MW; the detailed parameters 
and loss coefficients can be retrieved from [3][4]. Based 
on available data in this problem case, the main 
constraints which constitute the source of penalties are 
generating limits and power balance constraints. 
Augmenting the penalty function to the original objective 
cost function of (1) yields the following generalised 
fitness function: 

 2
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1 1
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T i i D L
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C C q Pg P P
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Where: q1 is a penalty factor which normalizes the power 
balance, assigning a high cost of penalty to affected ones 
far from the feasible region [3]. Detailed evolutionary 
tuning was carried out in an earlier work to select optimal 
values for the genetic parameters (crossover rate, 
population size, tournament size and mutation rate) in [5]. 
As in SEA1, SEA2 operates a single-gene mutation per 
solution of rate 0.01 in addition to the smart mutation 
probability of 0.6. Table 1 gives the tuned values of the 
experimental parameters, involving SEA1, SEA2 and 
SEA3, with results shown in Table 2. 

Table 1. Experimental Parameters and Values [5]  
Parameters Values 

Population size 100 

Tournament size 2 

Crossover rate 0.7 

Mutation rate 0.01 

Mutation probability (in SEA2) 0.6 

No of Generations 100 

Elitism Rate 10% 

No. or runs 30 

Table 2. Summary of Results, Averaged over 30 Runs in each of 
SEA1, SEA2 and SEA3 Approaches 

 SEA1 SEA2 SEA3 

Av Cost ($/h) 738.7 749.5 744.5 

Std Dev 13.7 13.3 10.6 

Min Cost ($/h) 709.6 711.9 710.1 

Max Cost ($/h) 759.2 767.0 759.0 

The results of SEA1, SEA2 and SEA3 were compared 
with a previously developed BEA [4]; and two reported 
similar EA approaches - Differential Evolution (DE) and 

Genetic Algorithm (GA) [3], tested on the same problem 
case. Table 3 summarizes the comparison results based on 
the resources allocation to the units from the best of 30 
independent runs of algorithms BEA, SEA1, SEA2 and 
SEA3 (the number of runs for DE and GA were not 
reported). This shows superior performance of SEA1, 
SEA2 and SEA3 in terms of both lower generation costs 
and lower power losses.  

Table 3. Resources Allocation in the Best of 30 Runs of SEA1, SEA2, 
SEA3, BEA, DE and GA  

Units SEA1 SEA2 SEA3 BEA[4] DE[3] GA[3] 

1 151.3 169.0 130.4 171.6 177.5 179.4 

2 24.7 30.5 41.1 49.3 48.6 44.2 

3 48.9 40.8 49.6 22.6 20.9 24.6 

4 23.5 11.9 27.6 21.2 21.6 19.9 

5 15.7 15.8 19.5 12.7 12.5 10.7 

6 19.9 15.7 16.2 14.2 12.0 14.1 

Power Gen(MW) 284.0 283.7 284.4 292.1 293.2 292.9 

Power Dem(MW) 283.4 283.4 283.4 283.4 283.4 283.4 

Loss(MW) 0.6 0.03 1.0 8.7 9.8 9.5 

Cost ($/h) 709.6 711.9 710.1 801.3 803.1 803.7 

A comparison was made of the penalties handling 
capabilities of BEA, SEA1, SEA2 and SEA3 as shown in 
the costs and penalties convergence characteristics of 
Figure 1 to Figure 4. The Fitness axes are the values of 
total costs and penalties. Starting with randomly generated 
populations at generation 0, the values of the costs and 
penalties gradually converge smoothly to the respective 
optima as generation increases in each of the four 
algorithms. 
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Figure 1. Cost and penalty convergence characteristics of BEA 
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Figure 2. Cost and penalty convergence characteristics of SEA1 
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Figure 3. Cost and penalty convergence characteristics of SEA2 
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Figure 4. Cost and penalty convergence characteristics of SEA3 

There is a great similarity in the trend of cost curves of 
BEA and SEA1, but the major difference is in the penalty 
curves. From the results, BEA is not very efficient in 
reducing penalty violations, unlike SEA1, SEA2 and 
SEA3. As the value of the total penalties gradually reduce 
to 0.0, total cost equals total fitness, which is the optimal 
value. This contributes to the ‘smartness’ of the three 
SEAs. Moreover, the best results from BEA have a 
considerably higher total cost than SEA1, SEA2 and 
SEA3. From the results, SEA3 shows the most active 
performance in reducing penalty violations. This evidence 
suggests that SEA3 will be capable of optimizing larger 
scale problems. However, the generation cost of $709.6/h 
from the best resources allocation of SEA1 (Table 3) is the 
lowest value seen in the literature to date for this problem, 
while meeting load demand. 

The simulation results were compared with those 
reported for some recent alternative EAs, where the SEAs 
exhibited superior performances. On the basis of the 
optimal/best resources allocation, they were all better in 
terms of both lower generation costs and lower power 
losses. SEA1 achieved a lower average generation cost of 
$738.7 (Table 2) over SEA2 and SEA3, and also the 
minimum generation cost of $709.6/h from the best 
resources allocation (Table 3) is the lowest value seen in 
the literature to date for this problem. However, a 
minimized power loss of 0.03MW was realized using 
SEA2, meaning that it has the greatest potential of 
meeting power demand; and reducing both over/under 
generation of electricity. But on the basis of constraints 
handling capability, SEA3 proved the best optimization 

approach from the cost and penalty convergence 
characteristics of Figure 4. 

6. Conclusion 
This paper proposed a Smart Evolutionary Algorithm 

(SEA), which combines a standard EA with a smart 
mutation approach for the Static Economic Load Dispatch 
(SELD) optimization problem in a thermal generating 
station. The operator focused mutation on genes 
contributes mostly to costs and penalty violations, while 
obeying operational constraints. Three variants of smart 
mutation operator were developed, leading to SEA1, 
SEA2 and SEA3, on a benchmark case involving a 
generating station with 6 units. This novel approaches to 
SELD were shown to outperform all previously published 
EA approaches, on the basis of the common published test 
problem used in the literature in terms of reduced cost of 
generation, minimized power loss, optimal resources 
allocation constraints handling capability. The SEA3 
showed the most active performance in reducing penalty 
violations, an evidence that it will perform well in large 
scale test problems. Standard T-test (one tailed) with 
significance level p < 0.1 (confidence level 90%) shows 
no significant difference statistically between the three 
approaches for this problem. However, the power dispatch 
considered in this paper is for thermal plants only (driven 
by heat released from burning of fossil fuels - coal, 
petroleum, natural gas). One potential area of future work 
is to extend this approach to handle generating stations 
that use multiple fuel types. 
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