
American Journal of Electrical and Electronic Engineering, 2015, Vol. 3, No. 4, 100-106
Available online at http://pubs.sciepub.com/ajeee/3/4/3
© Science and Education Publishing
DOI:10.12691/ajeee-3-4-3

Smart Evolutionary Algorithm for Static Economic Load
Dispatch Optimization in a Thermal Generating Station

Sunny Orike*, Vincent I. E. Anireh

Department of Electrical/Computer Engineering, Rivers State University of Science and Technology, Port Harcourt, Nigeria
*Corresponding author: orike.sunny@ust.edu.ng

Abstract The Economic Load Dispatch (ELD) problem is an optimization task with emphasis on how power
generating companies (GENCOs) will be able to meet the power demands of the distribution companies (DISCOs)
and electricity consumers, and at the same time minimize both under/over generation of electricity, and also
minimize the operational costs of running the units in their various stations. This paper implemented a Smart
Evolutionary Algorithm, which combines a standard Evolutionary Algorithm with a smart mutation operator that is
applied to the Static ELD problem. It also investigated and analyzed three distinct variants of the smart mutation
operator. The operator focused mutation on genes contributing mostly to cost of generation and penalty violations in
the fitness function. Rather than using a generic off-the-shelf optimization package, the paper demonstrated a novel
approach to solving certain kinds of real-world problems, contributing a method that have advanced the state of the
art in solving a specific optimization problem in the area of economic load dispatch.

Keywords: economic load dispatch, evolutionary algorithm, optimization, smart mutation

Cite This Article: Sunny Orike, and Vincent I. E. Anireh, “Smart Evolutionary Algorithm for Static
Economic Load Dispatch Optimization in a Thermal Generating Station.” American Journal of Electrical and
Electronic Engineering, vol. 3, no. 4 (2015): 100-106. doi: 10.12691/ajeee-3-4-3.

1. Introduction
Evolutionary Algorithm (EA) is both a bio-inspired, as

well as nature-inspired computational intelligent approach
to solving real-life optimization problems [1]. It is a non-
deterministic population-based algorithm that is analogous
to Darwin’s theory of natural evolution and selection,
inspired by nature’s principle of survival of the fittest [2].
In the recent years, EA is an actively growing research
area in the entire field of artificial/computational
intelligence, especially in solving electrical power
problems. Static Economic Load Dispatch (SELD)
problem handles a single load optimization period
(typically one hour), in which the variables (generator
outputs) do not vary with time [3,4,5]. This work presents
a novel Evolutionary Algorithm (EA) approach in
realizing optimal solutions for SELD problems in the
electricity generating station. The method combines a
standard EA with a “smart mutation” operator. The key
aspect of the method that improves performance is that the
operator targets mutation on genes according to their
respective contributions to the cost function and penalty
violation. The work considers instances of the ELD
problem, with practical generator constraints. Violation of
either of these constraints introduces the concept of
penalties, and these in turn provide the basis for the smart
mutation operator. The “Smart” EA was compared with a
previously implemented Basic EA (BEA) and with
reported results for other recent EAs involving a generator
with 6 units.

In traditional EA design, mutation operator is the major
source of genetic variation, needed to avoid genetic
stagnation [4]. It is a background operator applied to the
resulting children solutions after the crossover, and allows
new genetic patterns to be introduced, whether desirable
or undesirable. Mutation could be viewed as a transition
from a current solution to its neighbourhood solution in
local search algorithms, as it randomly changes the value
of a part of the solution to another. It usually occurs with a
low probability, typically between 0 and 1. The process
could be very detrimental if the mutation rate is set too
high, as it will force the population to adapt to a new
environment, and will not necessarily produce optimal
individuals due to the instability of the population [2].

In its simplest form of operation, genes undergoing
mutation are randomly selected, but they could also be
‘targeted’. Different forms of mutation operators exist for
the different encoding methods: Single-gene mutation, N-
random gene mutation, uniform mutation, boundary
mutation and Gaussian mutation, bit-flip mutation, swap
mutation, insertion mutation, inversion mutation, scramble
mutation, displacement mutation, real-valued mutation,
etc [6]. Single gene mutation chooses a gene at random,
and changes it to a new value, with a probability, called
the “mutation rate”. N-random gene mutation repeats the
single-gene mutation N times. Uniform mutation replaces
the value of the selected gene with a uniform random
value chosen between user-defined upper and lower limits.
Non-uniform mutation increases the probability that the
amount of mutation will be close to zero with increased
number of generation. Boundary mutation randomly
selects a gene, and replaces it with either the lower or

101 American Journal of Electrical and Electronic Engineering

upper limit. Gaussian mutation adds a unit Gaussian
distributed random value to the selected gene.

Recent researches are progressing towards the area of
adaptive mutation, applied to the problem requirements
and domain [7]. There are two levels of adaptations in
mutation – top level and bottom level [8]. The top-level
approach adapts the mutation and crossover ratio in a
given EA run [9,10]. In COBRA (COst Based operator
Rate Adaptation), developed in [10], the EA swaps a
given k fixed mutation probabilities periodically between
k operators, giving highest probability to the operator that
has high fitness value. The bottom-level performs a
deterministic self-adaptive mutation, probability uniformly or
non-uniformly over each gene position [8,11]. The self-
adaptive mutation, developed in [11], was achieved by
adding a probability vector for each individual. The operator
first mutates the mutation probability with itself, and the
resulting probability was used to mutate a targeted gene.

The remaining parts of the paper are organized as
follows: Section 2 formulates the SELD problem, while
Section 3 describes the various processes involved in
constraints handling for generating limit, power balance,
ramp-rates limit and prohibited operating zones
constraints. Section 4 describes the proposed approach in
this paper – the smart evolutionary algorithm, including
the smart mutation operators and their variants. Section 5
describes the experimental set up, results and discussion
of findings, while Section 6 concludes the paper with
appropriate recommendations.

2. Problem Formulation
Traditionally, ELD problems are assumed to have

quadratic, convex, but smooth cost functions. Consider a
thermal generating plant with N units, and power outputs
Pg1, Pg2 to PgN, connected through a transmission network,
with PD as the total power demand. Each unit has its own
cost function, Ci. The task here is to find the combination
of the real power generation for all the units such that the
total generation cost, CT is minimized:

 2

1 1

N N

T i i i i i i
i i

Min C C a Pg b Pg c
= =

= = + +∑ ∑ (1)

[Where: ai, bi, ci are the cost coefficients of unit, i;]
The real power generated by each generator must be

between minimum and maximum defined capacities,
represented by the following inequality constraints:

 ,min ,max 1, 2,...,i i iPg Pg Pg i N≤ ≤ ∀ = (2)

The total power generated must be balanced, and equal
to the sum of total power demand and power loss:

1

1, 2,...,
N

i D L
i

Pg P P i N
=

= + ∀ =∑ (3)

The power loss, PL is calculated using the Kron’s
formula (also known as the B-matrix loss formula) [12], as:

 0 00
1 1 1

, 1, 2,...,

N N N

L i ij j i i
i j i

P Pg B Pg B Pg B

i j N
= = =

= + +

∀ =

∑∑ ∑ (4)

[Where: Bij is the ijth element of the loss coefficient square
matrix of the same dimension as Pgi; B0i is the ith element
of the loss coefficient vector of the same length as Pgi; B00
is the loss coefficient constant].

3. Constraints Handling
A functional generator has four operational constraints:

power balance, generating limit, ramp-rates limit and
prohibited operating zone constraints. Power balance
constraint is global (applying to all the generating units),
while others are local to each unit. The smart mutation
operator focuses mutation on units contributing mostly to
cost and violates either of the local constraints. One of the
ways to investigate the overall performance of an
algorithm is by evaluating its constraints handling
capabilities. The random initialisation of chromosomes
(potential solutions to a problem) sets the genes (outputs
of generating units) of each chromosome in the initial
population to random double numbers representing the
generators’ outputs, between their minimum and
maximum generating limits. During fitness evaluation
(computation of the cost function) of each chromosome,
various checks are performed to ensure that the units’
outputs obey all operational constraints. Violation of any
of the constraints constitutes a penalty, which augments
the initial objective cost function to form the generalised
fitness function:

_

T
T

T

C
Min C

C total penalty

= +
 (5)

This helps guide the search process towards repairing
that solution. A description of how the four operational
constraints are handled is presented here:

i). Generating Limit: A random small positive number
less than 1 (scaling factor), ensures that outputs of the
generating units are within the allowable minimum and
maximum limits:

 min max min. ()*()i i i iPg Pg Math random Pg Pg= + − (6)

ii) Power Balance: If the equality constraint of (3) is
not satisfied, a penalty factor, q1, is used to normalize
and maintain an overall power balance, ensuring that
the terms in the bracket equal to zero:

2

1
1

_
N

i D L
i

Penalty pb q Pg P P
=

= − −

∑ (7)

iii) Ramp-rates Limit: The generating units’ ramp-rates
limit restricts their operating range in a given
generation period. A ramp-rate is the rate of change in
output from a power plant. It is the amount of load
added to the generating plant to keep it from being
“overloaded”. Based on these rates, the subsequent
outputs of the units should be within their ranges, with
(2) modified as:

 0 0
min maxmax(,) min(,)i i i i i i iP P DR P P P UR− ≤ ≤ + (8)

The power output of a unit at the current time depends
on the output at the previous time, ramp up value (UR)
and ramp down value (DR) of the generator. The power

 American Journal of Electrical and Electronic Engineering 102

output of a unit due to the ramp-rates limit is defined as
follows:

, 1 , , 1

lim , 1 , , 1

,

, ,

, ,

,

i t i i t i t i

rr i t i i t i t i

i t

Pg DR Pg Pg DR

Pg Pg UR Pg Pg UR

Pg otherwise

− −

− −

 − < −

= + > +

 (9)

If the inequality constraint of (8) is not satisfied, a
penalty factor, q2, is assigned to the affected units
outside the feasible regions, using:

 lim 2 lim
1

_
N

rr i rr
i

Penalty Pg q Pg Pg
=

= −

∑ (10)

iv) Prohibited Operating Zones: Practical operations of
the power plant involve adjusting the power output of
the units such that they must be outside the prohibited
zones. The prohibited operating zone penalty function
counts the number of units that fall within such
prohibited zones, according to the following rules:

 ,
1,

0,
i

i k
if Pg violates prohibited zone

PZ
otherwise

=

 (11)

If the prohibited zones are not violated, the ELD is
solved in a straightforward process, otherwise, a
number ‘1’ is assigned to such occurrence, and the
constraint is processed using:

 3 ,
1

_
N

i k
i

Penalty pz q PZ
=

= ∑ (12)

[Where: q3 = penalty factor, k = number of prohibited
zones in i, N = number of generating units].

4. Smart Evolutionary Algorithm
The approach of capturing gene-specific contributions

to costs of generating electrical power, and using this
information to help target the mutation operator, is what is
referred to in this paper as “smart evolutionary algorithm”
(SEA). The method basically combines a standard EA
with a smart mutation operator. In the standard EA, single
mutation per chromosome is used. Occurring at a low
probability called mutation rate, it chooses a gene at
random and changes it to a new value. It works as a
background operator, introducing new genetic patterns in
the population by randomly modifying some building
blocks to maintain population diversity, thereby helping
solutions to escape local optima. This mutation scheme
has severally been used and shown in the literature to
produce near-optimal results [13], including a real-life
virology application [14]. The generic SEA pseudo-code
for SELD is shown below:
START
DEFINE parameters and INPUT data
INITIALIZE a random population of chromosomes

FOR i = 1 to N (N = No of Generating Units)

 _ min _ max _ min. *()i i i iPg Pg Math Random Pg Pg= + −

END FOR

EVALUATE Objective function (For each chromosome in
the population)
FOR i = 1 to N

 2()i i i i i if Pg a Pg b Pg c= + +

Check for constraints violations
Violation of a constraint leads to penalty
treatment, defined as:

()
() ()

i
c

i i

f Pg
Min F

f Pg penalty Pg

= +

IF no constraint is violated,
Penalty = 0
Fitness function = Objective function

ELSE
Fitness function = Objective function +
Penalty

END IF
END FOR
WHILE (stopping criteria is not reached)
 From the entire population

 SELECT parent pairs for breeding
 CROSSOVER the genes of selected parents
 Create an array to return children
 Crossover parents to create children
 Return the children in an array

 Perform SMART MUTATION
 EVALUATE
 REPLACE parent population with children
population
 Perform ELITISM (Keep a percentage of best
individuals)
 FOR i = 1 to Population size
Sort Chromosomes according to their fitness (highest to
lowest)
 Calculate Number of Elites (based on elitism rate)

 Copy Elites onto next Generation
 END FOR
END WHILE
OUTPUT (The optimum/best compromising solution
vector)
 FOR i = 1 to N

 1, 2, 3,[]NPg Pg Pg Pg Pg=
 END FOR
 Output Total Generation = Sum of all Generators’
Output
 Output Total cost = Sum of Costs of generation
STOP.

4.1. The Smart Mutation
The total number of units selected for mutation in

addition to the highest cost producing one depends on the
number of local constraints violated. Therefore a
minimum of one and maximum of three genes are
involved. Perhaps in some problem cases, either or all of
the local constraints may not be present. In some other
cases, the unit with the highest cost may also violate a
constraint, while in some other cases, no constraint may
be violated. But where violation exists, the numerical
(penalty) value augments the problem’s objective function
to form a generalised fitness function.

103 American Journal of Electrical and Electronic Engineering

The magnitude of the constraints as well as the cost
produced by each of the units contributes to the overall
fitness. As the penalties values gradually reduce to 0, total
cost equals total fitness, which is the optimal value. By
targeting the unit with the highest cost, the mutation
operator attempts to minimise the total cost of producing
an optimal power. It was found out that reducing the
values of those units reduces over generation of power,
and consequently minimises power loss. Mutating the
units that violate local constraints has a tendency of
forcing them into the feasible regions. Besides, the small
random deviation subtracted from the units ensures that
the changes introduced are not too significant, thereby
distorting the generating unit. The following is a pseudo
code of the smart mutator.
START
INITIALIZE costs
Calculate the costs produced by all the units
SET cost of the first unit (i = 1) as the highest cost
FOR i = 2 to N (where N = number of generating units)

IF (cost[i] > highest cost)
Highest cost = cost[i]

 Highest position = i
 END IF

Pgi = value of unit at highest position
Mutate this Pgi by subtracting a small random
deviation from the unit:
Pgi (new) = Pgi – (Math.random () * Pgi)
(Where: Math.random () is a random number
between 0 and 1, e.g. 0.2)
Replace Pgi with Pgi (new)

 Check for violation of local constraints
 Ramp-rate limits violation:
 IF Generation decreases
 Pgi = (Pgi-1 – DR)
 IF Generation increases

 Pgi = (Pgi-1 + UR)
(Where: Pgi = current value;
Pgi-1 = previous value; UR =
up-ramp rate limit)

 ELSE
 Pgi = Pgi-1
 END IF

 END IF
IF (Pgi < Max (lower limit, (Pgi-1 – DR))) OR (Pgi >
Min (upper limit, (Pgi-1 + DR)))
(Where: lower limit and upper limit = legal lower and
upper limits of the unit)
 Pgi violates ramp-rates limit
Mutate this Pgi by subtracting a small random
deviation from the unit:
 Pgi (new) = Pgi – (Math.random () * Pgi)
 END IF
 Replace Pgi with Pgi (new)
 Prohibited operating zones violation
FOR k = 1 to zi (where: zi = number of prohibited zones
of unit, i)
 IF (Pgi > Pgl

i,k) AND (Pgi < Pgu
i,k)

(Where: Pgl
i,k and Pgu

i,k are the lower and upper
bounds of the kth prohibited zone)

Mutate this Pgi by subtracting a small random
deviation from the unit
 Pgi (new) = Pgi – (Math.random () * Pgi)

Assign the number “1” for every Pgi that violates
prohibited operating zone
 (i.e. counting every occurrence)
 END IF
 END FOR
 Replace Pgi with Pgi (new)
Ensure that all the units’ outputs are within feasible
limits (Generating limit constraint):
Pgi = Pgi_min + (scaling_factor * (Pgi_max – Pgi_min))

END FOR
STOP

4.2. SEA Variants
Several variants of the smart mutator are possible. In

this paper, an investigation is made of the following three
smart evolutionary algorithms: SEA1, SEA2 and SEA3,
resulting from three distinct variants of the smart mutator.
SEA1 involves the use of tournament selection based on
the penalty values (costs and numerical values of the
constraints) to decide which gene to mutate. It works in
direct analogy to the tournament method of selecting
parents from an initial population to go into breeding in
order to generate an offspring during an evolutionary
process [4]. But while the EA selection method chooses
chromosomes (the entire generating units) from the
population uniformly at random, with replacement, and
the fittest of those individuals is the one returned as
selected, the SEA1 chooses genes from the chromosome,
by targeting those with the highest operating cost and
violate constraint(s). This is the basis of the new
chromosome, a potential solution to the problem. The
number of units selected (tournament size) as well as the
size of the problem case has combined effect on selective
pressure [4,5]. In SEA2, there is a mutation probability,
called smart mutation probability, different from the
normal mutation rate of an EA. The smart mutation
probability biases the mutation operation, such that when
the probability is met, smart mutation is done; otherwise, a
single-gene, uniform random mutation is done. This gene-
specific mutation probability in SEA2 is also a random
number between ‘0’ and ‘1’. In contrast with the mutation
rate which usually occurs with a much lower probability,
and aims to maintain diversity in the entire population of
individuals; the smart mutation probability is a fixed,
higher-level probability operator that targets a particular
gene based on the criteria of merit; uniformly or non-
uniformly, deterministically and adaptive [8], [11]. SEA3
is an extension of SEA2, but rather than having a fixed
value of the smart mutation probability, it is computed (as
the ratio of generation number over the maximum
generation). Therefore, the mutation probability value
starts at ‘0’, and gradually moves to ‘1.0’ in a linear
fashion towards the maximum number of generations.
This is a simple linear adaptation that works by linearly
increasing the smart mutation probability from beginning
to end of an optimization run.

5. Experiments, Results and Discussion
The work described in this paper is concerned with

optimization of electrical power generator outputs.
Optimization is a way of making things better; a method
of adjusting the inputs to, or characteristics of a device,

 American Journal of Electrical and Electronic Engineering 104

mathematical process, or experiment to find the minimum
or maximum output/result; an art of allocating resources to
the best possible effect [15]. Optimization is analogous to
the root-finding process in calculus, but while the latter
searches for zeros of a function, the former finds zeros of
the function derivatives. But a major difficulty with
optimization, unlike root-finding is determining if a given
minimum or maximum is a global optimum (the best
possible solution available) or a local optimum. Three
SEA variants were investigated and compared with an
earlier developed BEA [4] on the basis of efficiency,
validity and robustness of the algorithms in a problem
case involving 6 generating units. In [3], the SELD
problem was solved using Differential Evolution (DE),
allocating power output to 6 thermal generators, taking
into account the effects of transmission losses. Total load
demand was set at 283.40MW; the detailed parameters
and loss coefficients can be retrieved from [3][4]. Based
on available data in this problem case, the main
constraints which constitute the source of penalties are
generating limits and power balance constraints.
Augmenting the penalty function to the original objective
cost function of (1) yields the following generalised
fitness function:

 2
1

1 1
()

N N

T i i D L
i i

C C q Pg P P
= =

= + − −∑ ∑ (13)

Where: q1 is a penalty factor which normalizes the power
balance, assigning a high cost of penalty to affected ones
far from the feasible region [3]. Detailed evolutionary
tuning was carried out in an earlier work to select optimal
values for the genetic parameters (crossover rate,
population size, tournament size and mutation rate) in [5].
As in SEA1, SEA2 operates a single-gene mutation per
solution of rate 0.01 in addition to the smart mutation
probability of 0.6. Table 1 gives the tuned values of the
experimental parameters, involving SEA1, SEA2 and
SEA3, with results shown in Table 2.

Table 1. Experimental Parameters and Values [5]
Parameters Values

Population size 100

Tournament size 2

Crossover rate 0.7

Mutation rate 0.01

Mutation probability (in SEA2) 0.6

No of Generations 100

Elitism Rate 10%

No. or runs 30

Table 2. Summary of Results, Averaged over 30 Runs in each of
SEA1, SEA2 and SEA3 Approaches

 SEA1 SEA2 SEA3

Av Cost ($/h) 738.7 749.5 744.5

Std Dev 13.7 13.3 10.6

Min Cost ($/h) 709.6 711.9 710.1

Max Cost ($/h) 759.2 767.0 759.0

The results of SEA1, SEA2 and SEA3 were compared
with a previously developed BEA [4]; and two reported
similar EA approaches - Differential Evolution (DE) and

Genetic Algorithm (GA) [3], tested on the same problem
case. Table 3 summarizes the comparison results based on
the resources allocation to the units from the best of 30
independent runs of algorithms BEA, SEA1, SEA2 and
SEA3 (the number of runs for DE and GA were not
reported). This shows superior performance of SEA1,
SEA2 and SEA3 in terms of both lower generation costs
and lower power losses.

Table 3. Resources Allocation in the Best of 30 Runs of SEA1, SEA2,
SEA3, BEA, DE and GA

Units SEA1 SEA2 SEA3 BEA[4] DE[3] GA[3]

1 151.3 169.0 130.4 171.6 177.5 179.4

2 24.7 30.5 41.1 49.3 48.6 44.2

3 48.9 40.8 49.6 22.6 20.9 24.6

4 23.5 11.9 27.6 21.2 21.6 19.9

5 15.7 15.8 19.5 12.7 12.5 10.7

6 19.9 15.7 16.2 14.2 12.0 14.1

Power Gen(MW) 284.0 283.7 284.4 292.1 293.2 292.9

Power Dem(MW) 283.4 283.4 283.4 283.4 283.4 283.4

Loss(MW) 0.6 0.03 1.0 8.7 9.8 9.5

Cost ($/h) 709.6 711.9 710.1 801.3 803.1 803.7

A comparison was made of the penalties handling
capabilities of BEA, SEA1, SEA2 and SEA3 as shown in
the costs and penalties convergence characteristics of
Figure 1 to Figure 4. The Fitness axes are the values of
total costs and penalties. Starting with randomly generated
populations at generation 0, the values of the costs and
penalties gradually converge smoothly to the respective
optima as generation increases in each of the four
algorithms.

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000

Generations

F
it

ne
ss

 V
al

ue
s

($
/h

)

Cost

Penalty

Figure 1. Cost and penalty convergence characteristics of BEA

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

Generations

F
it

ne
ss

 V
al

ue
s

($
/h

)

Cost

Penalty

Figure 2. Cost and penalty convergence characteristics of SEA1

105 American Journal of Electrical and Electronic Engineering

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

Generations

F
it

ne
ss

 V
al

ue
s

($
/h

)

Cost

Penalty

Figure 3. Cost and penalty convergence characteristics of SEA2

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

Generations

F
it

ne
ss

 V
al

ue
s

($
/h

)

Cost
Penalty

Figure 4. Cost and penalty convergence characteristics of SEA3

There is a great similarity in the trend of cost curves of
BEA and SEA1, but the major difference is in the penalty
curves. From the results, BEA is not very efficient in
reducing penalty violations, unlike SEA1, SEA2 and
SEA3. As the value of the total penalties gradually reduce
to 0.0, total cost equals total fitness, which is the optimal
value. This contributes to the ‘smartness’ of the three
SEAs. Moreover, the best results from BEA have a
considerably higher total cost than SEA1, SEA2 and
SEA3. From the results, SEA3 shows the most active
performance in reducing penalty violations. This evidence
suggests that SEA3 will be capable of optimizing larger
scale problems. However, the generation cost of $709.6/h
from the best resources allocation of SEA1 (Table 3) is the
lowest value seen in the literature to date for this problem,
while meeting load demand.

The simulation results were compared with those
reported for some recent alternative EAs, where the SEAs
exhibited superior performances. On the basis of the
optimal/best resources allocation, they were all better in
terms of both lower generation costs and lower power
losses. SEA1 achieved a lower average generation cost of
$738.7 (Table 2) over SEA2 and SEA3, and also the
minimum generation cost of $709.6/h from the best
resources allocation (Table 3) is the lowest value seen in
the literature to date for this problem. However, a
minimized power loss of 0.03MW was realized using
SEA2, meaning that it has the greatest potential of
meeting power demand; and reducing both over/under
generation of electricity. But on the basis of constraints
handling capability, SEA3 proved the best optimization

approach from the cost and penalty convergence
characteristics of Figure 4.

6. Conclusion
This paper proposed a Smart Evolutionary Algorithm

(SEA), which combines a standard EA with a smart
mutation approach for the Static Economic Load Dispatch
(SELD) optimization problem in a thermal generating
station. The operator focused mutation on genes
contributes mostly to costs and penalty violations, while
obeying operational constraints. Three variants of smart
mutation operator were developed, leading to SEA1,
SEA2 and SEA3, on a benchmark case involving a
generating station with 6 units. This novel approaches to
SELD were shown to outperform all previously published
EA approaches, on the basis of the common published test
problem used in the literature in terms of reduced cost of
generation, minimized power loss, optimal resources
allocation constraints handling capability. The SEA3
showed the most active performance in reducing penalty
violations, an evidence that it will perform well in large
scale test problems. Standard T-test (one tailed) with
significance level p < 0.1 (confidence level 90%) shows
no significant difference statistically between the three
approaches for this problem. However, the power dispatch
considered in this paper is for thermal plants only (driven
by heat released from burning of fossil fuels - coal,
petroleum, natural gas). One potential area of future work
is to extend this approach to handle generating stations
that use multiple fuel types.

References
[1] Orike, S., “Computational Intelligence in Electrical Power

Systems: A Survey of Emerging Approaches,” British Journal of
Science, 12 (2). 23-45. April. 2015.

[2] Goldberg, D.E., Genetic Algorithms in Search, Optimization and
Machine Learning, Addison Wesley, 1989.

[3] Sayah, S. and Zehar, K., “Using Evolutionary Computation to
Solve the Economic Load Dispatch Problem,” Leonardo Journal
of Sciences, 12. 67- 78, Jan-Jun. 2008.

[4] Orike, S. and Corne, D.W., “Improved Evolutionary Algorithms
for Economic Load Dispatch Optimisation Problems,” in 12th UK
Workshop on Computational Intelligence (UKCI), Edinburgh, 5-7
Sept. 2012, IEEE.

[5] Orike, S., “Investigating the Effects of Evolutionary Parametric
Tuning for Static Economic Load Dispatch Problems,” Asian
Engineering Review, 1(2). 26-35, Nov. 2014.

[6] Hasan, B.H.F., and Saleh, M.S.M., “Evaluating the Effectiveness
of Mutation Operators on the Behaviour of Genetic Algorithms
Applied to Non-deterministic Polynomial Problems,” Informatica,
35. 513-518, 2011.

[7] Korejo, I., Yang, S., and Li, C., “A Comparative Study of
Adaptive Mutation Operators for Genetic Algorithms,” in 8th
Metaheuristics International Conference, Hamburg, Germany,
July 13-16, 2009.

[8] Yang, S., “Statistics-Based Adaptive Non-Uniform Mutation for
Genetic Algorithms,” in 2003 Genetic and Evolutionary
Computation Conference, July 9- 11, 2003, Chicago, USA.

[9] Julstrom, B., “What have you done for me lately? Adaptive
Operator Probabilities in a Steady-State Genetic Algorithm,” in
6th Conference on Genetic Algorithms, San Mateo, CA, USA,
1995, Morgan Kaufmann, 81-87.

[10] Corne, D., Ross, P., and Fang, H.L., “Genetic Algorithm Research
Note 7: Fast Practical Evolutionary Timetabling,” Technical
Report, Department of Artificial Intelligence, University of
Edinburgh, UK, 1994.

 American Journal of Electrical and Electronic Engineering 106

[11] Bäck, T., “Mutation Parameters,” in Bäck, T., Fogel, D.B., and
Michalewicz, Z. (eds.), Handbook of Evolutionary Computation,
E1.2.1- E1.2.7, Oxford University Press, 1997.

[12] Wood, A.J., and Wollenberg, B.F., Power Generation, Operation
and Control. 2nd Ed., John Wiley, 2012.

[13] Woodward, J., and Swan, J., “The Automatic Generation of
Mutation Operators for Genetic Algorithms,” in 2012 Genetic and

Evolutionary Computation Conference, Philadelphia, USA, July 7-
11, 2012.

[14] Tao, W., Xu, C., Ding, Q., Li, R., Xiang, Y., Chung J., and Zhong,
J., “A Single Point Mutation in E2 Engances Hepatitis C Virus
Infectivity and Alters Lipoprotein Association of Viral Particles,”
Journal of Virology, 395. 67-76, Dec. 2009.

[15] Haupt, R.L., and Haupt, S.E., Practical Genetic Algorithms. John
Wiley, 2004.

