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Abstract: A smart grid is a modern electricity system enabling a bidirectional flow of communication
that works on the notion of demand response. The stability prediction of the smart grid becomes
necessary to make it more reliable and improve the efficiency and consistency of the electrical supply.
Due to sensor or system failures, missing input data can often occur. It is worth noting that there has
been no work conducted to predict the missing input variables in the past. Thus, this paper aims
to develop an enhanced forecasting model to predict smart grid stability using neural networks to
handle the missing data. Four case studies with missing input data are conducted. The missing
data is predicted for each case, and then a model is prepared to predict the stability. The Levenberg–
Marquardt algorithm is used to train all the models and the transfer functions used are tansig and
purelin in the hidden and output layers, respectively. The model’s performance is evaluated on
a four-node star network and is measured in terms of the MSE and R2 values. The four stability
prediction models demonstrate good performances and depict the best training and prediction ability.

Keywords: four-node star network; feedforward neural network; forecast; prediction; smart grid; stability

1. Introduction

The conventional power grid contains standard power generation units grounded on
fossil fuels. With the soaring energy prices, the need for renewable energy sources and
climate change, the old power grid is becoming outdated and facing various limitations,
such as cybersecurity, privacy and power losses due to one-way communication [1]. This
pushes for deploying renewable energy sources to improve sustainability and reliability.
A smart grid is a solution to this. The smart grid system is a digital future electricity system
that enables a two-way flow of communication, i.e., between the center and the device to
the center [2].

This bidirectional communication utilizes advanced computing infrastructure, digital
sensing and software capabilities to optimize all the grid components and improve reliabil-
ity and sustainability. There is a unidirectional flow of energy from the energy provider to
the consumer in a traditional grid, and consumers are charged based on their consumption.
However, in a smart grid system, the users in the grid can consume, produce, store and
trade energy with other users [3]. The smart grid introduces demand response, and the
price information is determined as the demand is evaluated with supply and conveyed to
the customer.

This paper used the DSGC model to define and relate the price to the grid frequency [2,4].
The mathematical model based on DSGC differential equations seeks to find grid instability
for a four-node star architecture [5]. The four-node star architecture consists of a central
generation node, the power source and three consumer nodes. The response time of
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the smart grid users is considered to adjust the consumption/production concerning the
price changes.

The model involves real-time pricing, and thus the grid stability has to be maintained
with fluctuations in reaction times and electricity price of all users. It is critical to eval-
uate grid stability as the process is time-critical dynamically. This is because smart grid
stability prediction helps increase efficiency through grid optimization, improves electrical
supply reliability and consistency and analyses disturbances and fluctuations in energy
consumption or production.

Before the utilization of modern techniques to predict smart grid stability, traditional
approaches consisted of simulations combining fixed values for one subset and fixed
distribution of values for the remaining subset variables [6,7]. The generation of electricity
by photovoltaic power is related to the global horizontal irradiance. For the unknown cloud
statistics, the irradiance is uncertain for predicting the stability in power generation, causing
optical instability in the solar irradiance [4]. Measurement-based methods are another
complex and challenging traditional method used to predict power grid stability [8].

Various statistical approaches have been investigated, including autoregressive mov-
ing average, Kalman filter and Markov chain model [9], which contribute to insufficient
reliability of the grid [10]. Other types of early statistical methods [11] for load forecasting
in smart grids have various drawbacks and affect the accuracy of the prediction model.
These are built by ineffective, simple regression functions, and thereby do not yield good
performance in vast uncertainties [12]. Further, traditional approaches, such as time series
analysis, ARMA, ARIMA and Markov models for stability forecasting, exist only in specific
operating ranges [13,14].

Additionally, some research involved using conventional parametric methods that
include linear regression, auto-regressive moving average and the general exponential
methods. Although such models return satisfactory prediction accuracy, they persist with
major disadvantages, such as improper response and complex computational problems
to meteorological variables and nonlinear electrical load [15]. A probabilistic model was
introduced in [16] for power stability.

However, some uncertainties have been observed between regular grid operation
and cascading failure operation in the simulation result. Adding on, techniques used for
stability assessment require extensive computation time and massive data analysis volume,
which makes it tough to obtain a reliable prediction and makes it difficult to take decisions
for an operating power system [17].

A few hybrid systems used for dynamic stability prediction have been based on
unreliable self-organized maps and responded slowly [6,18]. Another method introduced a
situational awareness for stability prediction, a perception of elements for a given time and
space in the environment [5]. It was proven that optimized deep-learning models are one
of the excellent prediction tools for smart grid stability. Using neural networks for stability
prediction has various advantages.

They have multiple training algorithms, do not require significant dataset pre-processing
and can produce high accuracy values during training and testing [4]. Further, they can
recognize different sets within a whole dataset and give adequate results even when the
dataset is incomplete or inaccurate [19]. Finally, the ability to implicitly detect complex
nonlinear relationships between independent and dependent variables makes it viable for
stability prediction [20].

Comprehensive review work in [21] concluded that most of the works on prediction
models using machine learning reported little or no information on the presence and
handling of missing data. The missing data is omitted in most models, which is ineffective,
affecting their performance. The missing data for the analysis results from many things,
such as sensor failure, equipment malfunctions, lost files, etc. This challenges the increasing
cost and prediction ability of the proposed models. Thus, there is a need for significant
research in handling missing data. On the other hand, predicting the data with neural
networks or machine-learning models is more efficient than simply omitting the data or
resorting to mean values.
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Being motivated by the literature, this paper proposes a novel method to predict the
smart grid stability of a four-node star network using a neural network with complete and
missing input data, consisting of missing input variables. Thus, the significant contributions
of this paper are highlighted as follows:

• The classic FFNN is designed to predict the stability of the smart grid system of a
four-node star network with complete input data.

• The sub-neural networks are proposed to predict the missing input variables, which
are caused due to a sensor, network connection or other system failures. Then, the sys-
tem’s stability is forecast using these predicted missing input data.

• The performance of the proposed approach is evaluated in four different case studies
in which at least one input variable is missing.

The subsequent sections of the paper are organized as follows: Section 2 presents the
comprehensive literature review on smart grid stability prediction using neural networks.
Section 3 describes the mathematical modeling and data description of the four-node star
network used for the smart grid stability prediction. Section 4 shows the development
and performance of the FFNN with complete input data, and Section 5 describes the
development and performance evaluation of the FFNN to handle the missing inputs.
Finally, Section 6 highlights the conclusions of the proposed work.

2. Literature Review

In this section, an extensive literature survey is conducted on smart grid stability
using neural networks. This literature review shows that various neural-network-based
techniques have been used for analysis, and the data analyzed in the works are with
complete input data. The developed approaches are robust and accurate due to their
complex structure that helps classify problems and recognize correlations in raw data and
hidden patterns.

A summary of works focused on smart grid stability prediction using various neural
networks is highlighted in Table 1. The table contains 55 papers published in the last decade,
categorized into publication year, smart grid architecture, neural network type, neural
network architecture, activation functions, training algorithms, performance measures and
comparison techniques considered for each study. From the research works in Table 1,
the year-wise and the publisher-wise contributions to the smart grid’s stability prediction
during the last decade are shown in Figure 1. Figure 2 depicts the smart grid architectures
identified in the literature survey conducted.

The most popular architectures are IEEE bus systems [6,16,18,22,23] and node network
types [4,8,24]. Therefore, in this paper four-node star network was selected to perform the
proposed research.

In the analysis, several types of neural networks and hybrid networks were identi-
fied, as depicted in Figure 3. Among the most popular neural networks identified are
FFNN, which includes the hybridized versions, such as FF-BPNN [25] and FF-DNN [26].
In addition, CNN is another most widely used, with its enhanced and hybrid versions,
namely ECNN [27] and CNN-RNN [28]. The hybrid versions of LSTM, including LSTM-
RNN [29,30] and LSTM-CNN [31], can also be seen in this literature.

In addition, the performance of DNN for stability prediction was improved by hy-
bridizing with RNN, RL [32], CNN and IRBDNN [33]. On the other hand, optimization
algorithms, such as SSA, have also been used with RBFNN to obtain the network’s optimal
weights [7]. The hybrid versions of GRU models, such as BiGRU [8] and GRU-RNN [9],
have also been used for node networks’ stability prediction. The sub-classification of all
these neural-network-based models is also illustrated in Figure 3.

Figure 4 summarizes the various training algorithms and activation functions used
in the research work reported in Table 1. The figure concludes that the LM algorithm
is the most commonly used for training algorithms, followed by Adam’s optimization
algorithm [29,32]. Furthermore, it further depicts that sigmoid, ReLU, tansig and tanh are
the most frequently used hidden layer activation functions [30,34]. In contrast, the purelin
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activation function followed by Sigmoid is most commonly used in the output layer of the
neural network [34–36].

1

3 3

1 1
2 2

4
3

13

8

14

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Number of publications 
from 2010 to present

1

1

1

 International Journal of Energy
Research

IET Smart Grid

Transactions on Emerging
Telecommunications Technologies

1

1

1

1

1

1

1

1

1

Applied Energy

Computers and Electrical Engineering

Electrical Power and Energy Systems

Energy

Energy Procedia

Materials Today: Proceedings

Mathematics and Computers in Simulation

Renewable and Sustainable Energy Reviews

Renewable Energy

Elsevier

Wiley

4

17

5

2

1

1

IEEE Access

IEEE Conference

IEEE Transactions on
Industrial Informatics

IEEE Transactions on Smart
Grid

IEEE Internet of Things
Journal

Journal of Modern Power
Systems and Clean Energy

IEEE

2

1

1

2

 Neural Computing and Applications

International Journal of System Assurance
Engineering and Management

SN Computer Science

Springer Conference

Springer

1
Energy Sources, Part A: Recovery,

Utilization, and Environmental Effects

Taylor & 
Francis

5

1

 Energies

Electronics

MDPI

Figure 1. Year-wise and the publisher-wise contributions to smart grid’s stability forecasting during
the last decade.
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Figure 2. Summary of the smart grid architectures identified in the conducted literature survey.



Sensors 2022, 22, 4342 5 of 29

FFNN

FF-BPNN

FF-DNN

CNN

ECNN

CNN-RNN

RBFNN

RBF

SSA-RBF

GRU

BiGRU

GRU-RNN

LSTM

LSTM-RNN

LSTM-CNN

DNN

R-DNN DNN-RL DLSF-CNN IRBDNN

Others

BPNN NN-LMS ELM ENN WNN SNN NARX

RNNWRNN

Neural 
Network 

Types
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Figure 4. Summary of the various training algorithms and activation functions used in neural-
network-based models for smart grid stability prediction.

The significant findings from the literature review on smart grid stability prediction
using neural networks are highlighted as follows:
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• No work was conducted to predict stability when there is a missing parameter. Most
studies showed that missing data had been either omitted, unreported or replaced
with mean/median values.

• The most popular architectures used for the case studies are IEEE bus systems and
node network types (see Figure 2).

• Among the several types of conventional and hybrid neural networks proposed in
the literature, the FFNN and its hybrid versions, such as FF-BPNN and FF-DNN, are
widely presented (see Figure 3 and Table 1).

• The Levenberg–Marquardt algorithm is the most frequently used training algorithm
for various networks to predict smart grid stability (see Figure 4).

• The tansig and purelin activation functions have frequently been used in various
networks’ hidden and output layers to predict smart grid stability (see Figure 4).

From the above research gaps, this paper made an effort to develop a forecasting model
that handles the missing input data. For the proposed neural-network-based forecasting
model, the LM training algorithm was selected as it is one of the fastest backpropagation
algorithms and is widely recommended in the literature. The literature proves that ef-
fective training necessitates a nonlinear and linear combination of activation functions.
Thus, the tansig and purelin activation functions are utilized in the hidden and output
layers, respectively.

Further, in our previous work reported in [37], an effort was made to compare the
performance of FFNN, cascade and recurrent neural-network-based models for smart grid
stability prediction. The work concludes that, for the considered application, the FFNN
demonstrated superior performance in terms of the MSE and R2 values compared to
cascade and recurrent neural networks. On the other hand, over the years, researchers
have proposed different methodologies and theories for selecting the number of hidden
layers and the number of hidden neurons in each hidden layer. As reported in [38], it was
concluded that a network with only one hidden layer but sufficient neurons can achieve
better performance.

Moreover, this performance can be further improved by adding additional hidden
layers. However, the variation in this performance with a multilayer network is minimal.
The work reported in [39] concluded the same, stating that a multilayer network has
achieved better performance but increased the complexity of the network. Therefore,
for the considered application, the FFNN with a single hidden layer was used for all the
cases, which improved the performance in predicting smart grid stability.
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Table 1. Summary of works focused on forecasting smart grid stability using neural networks.

Ref. Year Smart Grid Architecture Neural Network Type Neural Network Architecture Activation Functions Training Algorithm Performance Measures Comparison TechniquesHidden Layer Output Layer

[34] 2021 – FFNN 2:10:1 Tanh, Sigmoid Linear LM, BR, SCG MSE, R RTP, SMP, RTP-SMP, GA,
ANN, STW

[7] 2021
Smart grid with

photovoltaic and wind
turbine

SSA-RBFNN – – – – RMSE SSA-RBFNN with and
without RES

[40] 2021 – FFNN 3:20:1 Sigmoid Linear LM MSE, RMSE
PV with ANN, Wind with
ANN, Hybrid model with

ANN
[32] 2021 – DNN-RL – Leaky ReLU Leaky ReLU Adam MSE –
[29] 2021 – LSTM-RNN 1:50:50:50:1 Tanh Tanh Adam MAE, RMSE, MAPE GBR, SVM

[4] 2021 four-node star FFNN 24:24:12:1 ReLU Sigmoid Adam, GDM,
Nadam

Accuracy, Precision,
Sensitivity, F-score CNN, FNN

[9] 2021 – GRU-RNN 3:15:10:1 Gate Candidate AdaGrad RMSE, MAE LSSVR, WNN, ELM, SAE,
DBN

[41] 2021 – SNN 784:400:400:11 LIF spike
generator

Summation
and

maximum
– Precision, Recall,

F-score, Accuracy CNN

[8] 2021 four-node star LSTM, BiGRU, ELM 12:256:128:1, 12:512:256:1,
12:96:30:1

Sigmoid
Softplus

Sigmoid
Softplus Adam RMSE, MAE, R2, PICP,

PINC, ACE
BiGRU, LSTM, XGB, LGBM,

ANN

[42] 2021 Distributed systems DNN-RL – ReLU ReLU Adam Peak, Mean, Var, PAR,
Cost, Computation time C-DDPG, DPCS, SWAA

[11] 2021 – LSTM, BPNN 6:96:48:1, 6:48:24:1, 6:10:1 RBF Sigmoid Adam MAPE, RMSE LSTM, BPNN, MLSTM,
ELM, MLR, SVR

[43] 2021 – BPNN 3:2:3 Sigmoid Linear BP RMSE –

[14] 2021 – FF-DNN – ReLU SELU PDNN, Pooling
function

FA, MAE, RMSE, SoC,
HR SVM, NN-ARIMA, DBN

[44] 2021 – FFNN – ReLU Alpha BP Accuracy, Precision,
Recall, F-score

PSO-KNN, PSO-NN,
PSO-DT, PSO-RF

[10] 2020 – CNN-LSTM – ReLU Linear Adam RMSE, MAE, NRMSE,
F-score

ARIMA, BPNN, SVM,
LSTM, CEEMDAN-ARIMA,

CEEMDAN-BPNN,
CEEMDAN-SVM

[45] 2020 – RNN, CNN – Sigmoid Tanh Adam
Area under the curve,

F-score, Precision,
Recall, Accuracy

Logistic regression, SVM,
LSTM

[46] 2020 – NN-LMS 24:24:24, 24:96:96:4 ReLU ReLU – – –

[47] 2020 – NARX-RNN 2:5:1 Sigmoid Linear
Conjugate

gradient with
Polak-Ribiere

NRMSE, RMSE, MAPE ARMAX
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Table 1. Cont.

Ref. Year Smart Grid Architecture Neural Network Type Neural Network Architecture Activation Functions Training Algorithm Performance Measures Comparison TechniquesHidden Layer Output Layer

[48] 2020 – FFNN 20:38:1 Tanh Linear
Conjugate

gradient with
Polak-Ribiere

MSE RTEP, LBPP, IBR without
ESS

[33] 2020 – IRBDNN – – – – RMSE, MAE, MAPE DNN, ARMA, ELM

[30] 2020 – LSTM-RNN – Sigmoid, Tanh,
ReLU – – Accuracy, Precision,

Recall, F-score GRU, RNN, LSTM

[22] 2020 IEEE 14-bus system CNN – ReLU Sigmoid Adam Precision, Recall,
F-score, Row accuracy SVM, LGBM, MLP

[49] 2019 – FF-BPNN – – – GA MSE, Fitness, Accuracy –

[50] 2019 – RNN Tanh Sigmoid BP MAE, RMSE, MAPE,
Pmean BPNN, SVM, LSTM, RBF

[28] 2019 – CNN-RNN 100:98:49:1 ReLU Softmax MSE, Recall, PTECC CNN, CNN-RNN, LSTM

[51] 2019 – ENN 10:1:1 – – GDM and
Adaptive LR, LM

RMSE, NRMSE, MBE,
MAE, R, Forecast skill

Similarity search algorithm,
ANN, MLP and ARMA,

LSTM

[12] 2019 – FF-DNN, R-DNN 2:5:2 Sigmoid, Tanh,
ReLU

Sigmoid,
Tanh, ReLU LM MAPE

Ensemble Tree Bagger,
Generalized linear

regression, Shallow neural
networks

[31] 2019 – CNN, LSTM 05:10:100 ReLU Softmax –
MCC, F-score,

Precision, Recall,
Accuracy

Logistic regression, SVM

[27] 2019 – ECNN 32:32:1 ReLU Sigmoid,
Softmax Adam MAE, MAPE, MSE,

RMSE AdaBoost, MLP, RF

[23] 2019 IEEE 39-bus New
England test system CNN, LSTM – Sigmoid Tanh GDM Accuracy –

[52] 2019 – FFNN 76:20:1, 92:20:1, 92:20:1 ReLU Sigmoid LM
MSE, Accuracy,

Precision, Recall,
F-score

RF, OneR, JRip,
AdaBoost-JRip, SVM and

NN (without WOA)

[53] 2019 – ECNN – – – – MSE, RMSE, MAE,
MAPE

[54] 2019 – FF-DNN, R-DNN – Sigmoid, Tanh,
ReLU Linear LM MAPE, Correlation

coefficient, NRMSE
ANN, CNN, CRBM,

FF-DNN

[25] 2019 – FF-BPNN – – ReLU GDM
Mean error, MAD,
Percent error, MPE,

MAPE

Classical forecasting
methods

[26] 2019 – FF-DNN 1:5:1, 6:5:1 Sigmoid Linear – MAPE DNN-ELM

[55] 2018 – FFNN – Sigmoid
Nonlinear and

linear
network

LM MSE, R Multilayer ANN Models
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Table 1. Cont.

Ref. Year Smart Grid Architecture Neural Network Type Neural Network Architecture Activation Functions Training Algorithm Performance Measures Comparison TechniquesHidden Layer Output Layer

[56] 2018 – RBF, WRNN 7:4:3 RBF Competitive LM Classification accuracy Pooling Neural
Network, LM

[13] 2018 – WRNN 2:16:16:4 RBF RBF – RMSE –

[57] 2017 – FFNN 7:96:48:24:1 Tanh Gaussian Dlnet, BP MAPE Ten state-of-the-art
forecasting methods

[58] 2017 – FFNN 24:5:1 Sigmoid Sigmoid LM MAPE AFC-STLF, Bi-level,
MI-ANN forecast

[59] 2017 –
Deep learning based

short-term
forecasting

20:30:25:1 ReLU ReLU – RE SVM

[24] 2017 10-node network FFNN, WNN-LQE 8:10:1 Morlet wavelet Sigmoid – SNR
LQE-based WNN,

BPNN, ARIMA, Kalman,
XCoPred algorithms

[60] 2016 – FFNN 3:20:10:3 Sigmoid Linear LM, BR MSE, R LM, BR

[15] 2016 – FFNN 8:10:1 Sigmoid Linear – MAE, MAPE, RMSE, R2,
MSE

GA-MdBP, CGA-MdBP,
CGASA-MdBP

[16] 2015 IEEE 30-bus system FFNN 4:10:1 RBF – SCG supervised
learning MSE, PDF, CDF –

[61] 2015 – FFNN 10:1:20 Tanh Tanh LVQ Mean Error, Maximum
Error, Success % –

[62] 2014 – FFNN 7:(10-15):1 Sigmoid Linear LM R, MAPE –
[17] 2013 – FFNN – – – LM MER, MAE, MAPE –

[63] 2012
Microgrid architecture:
residential smart house

aggregator
BPNN 10:1:1 Tanh Linear LM, SCG Solar insulation and air

temperature –

[64] 2012 IEEE 39-bus New
England test system FF-BPNN 20:10:5:1 Tanh Sigmoid LM, BR Stability –

[6] 2012 IEEE 39-bus New
England test system RBF 30:30:9, 30:30:10 RBF Linear LM

Training Time, Testing
Time, Number of misses,

MSE, Classification
accuracy %

[18] 2011 IEEE 39-bus New
England test system RBF 36:36:1 Gaussian Linear

Training time, Testing
time, Number of misses,

MSE, False alarms %,
Misses %, Classification

accuracy %

Traditional NR method

[65] 2011 Grid-connected PV plant BPNN 16:15:7:1 Sigmoid Linear LM MABE, RMSE, R –

[66] 2011 Medium tension
distribution system RBF 33:119:33, 33:129:33 RBF Linear – MSE, SPREAD –

[67] 2010 – BPNN, FFNN 8:8:30:1 Tanh Linear LM, BR MSE LM,BR,OSS
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3. Mathematical Modeling and Data Description of Four-Node Star Network

In Section 3.1, the mathematical modeling of the four-node star architecture network
is developed based on the equations of motion and binding the electricity price to the grid
frequency. Then, the description of the generated dataset from the final dynamic equation
of DSGC and the correlation analysis between the network parameters are provided.

3.1. Mathematical Modeling and Stability Analysis of Four-Node Star Network

In this section, the mathematical modeling of the four-node star network and the
stability analysis are conducted. The central node (center of the “star”) communicates
directly with the consumer nodes in a star network topology. The consumer nodes are
connected to the central (generation node), enabling bidirectional communication between
each node, which helps them to operate at lower power levels. One of the main advantages
of star topology is that the networks are independent. In case of failure or errors in
one of the consumer nodes, the other consumer nodes are not affected, and the network
operates typically.

The network is formed with one power producer in the center (i.e., generation node)
and three consumers (i.e., consumer node). Star topologies depend heavily on delay and
averaging time. Intermediate delays in a four-node star topology benefit stability, making
it a simple, effective and efficient system [4]. From the literature survey conducted, we
observed that the star and bus topologies were popular. A conclusion was drawn that star
networks used in previous works having similar objectives showed good performance and
can achieve the mathematical modeling for the DSGC system. Thus, the four-node star
topology was chosen for this work, and the mathematical model of the DSGC system was
obtained for the four-node star architecture network given in Figure 5.

3.1.1. Mathematical Modeling

The mathematical model of the DSGC system is obtained for the four-node star
architecture network given in Figure 5. The figure shows that the network is formed
with one power producer in the center (i.e., Generation Node) and three consumers (i.e.,
Consumer Node). The mathematical modeling developed with assumptions, such as
no uncertainties and external disturbances comprises two parts. The first describes the
generator and load dynamics based on equations of motion. The second part is based on
binding the electricity price to the grid frequency [4,5,37,68].

Generation
Node

Consumer
Node

Consumer
Node

Consumer
Node

Figure 5. The architecture of the four-node star network.

The first step in the modeling is applying the energy conservation law. As per the
energy conservation law, the power balance equation is given as follows:

Ps = Pa + Pd + Pt, (1)

where Ps is the power generated from source.
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In (1), Pd is the dissipated energy from the turbine, which is proportional to the angular
velocity square given as,

Pd = Kj(δ̇j(t))2, (2)

where j is the node index (either generator or load), Kj is the friction coefficient of jth node
and δj(t) is the rotor angle of jth node defined as,

δj(t) = ωt + θj(t), (3)

where ω is the grid frequency and θj is the relative rotor angle.
Similarly, in (1), Pa is the accumulated kinetic energy, and Pt is the transmitted power

given as,

Pa =
1
2

Mj
d
dt

(δ̇j(t))2, (4)

Pt = −
4

∑
m=1

Pmax
jm sin

(
δm − δj

)
, (5)

where Mj is the moment of inertia of jth node and Pmax
jm is the maximum capacity of line

between jth and mth node.
By substituting (2), (4) and (5) in (1), Ps

j is obtained as follows:

Ps
j =

1
2

Mj
d
dt

(δ̇j(t))2 + Kj(δ̇j(t))2 −
4

∑
m=1

Pmax
jm sin

(
δm − δj

)
(6)

Now, substituting δj(t) from (3) in (6), d2

dt2 θj(t) is obtained as follows:

d2

dt2 θj(t) = Pj − αj
d
dt

θj(t) +
4

∑
m=1

Kjm sin
(
θm − θj

)
, (7)

where Pj is the generated or consumed power, αj is the damping constant and Kjm is the
coupling strength between jth and mth nodes. These coefficients are computed as follows:

Pj =
Ps

j − Kjω
2

Mj
, αj =

2Kj

Mj
, Kjm =

Pmax
jm

Mjω
. (8)

The final step in the modeling is binding the electricity price to the grid frequency ω,
allowing consumers to adjust their consumption or production. Thus, the electricity price
pj for the jth node is computed as,

pj = pω − c1

∫ t

t−Tj

d
dt

θj(t− τj)dt, (9)

where pω is the electricity price when dθj/dt = 0, c1 is the proportionality coefficient, Tj
and τj are the average and reaction times, respectively.

The power consumed or produced P̂j(pj) at price pj is defined as,

P̂j(pj) ≈ Pj + cj(pj − pω), (10)

where cj is the coefficient proportional to the elasticity price.
For the four-node star network shown in Figure 5, it is assumed that the algebraic sum

of power consumed or generated is equal to zero. Thus, the assumption is given as,

4

∑
j=1

Pj = 0. (11)
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Therefore, the final dynamic equation of DSGC system for the four-node star architec-
ture network is obtained by substituting (7), (9) and (10) in (11) as follows:

d2

dt2 θj(t) = Pj − αj
d
dt

θj(t) +
4

∑
m=1

Kjm sin
(
θm − θj

)
− γj

Tj

(
θj(t− τj)− θj(t− τj − Tj)

)
, (12)

where γj = c1 × cj.

3.1.2. Stability Analysis

In the first stage of analyzing the network’s dynamical stability around the grid’s
steady-state operation, the fixed points of the network are computed by solving d2

dt2 θj = 0

and d
dt θj = 0, which are obtained as,

(
θj(t),

d
dt

θj(t)
)
= (θ∗j , ω∗j ). (13)

The above equation shows that the fixed point exists only if the grid has an adequate
coupling strength coefficient Kjm to transmit the power from the generation nodes to the
consumer nodes. Furthermore, in the obtained fixed point, the value of ωj is d

dt θj, which is
equal to zero. Thus, the value of ω∗j = 0. The fixed points highlight that it only depends on
the value of θj, which must be analyzed to determine the stability.

Next, the Jacobian matrix of the system is obtained to compute the eigenvalues that
determine the network’s stability. Thus, the Jacobian matrix J is calculated as,

J =

( ∂
∂θj

( d
dt θm)

∂
∂ωj

( d
dt θm)

∂
∂θj

( d
dt ωm)

∂
∂ωj

( d
dt ωm)

)
. (14)

The eigenvalues λ of the above Jacobian matrix determine the network’s stability.
The matrix has infinitely many solutions. However, only a finite number of solutions
can have a real positive component (Re(λ) ≥ 0), determining the network’s instability.
In addition, the negative real part (Re(λ) < 0) indicates stability. Therefore, the network’s
stability condition is summarized as follows:

Stability =

{
Stable, if Re(λ) < 0,
Unstable, if Re(λ) ≥ 0.

(15)

3.2. Data Description of Four-Node Star Network

From the differential Equation (12), it is to be noted that the parameters τj, Pj and γj
are the predictive features of the network. The values of these parameters used for the
simulation are shown in Table 2 [68]. The value of j ranges from 1 to 4, in which index 1 is
the generator node, and the remaining indices (2, 3 and 4) are consumer nodes. Further,
the values of simulation constants αj, Tj and Kjm used in the simulation are given in Table 2.
The range of Pj (j ∈ (2, 3, 4)) at the consumer nodes are also shown in Table 2. The value of
P1 at the generating node in the model is computed as,

P1 =
4

∑
j=2

Pj. (16)

The generated dataset contains 60,000 samples for all the 12 predictive variables and
one dependent variable, Re(λ). The predictive features are shown in Figure 6a–c, and the
dependent variable Re(λ), whose values are the real part of the roots from the dynamic
equation of DSGC system in (12), is shown in Figure 6d. The dataset is zoomed in, and the
region of the first 300 samples is shown in the figures.
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Table 2. Predictive features and simulation constants used for data generation of four-node star network.

Category Parameter Range/Value

Predictive features
τj [0.5, 10] s
Pj [−2.0,−0.5] s−2

γj [0.05, 1] s−1

Simulation constants
αj 0.1 s−1

Tj 2 s
Kjm 8 s−2
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Figure 6. Dataset of predictive and dependent features of four-node star network. (a) Reaction time
τj; (b) Produced/consumed power Pj; (c) Elasticity coefficient γj; (d) Re(λ).

3.3. Correlation Analysis

The Pearson’s correlation matrix between the predictive features of the network (τj, Pj,
γj) and dependent variable Re(λ) is shown in Figure 7. As reported in [69], the interpreta-
tion from the Pearson’s correlation coefficients is given in Table 3. Therefore, from Figure 7
and Table 3, it can be observed that there is a moderate negative correlation coefficient of
−0.579 between P1 and its sum components (P2, P3 and P4). In addition, there is a weak
positive correlation between dependent variable Re(λ), τj and γj of around 0.28 and 0.29,
respectively. In contrast, there is negligible correlation between dependent variable Re(λ)
and Pj. Furthermore, it is worth highlighting that there is a negligible correlation between
the predictive features (τj, Pj, γj) of the network.

As Pearson’s correlation matrix describes the strength and associated direction be-
tween the variables, it can be concluded that the relationship between any two predictive
features or between predictive features and the dependent variable is not very strong.
Therefore, in this analysis, all the parameters are considered for developing and evaluating
the performance of the proposed model (refer to Section 4). In addition, only the power
parameters have been considered for developing and assessing the performance of the
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proposed model that handles the missing inputs since there is a moderate correlation
between P1 and its sum components compared to other parameters (refer to Section 5).

1 2 3 4 P1 P2 P3 P4 1 2 3 4 Stability

1

2

3

4

P1

P2

P3

P4

1

2

3

4

Stability
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-0.003 0.006

-0.003 0.006 0.006

0.027 0.003 0.003 0.003
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-0.016 -0.000 -0.004 -0.000 -0.579 0.003
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0.007 0.002 0.002 0.010 0.000 0.001 0.001 -0.002 0.005 -0.007 -0.007

0.276 0.283 0.283 0.283 0.010 -0.006 -0.006 -0.006 0.283 0.294 0.294 0.294

1.0

0.5

0.0

0.5

1.0

Figure 7. Pearson’s correlation matrix of the study variables.

Table 3. Interpretation of Pearson’s correlation coefficients.

Coefficient Interpretation

±0.90–±1.00 Very strong correlation
±0.70–±0.89 Strong correlation
±0.40–±0.69 Moderate correlation
±0.10–±0.39 Weak correlation
0.00–±0.09 Negligible correlation

A detailed research flowchart of the complete smart grid stability design model is
portrayed in Figure 8.
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FFNN Using Complete Input Data 
(refer to Figure 9)
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(refer to Figure 12)

Solving the differential equation (12) using the constants in Table 2, the 12 predictive 
variables and one dependent variable are obtained (refer to Figure 6)
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Figure 8. Research flow diagram for the design of smart grid stability model.
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4. Development and Performance Evaluation of Feedforward Neural Network

This section develops and evaluates the performance of an FFNN to predict the
stability of the smart grid. The methodology for preparing a prediction model using
complete input data is shown in Figure 9. The figure shows that data collection, analysis
and pre-processing occur first. The input data is identified for the next step, which includes
the prediction model to predict stability using the input data. The dataset used in this study
consists of 60,000 samples.

The neural network used to predict stability utilizing the input data is a three-layered
FFNN as shown in Figure 10. The first layer in the architecture indicates the input layer,
which consists of 12 nodes equivalent to the 12 input parameters τj, Pj, γj ∀ j ∈ {1, 2, 3, 4}.
The number of nodes in the middle layer, i.e., the hidden layer ‘Nh,’ is 10, which can be
calculated using the number of nodes in input layer ‘Ni’ as follows [70]:

Nh = 10 +
1

Ni
. (17)
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Train Neural Network Model

Input Complete Testing 
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Stability Prediction With Complete Input Data Model
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Figure 9. Flow chart of implementation of prediction model with complete input data.
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Figure 10. The architecture of FFNN for predicting smart grid’s stability.
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The third layer represents the output layer, consisting of 1 node, the output parameter
(Stability). The dataset is divided into 80% and 20% for training and testing. The neural
network is trained using the Levenberg–Marquardt algorithm. The tansig and purelin
activation functions are utilized in the hidden and output layers. The training algorithm
and activation functions are chosen as per the results of the comprehensive literature review
conducted as shown in Figure 4. The training and testing outputs for the neural network
are shown in Figure 11a,b. The neural network performance is measured in terms of R2

and MSE [71–74]. The model has achieved an R2 value of 0.9739 during training and 0.9738
during testing. Additionally, the model achieved MSE values of 0.0077 during both training
and testing. Thereby, the accurate performance of the prediction model is depicted as the
R2, and the MSE values are close to 1 and 0.
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Figure 11. Performance comparison of stability prediction (a) training and (b) testing.

5. Development and Performance Evaluation of Feedforward Neural Network to
Handle Missing Input

This section develops and evaluates a novel prediction model to handle missing
inputs. The flowchart for the methodology adopted for predicting the missing input data is
represented in Figure 12. Herein, four cases of missing inputs are taken, described in the
flow chart as Case 1, Case 2, Case 3 and Case 4. This flowchart is represented in three stages.

The first stage includes data collection, analysis, pre-processing and defining the
missing inputs. A prediction model is prepared using a sub-neural network to handle
the missing inputs in the second stage. After the missing input parameters are predicted,
the prediction model that handles missing inputs is prepared to predict stability. The pri-
mary neural network is an FFNN trained using the Levenberg–Marquardt algorithm for
each case.

The tansig and purelin transfer functions are used in the hidden and output layers.
The dataset consists of 60,000 samples, out of which 80% are used for training and 20%
for testing. The input layer consists of 12 nodes corresponding to the 12 input parame-
ters. The output layer consists of one node corresponding to the one output parameter.
The number of nodes in the middle layer, i.e., the hidden layer ‘Nh’, is 10, which can be
calculated using (17).

Standard specifications for each sub-neural model in the four cases are as follows:
tansig and purelin transfer functions are used in the hidden and output layers. The dataset,
consisting of 60,000 samples, is divided into 80% for training and 20% for testing. The train-
ing algorithm used for the sub-neural network is the Levenberg–Marquardt algorithm.
Different missing input variables are considered in each layer for each of the four cases,
as explained underneath.
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Figure 12. Flow chart of implementation of prediction model that handles missing input data for the
four cases.

5.1. Case 1

One missing input variable is considered in the first case, which will be predicted
using a sub-neural network. The sub-neural-network model for this section is an FFNN
that consists of three layers (refer to Figure 13). The first input layer consists of three nodes
composed of three nodes similar to the three input parameters: accumulated power (P2),
dissipated power (P3) and transmitted power (P4). The last layer consists of one output
node composed of one output parameter, i.e., source power (P1). The number of nodes in
the hidden layer is 10, computed using (17).

The training and testing outputs for the case 1 sub-neural network is shown in
Figure 14a,b for 60,000 samples and zoomed in for 300 samples as shown in the bottom
subplot. The neural network performance is measured in terms of R2 and MSE. The model
achieved an R2 value of 0.9992 during training and testing. Additionally, the model
achieved MSE values of 0.0008 during training and 0.0008 during testing.

The primary neural network was trained to predict stability using the predicted output
variables. The testing output variables of the sub-neural network are substituted in the
primary neural network. Finally, the leading neural network is tested after predicting the
missing input variables. The training and testing outputs for the case 1 primary neural
network is shown in Figure 15a,b for 60,000 samples and zoomed in for 300 samples as
shown in the bottom subplot. The neural network performance is measured in terms of
R2 and MSE. The model achieved an R2 value of 0.9721 during training and 0.8413 during
testing. Additionally, the model achieved MSE values of 0.0080 during training and 0.0085
during testing.
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Figure 13. The architecture of FFNN developed for case 1.
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Figure 14. Performance of the sub-neural network for case 1 during (a) training and (b) testing.
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Figure 15. Performance of the primary neural network for case 1 during (a) training and (b) testing.
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5.2. Case 2

Case 2 involves two missing input variables for stability prediction using FFNN as
shown in Figure 16. The network shows that the input layer consists of two nodes relative
to the input parameters: the source and transmitted powers (i.e., P1 and P4). The output
layer has two nodes corresponding to accumulated and dissipated power (i.e., P2 and P3).
The number of nodes in the hidden layer is 10 (refer to (17)). In the next step, the testing
output variables of the sub-neural network are substituted and trained in the primary
neural network model.

Upon prediction of the missing input variables, the primary neural network is tested.
The MSE and R2 performance measures are used to handle the missing data for the pre-
diction model. The sub-neural-network model achieved MSE values of 0.1661 during the
training and 0.1667 during testing. The R2 values are 0.7082 during training and 0.7072 dur-
ing testing. The sub-neural network’s performances during training and testing for the first
300 samples are shown in Figure 17a,b, respectively.
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Figure 16. The architecture of FFNN developed for case 2.
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Figure 17. Performance of the sub-neural network for case 2 during (a) training and (b) testing.
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The next step of case 2 involves training the primary neural network by utilizing
the obtained testing output variables from the sub-neural network that is also measured
in terms of MSE and R2 values. The neural network attains an MSE of 0.0077 during
training and testing. Furthermore, the R2 values have obtained 0.9738 during the training
and testing phases. The final developed model’s performance for all the 60,000 samples
and the first 300 samples of both the phases are represented in Figure 18a,b, respectively.
The response in plots of the final leading model showcases the best prediction and tracking
ability at both phases. The MSE and R2 values relative to 0 and 1, respectively, indicate that
the final proposed model for this case gives a superior performance.
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Figure 18. Performance of the primary neural network for case 2 during (a) training and (b) testing.

5.3. Case 3

Further, Case 3 uses two missing input variables for a feedforward sub-neural network
for stability prediction as shown in Figure 19. The input layer has two nodes relative
to the two input parameters: the source power and accumulated power (i.e., P1 and P2).
The output layer has two nodes corresponding to the two output parameters, dissipated and
transmitted powers (i.e., P3 and P4). The number of nodes in the hidden layer is 10. In the
next step, the testing output variables of the sub-neural network are substituted and trained
in the primary neural network model. Upon prediction of the missing input variables,
the primary neural network is trained. The MSE and R2 performance measures are used to
handle the missing data for the prediction model. The sub-neural-network model achieved
MSE values of 0.1659 during the training and 0.1673 during the testing phases.

The R2 values are found to be 0.7085 and 0.7061 during training and testing. The sub-
neural network’s performance during training and testing for the first 300 samples is shown
in Figure 20a,b, respectively.

Next, the primary neural network was trained by utilizing the obtained testing output
variables from the sub-neural network measured using MSE and R2 values. The neural
network attained an MSE of 0.0083 during training and 0.0082 during testing. Furthermore,
the R2 values obtained were 0.9720 during training and 0.9721 during the testing phases.
The final developed model’s performance for the 60,000 samples and the first 300 zoomed-
in samples at both stages are represented in Figure 21a,b, respectively. The response in plots
of the final leading model showcases the best prediction and tracking ability at both phases.
The MSE and R2 values relative to 0 and 1, respectively, indicate that the final proposed
model for this case gives a satisfactory performance.
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Figure 19. The architecture of FFNN developed for case 3.
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Figure 20. Performance of the sub-neural network for case 3 during (a) training and (b) testing.
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Figure 21. Performance of the primary neural network for case 3 during (a) training and (b) testing.
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5.4. Case 4

Finally, the study of case 4 considers one missing input variable that is predicted using
a sub-neural network as shown in Figure 22. Here, the first input layer has three nodes
representing the input parameters: the source power, accumulated power and dissipated
power (i.e., P1, P2 and P3). The last layer, the output layer, is composed of one node
corresponding to the transmitted power (i.e., P4). The number of nodes in the hidden layer
is 10. The primary neural network was trained to use the predicted output variables to
predict the stability after replacement in the primary neural network.

Once the missing input variable is predicted, the primary neural network is trained
similarly to previous cases. The model’s performance handling the missing data is measured
using R2 and MSE. The sub-neural-network model achieved MSE values are 0.0001 in during
training and testing and an R2 value of 0.9999 during the training and testing phases. The per-
formance of the sub-neural-network model developed for all the 60,000 samples and the first
300 samples zoomed in is depicted in Figure 23a,b for training and testing, respectively.
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Figure 22. The architecture of FFNN developed for case 4.
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Figure 23. Performance of the sub-neural network for case 4 during (a) training and (b) testing.
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Further, the primary neural network was trained similarly to other cases by utilizing
the testing output variables from the sub-neural network. The model obtains an MSE of
0.0084 during training and 0.0084 during the testing phase. The R2 values were 0.9717 dur-
ing training and 0.9715 during testing. The performance of the final developed neural
network having 60,000 samples and the first 300 samples during both training and testing
are shown in Figure 24a,b, respectively. The model’s response offers both phases the best
training and prediction ability. The MSE values obtained are close to 0, and the R2 values
are relative to 1, highlighting that the proposed model is accurate for stability prediction.
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Figure 24. Performance of the primary neural network for case 4 during (a) training and (b) testing.

5.5. Summary

Table 4 depicts the performance evaluation of the developed FFNN model using
complete input data and the model that handles the missing inputs (Case 1, Case 2, Case 3
and Case 4). The R2 and MSE results of the sub-neural-network model of case 4, with one
missing input variable: transmitted power (i.e., P4), shows the model’s best training and
prediction ability in both phases. For all the sub-neural-network models, the R2 value has
achieved at least 70% and 97% for the primary neural network. We noticed that the MSE
values obtained are close to 0. Furthermore, the R2 values are relative to 1, which indicates
the excellent performance of all the models.

Table 4. Performance evaluation comparison of the FFNN with complete input data and the FFNN
that handles the missing data.

Category Case Network Stage R2 MSE

With Complete
Input Data - Primary Training 0.9739 0.0077

Testing 0.9738 0.0077

Model that
Handles
Missing Input
Data

Case 1
Sub Training 0.9992 0.0008

Testing 0.9992 0.0008

Primary Training 0.9721 0.0080
Testing 0.8413 0.0085

Case 2
Sub Training 0.7082 0.1661

Testing 0.7072 0.1667

Primary Training 0.9738 0.0077
Testing 0.9738 0.0077

Case 3
Sub Training 0.7085 0.1659

Testing 0.7061 0.1673

Primary Training 0.9720 0.0083
Testing 0.9721 0.0082

Case 4
Sub Training 0.9999 0.0001

Testing 0.9999 0.0001

Primary Training 0.9717 0.0084
Testing 0.9715 0.0084
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6. Conclusions

The primary goal of this paper was to tackle the issue of stability prediction when
there are missing variables involved. This missing variable could be due to the failure of a
sensor, network connection or other system. This paper successfully solved this issue by
proposing a novel FFNN model that handles missing inputs. The model’s performance was
evaluated on a four-node star network. In this study, four cases of missing input variables
were taken.

For each case, a sub-neural network was first prepared to predict the missing variables,
and then these predicted values were fed into the primary neural network to predict the
stability. Among all four cases, case 4 showed the best performance with an MSE value of
0.0001 and an R2 value of 0.9999 during training and testing for the sub-neural network.
In addition, the primary network showed an MSE value of 0.0084 and an R2 value of 0.9717
during training and 0.9715 during testing. For all the four cases, the models achieved an
MSE close to 0 and an R2 value close to 1 thus indicating the excellent performance of the
prediction models.

However, this work was limited to predicting the power parameter using a sub-neural
network because the algebraic sum of the power consumed or generated was assumed to be
zero, and uncertainties and disturbances were not considered. Moreover, the reaction time
and price elasticity parameters are highly nonlinear in the considered dataset. As a result,
this proposed model faces a shortcoming in predicting the missing variables (reaction time
and price elasticity) using a sub-neural network that predicts the stability using a primary
network. Therefore, extending the proposed model to predict these highly nonlinear input
parameters will be addressed in our future work.
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Adaptive LR Adaptive Linear Regression
AFC Accurate and Fast Converging
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
ARMAX Autoregressive-Moving-Average Model With Exogenous Inputs
BiGRU Bidirectional Gated Recurrent Unit
BP Back Propagation
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BPNN Back Propagation Neural Network
BR Bayesian Regularization
C-DDPG Centralized Based Deep Deterministic Policy Gradient
CDF Cumulative Distribution Function
CEEMDAN Complete Ensemble Empirical Mode Decomposition Adaptive Noise
CGA Chaos Search Genetic Algorithm
CGASA Chaos Search Genetic Algorithm Furthermore, Simulated Annealing
CNN Convolutional Neural Network
CRBM Convolutional Restricted Boltzmann Machine
DBN Deep Belief Network
DNN Deep Neural Network
DPCS Distributed Power Consumption Scheduling
DSGC Decentral Smart Grid Control
DT Decision Tree
ECNN Enhanced Convolutional Neural Network
ELM Extreme Learning Machine
ENN Elman Neural Network
ESS Energy Storage Systems
FA Forecast Accuracy
FF Feedforward
FFNN Feedforward Neural Network
FS Forecast Skill
GA Genetic Algorithm
GBR Gradient Boosting Regression
GDM Gradient Descent Method
GRU Gated Recurrent Unit
HR Hit Rate
IBR Inclining Block Rate
IRBDNN Iterative Resblock Based Deep Neural Network
KNN k-Nearest Neighbors
LBPP Load Based Pricing Policy
LGBM Light Gradient Boosting Machine
LIF Leaky Integrate and Fire Neuron
LM Levenberg–Marquardt
LMS Lagrange Multiplier Selection
LQE Link Quality Estimation
LSSVR Least Squares Support Vector Regression
LVQ Learning Vector Quantization
MABE Mean Absolute Bias Error
MAD Median Absolute Deviation
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MBE Mean Biased Error
MCC Matthews Correlation Coefficient
MdBP Modified Back Propagation
MER Mean Error Rate
MI-ANN Mutual Information Artificial Neural Network
MLP Multi-Layer Perceptron
MLR Multi-variable Linear Regression
MLSTM Multiplicative Long Short-Term Memory
MNE Mean Normalized Error
MPE Mean Percentage Error
MSE Mean Square Error
Nadam Nesterov-accelerated Adaptive Moment Estimation
NARX Nonlinear Autoregressive Network With Exogenous Inputs
NN Neural Network
NRMSE Normalized Root Mean Square Error
PAR Peak To Average Ratio
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PDF Probability Density Function
PDNN Pooling Based Deep Neural Network
PICP Prediction Interval Coverage Probability
PINC Prediction Interval Nominal Confidence
PSO Particle Swarm Optimization
PTECC Proportion Of Total Energy Classified Correctly
PV Photo Voltaic
R Correlation Coefficient
RBF Radial Basis Function
RBFNN Based Radial Basis Function
RDNN Recurrent Deep Neural Network
RE Relative Error
ReLU Rectified Linear Activation Unit
RES Renewable Energy Sources
RF Random Forest
RL Reinforcement Learning
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RTEP Real Time Electrical Pricing
RTP Real Time Price
SAE Sparse Auto Encoder
SCG Scaled Conjugate Gradient
SMP Spot Market Price
SNN Spiking Neural Network
SNR Signal to Noise Ratio
SoC Speed of Convergence
SPREAD Spread of Radial Basis Functions
SSA Salp Swam Algorithm
STLF Short Term Load Forecasting
STW Sliding Time Window
SVM Support Vector Machine
SWAA Sample Weighted Average Approximation
Tanh Hyperbolic Tangent Function
WNN Wavelet Neural Network
WOA Whale Optimization Algorithm
WRNN Wavelet Recurrent Neural Network
XGB Extreme Gradient Boosting
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