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ABSTRACT The significant increase in the number of individuals with chronic ailments (including the 
elderly and disabled) has dictated an urgent need for an innovative model for healthcare systems. The 
evolved model will be more personalized and less reliant on traditional brick-and-mortar healthcare 
institutions such as hospitals, nursing homes, and long-term healthcare centers. The smart healthcare system 
is a topic of recently growing interest and has become increasingly required due to major developments in 
modern technologies, especially in artificial intelligence (AI) and machine learning (ML). This paper is 
aimed to discuss the current state-of-the-art smart healthcare systems highlighting major areas like wearable 
and smartphone devices for health monitoring, machine learning for disease diagnosis, and the assistive 
frameworks, including social robots developed for the ambient assisted living environment. Additionally, 
the paper demonstrates software integration architectures that are very significant to create smart healthcare 
systems, integrating seamlessly the benefit of data analytics and other tools of AI. The explained developed 
systems focus on several facets: the contribution of each developed framework, the detailed working 
procedure, the performance as outcomes, and the comparative merits and limitations. The current research 
challenges with potential future directions are addressed to highlight the drawbacks of existing systems and 
the possible methods to introduce novel frameworks, respectively. This review aims at providing 
comprehensive insights into the recent developments of smart healthcare systems to equip experts to 
contribute to the field.  

INDEX TERMS Smart Healthcare, Internet of Things, Artificial Intelligence, Machine Learning, Ambient 
Assisted Living, Social Robots, Software Integration Architecture.

I. INTRODUCTION 
With projections of 22% of the population reaching the age 
60 or more by 2050 [1], people affected by chronic diseases 
are growing along with health-related emergencies, therefore 
resulting in a higher pressure on the healthcare industry [2], 
[3]. With a decline in the ratio between working-age people, 
there are fewer professional healthcare workers to care for 
the increase in demand. Besides, the cost of said health care, 
medications, and medical devices continuously soar, making 
it harder to cover such costs for the average citizen as the 
need for more caregivers and healthcare facilities increases to 
with-stand the increase in demand [4]. Combined, these 
conditions call for cheaper, more inclusive, and better health 

care solutions. A great candidate for such a situation is 
utilizing the recent advancements in smart and miniaturized 
sensors, communication technologies, and artificial 
intelligence to provide technological solutions at an 
affordable price to the broadest range of the population 
without sacrificing the quality of care. 

The Internet of Things (IoT) [5]–[7] has been steadily 
increasing in popularity over the past years. Due to the 
advancements in communication technologies and speed of 
data transfer, the ability to transmit large amounts of data has 
grown drastically. In addition, more robust and advanced 
storage and processing capabilities provided by big data 
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analytics [8], [9], and cloud technologies [10], [11] opened 
the doors for new applications and markets for IoT in real-
time analytics and predictive modelling. As a result of the 
earlier described advancements with combining g smart 
sensors, actuators, and data analytics in an IoT environment 
for real-time and continuous healthcare brings great promise 
to the healthcare industry. The field, called the Internet of 
Health Things (IoHT) [12], [13] or the Internet of Medical 
Things (IoMT) [14], [15] offers the potential of transforming 
the healthcare paradigm. The method which is pursued in 
research and practice can be divided into several areas. First, 
smart sensors are combined in the IoMT environment to 
continuously monitor health vitals using wearable devices 
[16]–[21] and smartphone solutions such as those proposed 
by [22]–[25]. After the data is collected using smart sensors, 
machine learning techniques interpret the data and present 
predictive analytics such as predicting illnesses [26]–[28]. In 
addition, other algorithms are used to keep track of chronic 
conditions such as diabetes [29]–[31] and heart diseases [32], 
[33] and detect abnormalities in the patient’s health. 

 One of the main drivers for smart healthcare adoption is 
the increasing ratio of older adults in societies worldwide. 
Consequently, ambient assisted living focuses on creating 
environments for older adults that integrate smart healthcare 
techniques for better care without human intervention. Given 
that around 90% of older adults prefer staying at their own 
homes, many solutions are based on smart home systems 
such as those proposed in [34]–[37]. User studies [36], [38], 
[39], however, uncover the importance of including robotic 
agents capable of social interactions with the user to provide 
both psychological and physical assistance to older adults. 
Several studies tackle using robotic agents for the care of 
older adults [39]–[41], while others propose taking a step 
further by integrating such robots in the ambient assisted 
living (AAL) environments with other smart sensors [42]–
[44]. Integrating various sensors, actuators, and user 
interfaces requires rigorous work on a scalable and 
personalization to different user needs. Therefore, studies 
such as [42], [45], [46] attempt to formalize different 
architecture to tackle this problem and create an integrated 
smart healthcare. 

The concept of fog and edge computing play a vital role in 
smart healthcare by reducing the computing burden of cloud 
server and ensuring real-time healthcare services with fastest 
response time. Fog computing is heavily decentralized and 
serves as a bridge between end devices and the cloud for 
computing, storage, and networking. The fundamental idea 
behind fog computing is to move data center tasks to fog 
nodes located at the network's edge. The fog devices carry 
out the tasks located at the network's edge and achieve high 
data transfer rate and low response time. The data in 
traditional healthcare systems is analyzed in the cloud server 
which results in high latency and high bandwidth 
requirements for large data. In the fog enabled healthcare 
framework, the data from the IoT devices is collected and 

processed in the fog layer that minimizes the latency and 
ensures real-time medical care [152]. Edge computing refers 
to the installation of computing and storage resources at the 
point of data is being acquired and analyzed. This framework 
includes sensors for data collection and edge servers for 
secure real-time data processing. Edge computing enables 
intelligent, and real-time healthcare services that address 
energy efficiency and latency requirements through the use 
of IoT devices and 6G environments [153], [154]. The edge 
computing schemes offer potential solutions to increase 
reliability and responsiveness in decentralized applications 
including healthcare as the mapping of IoT devices and 
sensors along with the management of resources are critical 
components for a smart healthcare platform [155]. 

With the rapid increase of IoT devices, huge amounts of 
electronic health data are generated on day to day basis. As 
these data are the secure information for the patients, it is 
quite necessary to keep the data more secure. The integration 
of blockchain and smart healthcare has the potential to 
mitigate the shortcomings of conventional smart healthcare 
in data sharing, data security, and privacy maintenance [156].  
The blockchain technology works by linking secure blocks of 
data together using an encrypted data records. Here, the data 
is kept in synchronized database systems that are recreated 
with no need for a centralized administrator. It provides 
effective data collecting while ensuring system security 
because it is a distributed system and data are disseminated 
across a network. Although several works have already been 
done to ensure the security and privacy of the health data, 
some of the most relevant architectures that are used for 
ensuring the security of the medical data in smart healthcare 
using blockchain technology are found from [157], [158], 
[159]. The authors of [157] proposed a framework in the 
healthcare environment that is able to share data securely 
using the consortium blockchain through cryptographic 
primitives. The data preservation scheme for electronic 
health data with the use of blockchain technology is 
discussed in [158] where cryptographic techniques are 
implemented to obtain data privacy. An architecture named 
BMPLS is developed in [159] for telehealth systems to 
obtain multi-level location privacy through order-preserving 
encryption technique. 

The goal of this paper is to explore the state-of-the-art 
smart healthcare systems that highlight the significant areas 
of research, including wearable and smartphone-based health 
monitoring, machine learning for predictive analytics, and 
assistive frameworks developed for assisted living 
environments, including social robots. The main 
contributions of the paper can be summarized as follows: 

 Provide a systemic review of state-of-the-art 
research in smart medical devices, machine learning 
for disease prediction, AAL, and software 
architectures. 

 Compare approaches to each problem, highlight 
their advantages and challenges, and present 
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recommendations for improvement in future 
studies. 

 Present a holistic overview of the smart healthcare 
field to provide a complete view of how 
technologies in different areas can be combined to 
accelerate smart healthcare. 

The overall workflow of the reviewed systems is shown in 
Figure 1. In the Figure, the comprehensive review of smart 
healthcare systems is divided into three major areas, namely: 
health monitoring, disease diagnosis, and supportive devices 
in AAL. Additionally, the software integration architectures 
are described in this review. The health monitoring 
prototypes are divided according to wearable devices or 
smartphones, mentioned in Section II. Three major diseases, 
like COVID-19, heart disease, and diabetes detection 
frameworks based on machine learning algorithms, are 
demonstrated throughout Section III. Section IV discusses 
the assistive prototypes in AAL, the supportive tools in smart 
homes, and social robots. The major directions in creating 
software architecture for smart healthcare are discussed in 
section V. Section VI presents an open discussion of the 
reviewed studies and guidelines for areas of future work. 
Finally, section VII concludes the study and summarizes the 
main key points. 

 
II. HEALTHCARE MONITORING DEVICES IN IOT 
It has been commonly recognized as the Internet of Things is 
used as a possible solution to relieve the stresses on 
healthcare infrastructures and has become a prominent 

research issue in recent times [47]–[49]. Health monitoring 
can be ensured through wearable sensors and smartphone 
applications. A broad pipeline of a health monitoring system 
based on wearable devices is shown in Figure 2. Various 
sensors collect data from patients and transfer it to an 
edge/fog/cloud server for processing through Wi-Fi or LoRa 
gateway. The health status of the patients is monitored 
through physicians and their family members through several 
user interface tools like web or mobile applications. In some 
cases, emergency services are deployed to handle critical 
situations of the patients. The significant developments of 
health monitoring through IoT are described in this section, 
digging deeper into the details of implementation and 
technologies utilized. 

A. WEARABLE DEVICES FOR HEALTH MONITORING 
Smart healthcare services using wearable sensors provide an 
appropriate and cheaper alternative to the costly hospital 
environment [16]–[19]. These systems enable medical 
professionals to screen the significant symptoms of the 
patients, evaluate the general health of the users, and detect 
abnormalities remotely. 

Recently, Islam et al. [20] developed a smart healthcare 
system that monitored patients’ health using five sensors: two 
sensors (heart rate sensor and body temperature sensor 
(LM35)) for patient condition monitoring and three sensors 
(room temperature sensor (DHT11), CO sensor (MQ-9), and 
CO2 sensor (MQ-135)) for detection of the living  

 

 
Figure 1. Overall workflow of the reviewed systems of smart healthcare.
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environment condition. Here, the processing device is 
ESP32, and Wi-Fi is used as communication media to 
transfer data from the patient’s side to a web server. 
However, the developed prototype is not adequately 
manufactured for application purposes. Afterward, the 
authors of [50] proposed a wearable remote healthcare 
monitoring (RHM) framework that can monitor the heart rate 
(HR), body temperature and detect falls. The proposed 
scheme used NodeMCU as a processing device and heartbeat 
sensor, body temperature sensor (LM35), and accelerometer 
(MPU 6050) as sensing elements. The ThingSpeak web 
service is used for data visualization to aid physicians in 
monitoring the patients from remote locations with a hand-
held device as a prototype. In another study, the authors of 
[51] demonstrated a healthcare monitoring framework 
utilizing the concept of IoT and cloud computing. The 
prototype used an HR sensor, ECG, SpO2, and body 
temperature sensors for monitoring the corresponding heart 
rate, ECG, oxygen saturation, and body temperature of the 
patients, respectively. Two microcontrollers (Arduino and 
NodeMCU) were utilized to collect data from sensors and 
transfer data from edge devices to the cloud using Wi-Fi. 
Blynk cloud service was used to monitor the patients’ health 
parameters from remote locations. However, the system is 
not able to handle the emergencies of the patients. 

Chigozirim et al. [52] introduced a patient monitoring 
prototype that allows the doctors to monitor the patient’s 
status through the developed tool using IoT. In this system, 
HR and body temperature are monitored through pulse and 
body temperature sensors. ATmega328P microcontroller and 
NodeMCU are used as edge devices, and the collected data 
from sensors are transmitted to the Internet through a Wi-Fi 
connection. In addition, the doctors can check the patient’s 
condition using LCD. However, the developed system has 
not been entirely fabricated for real-time tests. In another 
research, Mohapatra et al. [53] demonstrated a smart 
healthcare management framework in IoT and cloud services 
to ensure the patient’s condition monitoring from remote 

locations. The proposed scheme utilized HR and temperature 
sensors to perceive the data from patients, and an Arduino is 
used as an edge device connected to sensors and used to 
transmit data to the cloud through Wi-Fi. The doctors can 
easily connect with the cloud server through any internet-
connected devices to check the patient status and suggest 
proper medications in an emergency. However, no security 
concerns are mentioned here for the transmitted data. Further, 
Swaroop et al. [54] developed a framework for basic 
symptoms monitoring in IoT environments. Multiple 
channels like Wi-Fi, messaging services, and mobile 
applications ensure a reliable link between the sensors for 
data transmission. The major hardware components utilized 
here are sensors to measure blood pressure, heart rate, body 
temperature, and Raspberry Pi 3. The prototype is developed 
in a hand-held form. However, the latency for the Wi-Fi 
communication channel is comparatively high (125.95 
second average). Afterward, Al-khafajiy et al. [55] 
introduced a health monitoring framework based on wearable 
sensors for older people that enables the patients to take 
healthcare facilities from their home environment. The 
sensors used in this framework are pulse, temperature, blood 
oxygen, and blood glucose sensors. All the components are 
connected to Arduino UNO, and the collected data are sent to 
the patient’s mobile application through a Bluetooth module. 
Finally, the smartphone application is used as a gateway to 
send the data to the cloud server. The doctors can easily 
monitor the sensors data and patient’s record through the 
developed monitoring platform. However, no data analytics 
tools are used for automated decisions. 

In another work, Semwal et al. [56] presented a cost-
effective and portable healthcare platform to ensure essential 
health services from remote locations. The sensory elements 
utilized in this system are ECG, pulse oximeter, body 
temperature, and blood pressure sensors. ATmega328P 
microcontroller and Bluetooth module are used for data 
collection and transmission respectively. LabVIEW tool is 
utilized for data visualization in the cloud server. The 

 

 

FIGURE 2. A general pipeline of a health monitoring system based on wearable devices. 
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proposed prototype provides the offline accumulation of data 
from various sensors in low network connectivity that would 
be updated to cloud accessibility. However, no security 
measures are taken into consideration in this system. 
Afterward, Kumar et al. [57] introduced a smart healthcare 
monitoring system where patients and doctors can interact 
through a camera. The health parameters from input sensors 
(HR and temperature sensor) are sent to the processing 
module (Raspberry Pi) and displayed on LCD. The processed 
data are transmitted to the web server using an internet 
connection that assists physicians in monitoring the patient 
status in real-time. However, the developed system is linked 
to a limited number of sensors which were not enough to 
monitor a patient’s complete status. Furthermore, Wan et al. 
[21] presented a wearable health monitoring framework that 
assists doctors in monitoring the patients in real-time through 
an IoT network. In this system, blood pressure, heartbeat, and 
body temperature sensors are used in the sensing node, and 
Arduino is used as an edge device. All the collected data are 
transmitted via Wi-Fi to the cloud server using the body area 
sensor network. The physicians can monitor the patients 
through their own devices like a laptop. However, the 
developed prototype did not mention any solutions for 
emergency cases. 

Table 1 summarizes the developed health monitoring 
systems considering some properties like the used sensors 
and edge devices, the communication channel, the data 
visualization tools for ensuring the real-time monitoring, and 
comments of each developed system. 

 B. SMARTPHONE SOLUTIONS FOR HEALTH 
MONITORING 
The growing penetration of mobile phones and integrated 
sensors, and advanced communication technologies make it 
an appropriate infrastructure that allows continuous and 
virtual monitoring of patients' health. The built-in sensors in 
smartphones for health monitoring are a camera, 
accelerometer, gyroscope, proximity sensor, microphone, 
light sensor, and Global Positioning System (GPS) [23]. The 
major health parameters that can be monitored through 
smartphone sensors are heart rate and variability, blood 
pressure (BP), oxygen levels (SpO2), and respiratory rate. 
They are used to identify skin, eye, ear diseases. As almost 
all people are now using a smartphone, it has become a great 
choice to research smartphone applications that ensure 
portability and reduce the additional cost of the developed 
systems [58]–[60]. The systems that are designed for health 
monitoring using data collected from smartphone sensors are 
discussed here. 

 

TABLE 1. Summary of the Smart Health Monitoring Systems Based on Wearable Devices 
 

Authors Year Sensors Edge 
Devices 

Communication 
Media/Protocol 

Visualization Comments 

Islam et al. [20] 2020 Heartbeat and body temperature 
sensor 

NodeMCU Wi-Fi/ HTTP ThingSpeak The developed prototype is not 
adequately manufactured for 
application purposes. 

Elango and 
Muniandi [50] 

2020 Heartbeat sensor, body 
temperature sensor, and 
accelerometer 

NodeMCU Wi-Fi/HTTP, 
MQTT 

ThingSpeak, 
LCD 

No emergency services are 
mentioned in the proposed system. 

Al-Sheikh and 
Ameen [51] 

2020 Heart rate, ECG, SpO2, and 
body temperature sensor 

Arduino, 
NodeMCU 

Wi-Fi Blynk The system is not able to handle 
the emergencies of the patients. 

Chigozirim et al. 
[52] 

2020 Heartbeat and body temperature 
sensor 

ATmega328P, 
NodeMCU 

Wi-Fi ThingSpeak, 
LCD 

The developed system has not 
been fully fabricated for real-time 
tests. 

Mohapatra et al. [53] 2019 Heartbeat and body temperature 
sensor 

Arduino, 
NodeMCU 

Wi-Fi/ HTTP Adafruit No security concerns are 
mentioned here for the transmitted 
data. 

Swaroop et al. 
[54] 

2019 Heartbeat, blood pressure, and 
body temperature sensors 

Raspberry Pi Wi-Fi/ MQTT Web 
application 

The latency for the Wi-Fi 
communication channel is 
comparatively high. 

Al-Khafajiy et al. 
[55] 

2019 Pulse, temperature, blood 
oxygen, and blood glucose 
sensors 

Arduino Bluetooth HC-06 Web 
application 

No data analytics tools are used for 
automated decisions. 

Semwal et al. 
[56] 

2019 ECG, pulse oximeter, body 
temperature, and blood 
pressure sensors 

ATmega328P Bluetooth HC-05 LabVIEW No security measures are taken 
into consideration in this system. 

Kumar et al. [57] 2018 Heartbeat, and temperature 
sensor 

Raspberry Pi Wi-Fi/ HTTP Web 
application 

A limited number of sensors are 
not quite enough to monitor the 
patient’s complete status. 
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Wan et al. [21] 2018 Heartbeat, blood pressure, and 
body temperature sensors 

Arduino Wi-Fi/ HTTP Web 
application, 
LCD 

The developed prototype did not 
mention any solutions for 
emergency cases. 

 
Zhang et al. [24] proposed a framework for blood glucose 

monitoring using PhotoPlethysmoGram (PPG) data in the 
form of a video from a smartphone. The blood glucose level 
is collected from patients through smartphones, and the 
collected data is processed in the cloud. Lastly, the features 
are extracted using Gaussian Fitting and classified into 
normal, warning, and borderline based on blood glucose 
range using machine learning algorithms. The accuracy for 
blood glucose level estimation achieved from the developed 
system is 81.49%, which can be deemed lower than needed 
for a reliable glucose monitoring system. In another work, 
Nemcovaa et al. [61] developed a framework for monitoring 
the SpO2, BP, and heart rate (HR) utilizing a mobile phone. 
The rear camera and microphone of a smartphone are used as  
sensing elements in this system. The camera data is 
converted to PPG and used for heart rate and oxygen 
saturation estimation. At the same time, the blood pressure is 
estimated from PPG and phonocardiogram (PCG) recorded 
by the microphone. A smartphone application is developed to 
determine the feasible position of the data collection device 
for blood pressure estimation. However, the synchronization 
between PPG and PCG signals is not handled although there 
are different time bases. Afterward, the authors of [62] 
introduced a respiratory monitoring system using smartphone 
sensors based on imaging and the Fourier transform 
technique. The skin surface video data is captured in the 
presence of a flashlight using an embedded smartphone 
camera and Plethysmography data is collected using 
developed hardware. The collected data is transferred to a 
PPG signal, and the processed data is analyzed using the 
concept of the discrete wavelet transform to estimate 
respiratory rate. The experimental results depicted that the 
system obtained an average accuracy of 97.8% and an 
average error of 2.2%. However, the system did not consider 
temperature and skin colour as well as the condition effect. 

Recently, Tabei et al. [25] presented a framework for 
monitoring blood pressure using smartphones’ cameras. The 
data for the proposed scheme is collected from the user’s 
finger index through a smartphone camera. Filtering and 
peak detection techniques are used to minimize the motion 
and noise from the collected PPG signals. The estimation of 
blood pressure is done with the use of a linear regression 
algorithm. It is revealed from the experimental results that 
the system obtained mean absolute error, standard deviation, 
and correlation parameters of 2.10, 1.96, and 0.90, 
respectively. However, the derivation of pulse transit time 
from two sides of the arterial is not mentioned. In another 
research, Dey et al. [63] proposed a cuff-less blood pressure 
measurement system using a heart rate sensor embedded in a 
smartphone. The sliding window technique is used to convert 
the collected PPG signals to 15 s epochs. Approximately 233  

 
features are derived from the raw signals from a PPG pulse in 
the domain of time and frequency. Finally, the blood pressure 
estimation is conducted using the Lasso regression technique. 
A smartphone application is developed to monitor the 
psychological signals in real-time. The developed system can 
calculate the 95% confidence interval of the BP of the 
patient. However, the results do not satisfy the precision in 
terms of standard value. Using the built-in accelerometer and 
camera of a smartphone, Wang et al. [64] introduced a blood 
pressure monitoring device named Seismo to interpret the 
vibration generated by heartbeat and finger pulses. The blood 
ejection time is measured from the seismocardiography 
signal through the accelerometer, and the fingertip is used to 
calculate the arrival time from PPG data using a camera 
module. The embedded speaker synchronized the data from 
the accelerometer and camera. The developed system 
obtained a Pearson correlation coefficient between 0.20 and 
0.77 for the volunteers. However, the prototype is not able to 
monitor blood pressure continuously. 

Further, a heart rate monitoring framework based on 
photoplethysmographic data from the smartphone is 
proposed [65]. The data is collected using the visible light 
reflected mode of PPG using a built-in smartphone camera 
from the user’s index fingertip. The data from smartphone 
storage is transferred to the processing device using 
Bluetooth communication. Among the three channels of the 
PPG signal, the red channel is utilized for heart rate 
estimation in this system. The proposed scheme appraised an 
accuracy of 99.7%, and the found absolute error is within the 
range of 0.04–0.3 beats/min. However, the duration of the 
video is relatively low. In another study, Lomaliza and Park 
[66] developed a reliable and accurate system for HR 
monitoring using the camera images of a mobile phone of the 
fingertip. In this system, the signal is extracted using the 
concept of Region of Interest, and the noise from the raw 
data is eliminated through the adaptive threshold method. 
The developed scheme is adopted in any level of smartphone. 
The experimental finding depicted that the developed 
framework estimated heart rate in real-time having less than 
5% error rate. However, the proposed system ignores the 
effects of different camera modules of different smartphones. 
Furthermore, Qayyum et al. [67] demonstrated a vital sign 
monitoring system using video from a smartphone camera. In 
this framework, the collected data is pre-processed to reduce 
the noise from the raw signals using the colour distortion 
filtering technique. The inter-beat interval is used to detect 
heart rate variability, and the breathing rate (BR), heart rate, 
and SpO2 are calculated from PPG signals. The developed 
system obtained a mean absolute percentage error of 2.965 
from the experimental findings. However, no real-time 
prototype is shown in this study. 
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Table 2 summarizes the developed health monitoring 
systems considering some properties like the monitored 
signs, the used sensors, the smartphone model, the number of 
subjects, the video length, sampling rate, and comments of 
each developed system. 

 
III. ARTIFICIAL INTELLIGENCE AND MACHINE 
LEARNING IN IOHT 
The Internet of Health Things comprises various interlinked 
devices that can share and handle data to enhance patient 
health. It has become a fast-growing area with numerous 
investments associated with the development and use of IoT 
[68], [69]. Statistics from the McKinsey study depicts that 
IoHT will have a financial impact of $11.1 trillion in a year 
by 2025 [70]. Machine learning has become a major tool in 
the arsenal of artificial intelligence techniques used in 
healthcare. It enables IoT devices with outstanding 
capabilities for information inference, data analytics, and 
intelligence. Machine learning has become indeed a powerful 
and effective solution for various IoHT technology contexts, 
from big-data cloud computing to smart sensors [71]–[73]. 
An overall system architecture for disease diagnosis using 
machine learning algorithms in the IoHT environment is 
shown in Figure 3. The used data in these frameworks are 

from benchmark datasets or real-time sensor data sent to the 
fog/edge/cloud for processing. Afterward, the data are 
preprocessed, and necessary features are extracted to fit in 
the machine learning techniques. Finally, the decision is 
transferred to the concerned person to take proper action. The 
significant developments of machine learning-based IoHT 
solutions are demonstrated in this section. We have described 
some major disease solutions using machine learning in the 
IoHT platform that are becoming significant threats for 
human-being in recent times. 

A. NOVEL CORONAVIRUS (COVID-19) 
Novel coronavirus (COVID-19) has become a public health 
crisis due to this virus's communicable nature in recent times. 
This is an ongoing pandemic, and all the sectors of the whole 
world are fighting to recover from this ailment. The statistic 
shows that approximately 98 million cases have already 
found, and the death cases are about 2 million worldwide 
[74]. Numerous works have been conducted to reduce the 
severity of this disease using modern technologies [75]–[77]. 
Although several works have already been done, we 
described the frameworks that used machine learning 
algorithms to diagnose COVID-19 in IoT environments.

 

TABLE 2. Summary of the Smart Health Monitoring Systems Based on Smartphone 
 

Authors Year Signs Sensors Smartphone Number of 
participants 

Video 
length 

Sampling Comments 
rate 

Zhang et al. 
[24] 

2020 Glucose level Camera iPhone 6s Plus 80  60 s 30 Hz The performance of the 
developed system is relatively 
low. 

Nemcovaa et 
al. [61] 

2020 HR, BP, SpO2 The rear 
camera, 
microphone 

Honor 7 Lite, Apple 
iPhone SE, Lenovo 
Vibe S1 

22 (13 
M) 

F, 9 20 s 30 Hz The synchronization between 
PPG and PCG signals is not 
handled, although there are 
different time bases. 

Alafeef and 
Fraiwan [62] 

2020 Respiratory 
rate 

 Camera Samsung Galaxy S6 15  30 s 30.30 
fps 

The system did not consider 
temperature and skin colour 
as well as the condition. 

Tabei et al. 
[25] 

2020 BP  Camera iPhone X 6  120 s 30 fps The derivation of pulse transit 
time from two sides of the 
arterial is not mentioned. 

Dey et al. 
[63] 

2018 BP  Heart rate 
sensor 

Samsung Galaxy S6 205 (90 
115 F) 

M, 15 
min 

125 Hz The results do not satisfy the 
precision in terms of standard 
value. 

Wang et al. 
[64] 

2017 BP  Rear camera, 
accelerometer 

N/M 9  N/M N/M The prototype is not able to 
monitor blood pressure 
continuously. 

Alafeef [65] 2017 HR  Camera Samsung Galaxy 19  Few 
seconds 

30.30 
fps 

The duration of the video is 
relatively low. 

Lomaliza 
And Park [66] 

2017 HR  Rear camera Pantech Vega Racer 3, 
Samsung Galaxy S2, 
LG G3, HTC Desire 
HD 

5 (3 M, 2 F) 10 s 10 fps The proposed system ignores 
the effects of different camera 
modules of different 
smartphones. 
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Qayyum et 
al. [67] 

2017 HR, HR 
variability, 
BR, SpO2 

Camera iPhone 4 20 (10 M, 10 
F) 

60 s 30 fps No real-time prototype is shown 
in this study. 

M = Male, F = Female, N/M = Not Properly Mentioned. 
 

Very recently, Le et al. [26] developed IoT based system 
to diagnose COVID-19 using the concept of convolution 
neural network (CNN) and support vector machine (SVM). 
In this framework, the data is retrieved from the patients 
utilizing IoT sensors and transferred to cloud storage through 
5G networks. In addition, the CXR dataset [78] is utilized to 
conduct an experiment. To reduce noises from the raw 
images, Gaussian filtering is utilized. The depth-wise 
separable CNN extracted the features from the pre-processed 
samples, and SVM categorized the extracted features to 
detect COVID-19. The proposed system appraised an 
accuracy of 98.54% for binary class and 99.06% for the 
multiclass scenario. However, no monitoring system from the 
doctor’s end is developed here. Afterwards, Ramallo-
González et al. [79] introduced an IoT platform named 
CIoTVID for the detection of coronavirus. The scheme 
includes various levels of sensorization, which can handle 
and evaluate the data that assists in making a decision. The 
data collection layer collects various symptoms like voice 
signals, oxygen saturation, respiration rate from the patients. 
Mel Frequency Cepstral Coefficients (MFCC) transferred the 
raw voice signals to spectrogram as an image format. CNN 
architecture extracted the features and classified them in this  
 

 
system. The use case analysis found that the system 
appraised an accuracy of 66.67% in the testing phase. 
However, the outcome is relatively low for real-time use. In 
another research, Ahmed et al. [80] proposed a deep 
learning-based framework to diagnose COVID-19 in an IoT 
environment. A combined architecture like Faster-RCNN 
with ResNet-101 is utilized to diagnose the coronavirus cases 
from chest X-ray samples. The used data are retrieved from 
various open-access data sources where the COVID-19 cases 
are about 4000, and the negative cases are 7000. The data 
from the medical sensors are directly sent to cloud storage 
using Wi-Fi communication, where the proposed architecture 
is trained and finally diagnoses the positive cases. The 
radiologist can monitor the outcome through the internet. It is 
evident from the experiments that the developed system 
obtained an accuracy of 98%. However, no usability study is 
mentioned in this system. 

Otoom et al. [81] introduced a scheme using machine 
learning techniques in an IoT environment to detect and 
monitor coronavirus-infected patients. The real-time 
symptom data from the patient’s end are retrieved utilizing 
IoT devices and transferred to the cloud server for storage. 
Benchmark data called COVID-19 Open Research Dataset 
(CORD-19) [82] is utilized for the analysis in addition to 

real-time data. The collected data are analyzed using machine 
learning classifiers to detect coronavirus infections. Among 
the eight classifiers, neural networks and k-nearest neighbors 
performed the best, and the accuracy was 92.89%. The 
system notified the medical experts of the suspected cases for 
further clinical treatment. However, the performance of the 
developed system is relatively low for practical uses. Further, 
ElRashidy et al. [83] demonstrated a deep learning 
architecture based on end-to-end nature to diagnose and 
monitor coronavirus-infected patients. In the proposed 
system, the patients are monitored through wearable sensors 
and smartphone app; a fog network is used to handle the data 
storage and transmission issues, and finally, a CNN 
architecture with transfer learning diagnosed the COVID-19 

patients from X-ray samples. The experimental data is 
collected from two publicly available datasets [78], [84], and 
wearable sensors. It is found from the experiments that the 
developed scheme obtained accuracy and specificity of 
97.95% and 98.85%, respectively. The physicians monitored 
the patients in real-time and guided the individuals properly. 
However, energy consumption and storage issues are still a 
challenge for this system. In another research, Karmore et al. 
[27] developed humanoid software for the diagnosis of 
coronavirus in IoT networks that can identify whether an 
individual is infected with this ailment or not. The robotic 
system used IR sensors and a camera module for navigation, 
and the E-Health sensor kit and chest X-ray scans are utilized 
for diagnosis. The developed humanoid robot used 

 
FIGURE 3. An overall system architecture of machine learning-based framework for disease diagnosis in IoHT environment. 
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NodeMCU, Raspberry Pi, temperature sensor, ECG sensor as 
hardware components. Three pre-trained architectures like 
InceptionV3, ResNet50, and Inception ResNetV2 diagnosed 
positive cases from X-ray samples. The average accuracy 
found from the proposed system is 97.95%. However, the 
security issues during the data transfer are not depicted here. 

Furthermore, Cacovean et al. [28] introduced an IoT-based 
framework for COVID-19 detection where machine learning 
techniques are utilized for diagnosis. The data from the 
participants are collected using wearable devices like GPS, 
temperature, and heart rate sensors. The retrieved data are 
sent to the oracle cloud server for processing through the 
Bluetooth module. Random Forest obtained the best outcome 
from the experiments among the three classifiers, and the 
accuracy value is 73%. The prediction outcomes are directly 
sent to doctors and patients’ guardians to take further steps 
for proper treatment. However, the system achieved 
comparatively low performance. Afterward, Kumar et al. 
[85] presented a system to monitor the COVID19 patients 
using sensor and IoT technology. The real-time data are 
retrieved from the participants using IoT sensors and fed into 
the Bayesian network for preprocessing. The IoT devices are 
configured and accessible using wireless sensors to send the 
data to the patient’s repository. The data are trained with 
SVM and predict the coronavirus cases from the test 
samples. The scheme appraised an accuracy of 87.23% and 
86% for recovery and prediction, respectively, using SVM. 
In addition, the K-means algorithm estimated the spread as 

well as recovery rate. However, the accuracy rate of the 
system is not up to the mark. 

Table 3 briefly discusses COVID-19 detection systems 
highlighting some features such as the used datasets, the used 
techniques for detection, the accuracy as a performance 
metric, and comments of each reviewed system in IoHT 
environments. 

B. HEART DISEASE 
Heart disease has become a very crucial and acute ailment for 
every aged people, especially for adults. An estimation 
shows that heart disease is responsible for approximately 
30% (18 million individual) deaths among all death cases per 
year [86], [87]. Hence, the researchers are focusing on the 
development decision support system in the smart healthcare 
environment to reduce the severity of heart disease. The 
significant developments of heart disease diagnosis using 
machine learning in the IoT environment are demonstrated 
here. 

Recently, the author of [88] developed a patient 
monitoring system for heart patients in an IoT environment 
where the data from the patients are analyzed using a 
modified Deep Learning Modified Neural Network 
(DLMNN). The body-worn sensors collected data from the 
patients and securely sent them to the cloud for further 
processing. In addition, the proposed system used the 
Hungarian heart disease (HD) dataset [89]; benchmark data 
for heart disease classification to detect the presence of 
abnormality.   

 
TABLE 3. Summary of COVID-19 Detection Frameworks in IoHT Environment 

Authors Year Data Techniques Accuracy 
(%) 

Comments 

Le et al. [26] 2021 CXR dataset and real-time 
sensor data 

CNN, SVM 99.06 No monitoring system from the doctor’s 
end is developed. 

Ramallo-González et 
al. [79] 

2021 Real-time sensor data CNN 66.67 The outcome is relatively low for real-time 
use. 

Ahmed et al. [80] 2020 Various public datasets Faster-RCNN, ResNet-101 98 No usability study is mentioned. 

Otoom et al. [81] 2020 CORD-19 dataset, and 
real-time sensor data 

Eight machine learning 
techniques 

92.89 The performance of the developed system is 
relatively low for practical uses. 

El-Rashidy et al. 
[83] 

2020 Two open-access datasets 
and real-time sensor data 

ResNet-50 97.95 Energy consumption and storage issues are 
still a challenge for this system. 

Karmore et al. 
[27] 

2020 Real-time sensor data InceptionV3, ResNet50, 
Inception ResNetV2 

97.95 The security issues during the data transfer 
are not depicted. 

Cacovean et al. 
[28] 

2020 Real-time sensor data Random Forest, Naïve 
Bayes, SVM 

73 The system achieved comparatively low 
performance. 

Kumar et al. [85] 2020 Real-time sensor data K-means algorithm, SVM, 
Bayesian classifier 

86 The accuracy rate of the system is not up to 
the mark. 

 
An alert message is delivered to the doctors while any 
abnormality is found. However, the developed scheme 
obtained comparatively low performance in the case of small 
data size. In another work, Ali et al. [29] proposed a smart 
healthcare monitoring framework for heart disease infected 
patients using the concept of ensemble learning and feature 
fusion. The extracted features from sensor data and patient  

 
history are merged through the feature fusion technique in 
this system. The information gain method eliminated the 
unnecessary and redundant features, selected the most 
appropriate features responsible for the disease. A semantic 
web rule language is introduced that recommends the 
activities of the infected patients automatically. Lastly, the 
LogitBoost technique, an ensemble learning classifier, is 
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used to predict heart disease and obtained an accuracy of 
98.5% from the experiments. However, the developed system 
used traditional techniques for feature selection, reduction, 
and classification. Afterward, Deperlioglu et al. [30] 
introduced a framework for heart disease diagnosis using an 
autoencoder network in an IoHT environment. The 
developed system comprises a cloud environment where 
beacons are used for data sharing and a central system to 
synchronize the cloud and devices’ communication and 
machine learning architecture. Two heart sounds datasets 
named PASCAL BTraining [90], and Physiobank-PhysioNet 
A-Training [91] are used in this system. The developed 
system obtained accuracy, sensitivity, and specificity of 
100% for the PASCAL dataset. In addition, an accuracy of 
96.03%, 91.91%, and 90.11% are achieved for healthy heart 
sounds, extrasystole, and murmur, respectively, from 479 
real-time participants. However, no voice command facility 
is available in this study to ensure less physical interaction. 

In another research, the authors of [31] presented a 
machine learning-based heart disease diagnosis system in the  
IoMT cloud environment using modified salp swarm 
optimization (MSSO) and an adaptive neuro-fuzzy inference 
system (ANFIS). The data from the IoMT sensors, as well as 
UCI [89] and Framingham database [92], are used to 
diagnose the presence of heart disease. The MESO technique 
optimized the dataset's attributes to find the best features, and 
the ANFIS trained the most appropriate features and 
diagnosed the disease. The experimental results found that 
the system achieved accuracy, AUC, and precision of 
99.45%, 99%, and 96.54%, respectively, using the datasets, 
yet no results are presented for real-time data. The authors of 
[93] proposed an IoT-based system using Modified Deep 
Convolutional Neural Network (MDCNN) to predict heart 
disease. The data (BP and ECG) used for this study are 
collected from smartwatches and heart monitor devices 
attached to the patient’s body. In addition, some open-access 
databases like UCI [89], Public Health, and Framingham [92] 
are also used to train the network. In this framework, Long-
range (LoRa) communication protocols, LoRa cloud, and 
servers are used to ensure the real-time monitoring of the 
patients. The developed framework categorized the sensors’ 
data into two classes (normal and abnormal) and obtained an 
accuracy of 98.2% from the experiments. However, no 
wearable prototype is mentioned here. Further, Tuli et al. 
[94] developed a smart healthcare framework named 
HealthFog to diagnose heart disease using ensemble learning 
in IoT and Fog computing environments. To evaluate the 
performance of the developed system with respect to energy 
consumption, accuracy, latency, and execution time, FogBus 
(Fog-based cloud environment) is utilized. The FogBus is 
comprised of the worker node, the cloud data center, and the 
broker node. The Bagging classifier categorized the data 
collected from sensors and benchmark datasets [89] of heart 
disease. The developed prototype achieved an accuracy of 
89% from the experiments for the test cases. As the machine 

learning architecture is trained in each worker node of every 
fog node, the time consumption becomes comparatively 
high. 

In another study, Nguyen et al. [95] introduced a scheme 
for diagnosing heart disease using machine learning in an IoT 
environment. ECG devices collect the data from patients and 
send them to cloud storage through Wi-Fi. Wavelet-based 
Kernel Principal Component Analysis (wkPCA) technique 
pre-processed the raw data and extracted the most relevant 
classification features. The extracted features are fed into a 
neural network that diagnoses the heart disease based on the 
input data. The developed system achieved an accuracy of 
98.03%. However, no notification system to alert physicians 
is developed yet. Furthermore, the authors of [96] 
demonstrated an IoT-based framework to diagnose heart 
disease using cloud storage and machine learning algorithms. 
The data is collected from the human body using medical IoT 
sensors, and benchmark datasets [97] from UCI are also used 
for the experiments. All the data are stored in a cloud 
database, and machine learning techniques are applied to the 
cloud database to predict the presence of heart disease. 
Among four classifiers, J48 performed the best and obtained 
accuracy, precision, recall, and F1-Score of 91.48%, 91.50%, 
91.50%, and 91.50%, respectively. However, no real-time 
study is illustrated in this system. 

Table 4 summarizes heart disease detection systems 
considering some features such as the used datasets, the used 
algorithms for detection, the accuracy as an evaluation 
metric, and comments of each developed system in the IoHT 
environment. 

C. DIABETES 
Diabetes is another life-threatening disease for humankind 
that results in many deaths per year. An estimation shows 
that almost 463 million individuals had diabetes in 2019, and 
the numbers are expected to grow to 578 million and 700 
million by 2030 and 2045, respectively [98]. As this ailment 
is rising rapidly, early diagnosis of diabetes is necessary for 
the sake of people. Various studies are conducted to diagnose 
diabetes early, utilizing artificial intelligence, IoT, and Big 
data [99]–[101]. The works that are developed recently for 
diabetes detection are illustrated in this section. 

In recent times, Rghioui et al. [32] developed a framework 
to monitor and predict diabetic patients using machine 
learning techniques in IoT networks. In this system, the 
glucometer is connected to NodeMCU to record the data 
from patients seamlessly. A vast amount of collected data are 
sent to the cloud database using IoT platform and processed 
using machine learning algorithms, and the decisions are sent 
to doctors for further treatment. The dataset comprises five 
features with 12612 records. Among the four algorithms, 
Random Forest achieved an accuracy of 96.05% from the 
experiments. In another research, Allugunti et al. [102] 
proposed a diabetes prediction framework using the concept 
of IoT and a decision tree to monitor the infected patients in 
real-time. The data is collected from IoT sensors and 
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contained eight attributes and 15,000 realities. The best 
features from the dataset are selected using the concept of 
entropy measurement. The experimental outcomes show that 
the developed framework obtained accuracy and an error rate 
of 96.43% and 5.37%, respectively, in prediction. However, 
the detailed data collection procedure is not mentioned here. 
Afterward, Efat et al. [103] demonstrated a health monitoring 
system focusing on diabetic patients that can monitor the 
level of sugar, sleep time, food intake, and pulse rate. The 
data from the patient’s side is continuously sent to a neural 
network using wearable sensors through Bluetooth and the 
developed architecture categorized the data based on the 
severity of diabetes cases. An alert message/call is sent to the 
patient’s guardians and caregivers in an emergency. The 
developed scheme appraised an accuracy of 84.29% from 25 
diabetes patients’ data. A web portal is also developed to 
monitor the patients’ health status continuously. However, 
the performance is relatively low for practical use. 

In another work, a diabetes monitoring and prediction 
framework is proposed in [104] utilizing IoT and machine 
learning techniques. The system used a blood glucose meter, 
Arduino, and GSM modem as hardware components. The 
experimental data are retrieved using the glucose meter using 
an edge device like Arduino and processed in the 
microcontroller. The decision of the processed data is 
automatically sent to mediators through a GSM modem. The 
author found the Random Tree classifier to provide the 
highest accuracy, and lowest training time among the four 

used algorithms, and the value are 97.87% and 0.03 seconds, 
respectively. However, the glucose sensor and Arduino could 
not be operated at the same time. Further, Rghioui et al. [105] 
introduced an intelligent framework for diabetes-infected 
patients monitoring using machine learning architectures in 
IoT networks to monitor physical activity, glucose level, and 
body temperature. For data collection purposes, a 
glucometer, temperature sensor, and motion sensor are used 
at the patient’s end. The collected data are transferred to the 
database station using a smartphone through 5G networks. 
The patient’s records are classified using six classification 
algorithms, and the minimal sequential optimization (SMO) 
obtained the best accuracy of 99.66%. Whenever any 
abnormality is found, a notification text is sent to the doctors 
to take proper steps for treatment. However, the latency is 
comparatively high in this system. Afterward, Godi et al. 
[106] developed a healthcare monitoring framework to 
diagnose and monitor disease using machine learning 
modalities through IoT networks. Various wearable devices 
are utilized to retrieve data from patients from different 
scenarios like homes and hospitals. In addition, a diabetes 
dataset from the Kaggle repository [107] is used for 
experiments. Machine learning techniques classified the data 
based on the presence of abnormality. Among four 
classifiers, SVM achieved an accuracy of 80.51%, precision 
of 76%, recall of 65%, and F1-Score of 70% for the positive 
diabetes class. The predicted results are shared with the 
physicians, mediators, and patient’s caregivers.

 
TABLE 4. Summary of Heart Disease Detection Systems in IoHT Environment 
 

Authors Year Data Techniques Accuracy 
(%) 

Comments 

Sarmah [88] 2020 Hungarian HD dataset and 
real-time sensor data 

DLMNN 96.8 The developed scheme obtained 
comparatively low performance in the case 
of small data size. 

Ali et al. [29] 2020 Cleveland dataset, and real-
time sensor data 

Feature fusion and ensemble 
learning (LogitBoost) 

98.5 The developed system used traditional 
techniques for feature selection, reduction, 
and classification. 

Deperlioglu et al. 
[30] 

2020 PASCAL and PhysioNet 
dataset, and real-time 
sensor data 

Autoencoder neural network 96.03 No voice command facility is available in 
this study to ensure less physical 
interaction. 

Khan and Algarni 
[31] 

2020 Hungarian and 
Framingham dataset, and 
real-time sensor data 

MSSO-ANFIS 99.45 No real-time study is shown in this system. 

Khan [93] 2020 Cleveland database and 
real-time sensor data 

MDCNN 98.02 No wearable prototype is mentioned. 

Tuli et al. [94] 2020 Cleveland dataset, and 
real-time sensor data 

Ensemble learning(Bagging) 89 The computational time is relatively high. 

Nguyen et al. [95] 2020 Real-time sensor data wkPCA, BNN 98.03 No notification system to alert physicians is 
developed. 

Ganesan and 
Sivakumar [96] 

2019 Statlog dataset and real-
time sensor data 

J48, logistic regression, 
multilayer perceptron, SVM 

91.48 No real-time study is illustrated in this 
system. 

 
However, the performance is relatively low for real-time 
implementation. 
 

 
To predict diabetes mellitus, the authors of [33] introduced 

a novel framework using machine learning in the IoT 
environment. The glucose sensors collected the blood sugar 
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data from the patients, normalized it into the proper format, 
and transferred it to the storage device using HTTP and 
MQTT protocol. The system also used a benchmark dataset 
for the experiment. Two machine learning classifiers named 
SVM and KNN are used for diabetes prediction, where SVM 
achieved accuracy and F1-Score of 90% and 89%, 
respectively. However, real-time cases are not found there. 
Furthermore, Kaur et al. [108] introduced a framework 
named CI-DPF to predict diabetes in a cloud-based IoT 
environment. The blood glucose level from the patients is 
collected using smart sensors and sent to the cloud 
environment for storage and further processing through IoT 
devices. The proposed system also used benchmark data 
named Pima Indians Diabetes dataset [107] for the 
experiment. Ensemble learning is used to diagnose diabetes 
from the patient’s records, and it is found that the ensemble 
of decision tree and neural network obtained accuracy, 
sensitivity, and specificity of 94.5%, 79.5%, and 83.12%, 
respectively. However, real-life clinical tests have not been 
conducted here. 

Table 5 briefly discusses diabetes detection frameworks 
highlighting some properties such as the used datasets, the 
used algorithms for detection, the accuracy as a performance 
metric, and comments of each reviewed system in the IoHT 
environment. 
 
IV. AMBIENT ASSISTED LIVING 
Ambient Assisted Living involves combining sensors and 
actuators in an IoT environment to communicate and provide 

enhanced lifestyle and human-independent care for older 
adults. With 87% of older adults preferring living at their 
own homes over senior homes [109], there are two target 
environments for AAL, senior care homes and older adults’ 
private homes. We first go in-depth into the studies carried 
out to define the needs of the seniors, then discuss the 
implementations both with and without a robotic social 
agent. 

A. USER NEEDS STUDIES 
Several studies are directed towards studying the needs of 
older adults. Such requirements can be categorized into 
physical assistance, emotional support, reminders, or social 
support. Bedaf et al. [38] performed a user study with 
different stakeholders, including 11 formal caregivers, seven 
informal caregivers, and ten older adults as part of the 
ACCOMPANY project. After the users interacted with a 
robotic system (Care-O-Bot 3) in a fetch-and-carry scenario 
and a scenario where the robot reminded them to drink water, 
the authored received several suggestions on the 
functionalities they need. As such, the authors concluded that 
a social robot for elderly care needs to have advanced speech 
interaction capabilities, fetch and carry various objects, detect 
dangerous situations, alert the caregivers, and be adaptable to 
individual user needs. Likewise, the HomeMate project [39] 
defined five main scenarios that would benefit users the 
most: fetch-and-carry, infotainment (music and movies), 
gaming services, video chatting, and reminders for various

 
TABLE 5. Summary of Diabetes Detection Frameworks in IoHT Environment 

Authors Year Data Techniques Accuracy 
(%) 

Comments 

Rghioui et al. 
[32] 

2021 Real-time sensor data Naive Bayes, Random Forest, 
OneR, SMO 

96.05 No user prototype is shown in this system. 

Allugunti et al. [102] 2020 Real-time sensor data Decision Tree 96.43 The detailed data collection procedure is 
not mentioned. 

Efat et al. [103] 2020 Real-time sensor data Neural network 84.29 The performance is relatively low for 
practical use. 

Rghioui et al. 
[104] 

2020 Real-time sensor data Six machine learning 
algorithms 

97.87 The glucose sensor and Arduino could not 
be operated at the same time. 

Rghioui et al. 
[105] 

2020 Real-time sensor data Six classification algorithms 99.66 The latency is comparatively high in this 
system. 

Godi et al. [106] 2020 A benchmark data from 
Kaggle and real-time sensor 
data 

Decision tree, regression, K- 
NN, SVM 

80.51 The performance is relatively low for real-
time implementation. 

Ponmalar and 
Vijayalakshmi [33] 

2019 Real-time sensor data K-NN, SVM 90 Real-time cases are not found in this study. 

Kaur et al. [108] 2018 Pima Indians Diabetes 
dataset and real-time 
sensor data 

Ensemble of decision tree and 
neural network 

94.5 Real-life clinical tests have not been 
conducted. 

 
events. After implementing a physical prototype and its 
testing with older adults, the authors emphasized the 
importance of natural interaction, specifically through 
speech. Other studies, such as [110], highlight the importance 
of combining both AAL sensor technologies with a robot for  

 
task achievement as well as social companionship. Similar 
conclusions were made in [111], where the authors 
highlighted how 50% of older adults requested efficient 
speech interaction and added that the inclusion of a robotic 
platform provides multiple benefits. Syed et al. [36] highlight 
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that movement should be monitored for older adults, citing 
falls as one of the major causes of death in the senior 
community. Other studies that highlighted the needs of older 
adults include [37], [41], [112], [113]. The requirements can 
be summarized as: 

 Provide a natural means of interaction that require 
minimum to no learning by the older adult. 

 Remind the users of medications, appointments, and 
events. 

 Provide infotainment services such as music, 
movies, and cognitive games. 

 Real-time monitoring of health vitals and detection 
of emergencies. 

 Include a robotic platform for task achievement as 
well as social companionship. 

In the remaining section, the implementation of various 
platforms for AAL is discussed. First, we showcase research 
work done with IoMT environments without robotic agents, 
followed by studies that involved social robots as a central 
component of the system. 

B. SMART HOMES 
Komai et al. [34] present a system to monitor the activity of 
multiple seniors simultaneously based on Bluetooth Low 
Energy (BLE) with a beacon in the user’s name card and the 
Received Signal Strength Indicator (RSSI). Likewise, [114] 
uses BLE and RSSI to create a low-cost indoor-localization 
method to track and estimate the user's room. They propo
 se the method as a low-cost system to detect older 
adults’ activity and early signs of frailty using a Random 
Forest classifier. Although both systems are proposed based 
on low-cost solutions for indoor localization, they can only 
achieve room accuracy. 

Marques et al. [109] present an indoor environmental 
monitoring system that measures room temperature, relative 
humidity, CO, CO2, light detection, and transmitting the 
messages through XBee through Zigbee networking 
protocol. The system proves to be a modular and cheap 
solution for indoor air quality monitoring. The work is 
extended in [35], where a robotic platform is integrated 
equipped with a gas sensor to detect levels of liquefied 
petroleum gas (LPG), isobutane, and propane, which can lead 
to explosions when they reach specific levels. Based on the 
famous Turtlebot platform, the robot can use that sends a 
notification to the user through the Facebook social platform. 
The system provides a safe way for monitoring gas levels but 
allows for little to no control by the user. Diraco et al. [115] 
propose a sensory system based on radars to monitor heart 
and respiration rates of older adults without contact (from a 
distance), achieving 95% and 91% accuracy, respectively. 
The authors also utilized the radar for fall detection, resulting 
in a sensitivity of 97% and specificity of 90%. Nevertheless, 
ultra-wideband radio signals can measure a few vital signs 
and need a more versatile system to integrate more sensors. 

The authors of [36] propose a framework for monitoring 
physical activities and utilizing machine learning algorithms 

for more accurate and faster predictions and decisions. They 
build on the mHealth framework, initially proposed in [116] 
to collect data from multiple sensors and combine them to 
predict 12 different physical activities using a multinomial 
Naïve Bayes classifier, achieving an accuracy of 97.1% on 
the mHealth dataset. Although the framework sounds 
promising, it is yet to be tested in a real-world environment.  

A mobile application called InfoSage is offered by 
Quintana et al. [22] to connect older adults to their formal 
and informal caregivers, centred around the older adult as the 
keystone user. The solution focuses on dementia patients and 
offers a tracker and reminders for appointments and 
medications. The system offers capabilities to exchange 
messages between family members (informal caregivers), 
doctors, and older adults and share information. The authors 
also perform several user studies on the acceptance and 
usability of their platform. 

Stavrotheodoros et al. [37] propose the IN LIFE platform, 
a cloud-based solution that combines various sensors 
focusing on personalization and easy installation for 
cognitively impaired older adults. The system is capable of 
monitoring user activities through unobtrusive sensors and 
multilayered architecture. The system is comprised of 3 
layers, a perception layer with the various sensors for data 
collection, a gateway layer that combines the data and 
transmits them to the final layer (cloud layer) using MQTT 
protocol. The cloud layer stores and analyzes the data. The 
work is extended in [117] by establishing the system and 
using motion sensors and door sensors to identify user habits 
and a panic button for older adults when there is an 
emergency. 

The authors of [118] propose an ambient assisted living 
system that utilizes fog computing. A system is put in place 
that incorporates radar sensors to detect daily activities and 
implements an algorithm to detect whether the patient is 
suffering from a neurological disease attack, if they are idle, 
or if no patient is detected. Utilizing the fog layer in the 
system leads to minimal response delay and energy 
consumption coupled with more bandwidth efficiency and 
overall performance. 

Several of the proposed solutions provide promising 
solutions for AAL, all aiming at better and healthier living. 
Nevertheless, the area still requires much work, specifically 
applying the proposed systems in real-world environments 
for elaborate testing and user feedback. 

C. SOCIAL ROBOTS 
Previous studies did not harvest the power of robotics to 
provide more functionalities for older adults. The following 
discussion tackles studies that involve social robots, a 
summary of the most prominent works is provided in Table 
6. Portugal et al. offer SocialRobot in [40], a modular 
robotic platform with independent layers. SocialRobot can 
adapt to user’s preferences and includes human-robot 
interaction (HRI), emotion and facial recognition, and 
speech interaction. The robot is based on ROS (Robotic 
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Operating System) and uses a sequential database (MySQL) 
to store data on each for more personalized interactions, 
which the authors called SoCoNet. The work was extended 
in [120] and [111], where the authors studied the effect of 
including environmental context on the decision process 
and tested SocialRobot in an elderly care home for a week. 
Besides navigation and storing data on its users, 
SocialRobot can also recognize faces and user’s emotions. 
After testing SocialRobot in an elderly care home in the 
Netherlands, the authors concluded that considering the 
current context improves the accuracy of predictions. They 
also noted that although the robot was generally deemed 
acceptable by the older adults, it should incorporate more 
effective speech interaction and anthropomorphism (arms) 
for better functionality, which it is not equipped with. 
SocialRobot covers several requirements of the older adult 
community. However, it has been shown that integrating 
social robots in an IoT environment with sensors that track 
older adults provides much greater promise. Moreover, the 
caregivers and older adults requested functionalities such as 
playing music, movies, games, and memory training 
activities. 

The HomeMate project [39] involved studies defining 
older adults’ requirements and three iterations of creating a 
robotic platform. The HomeMate robot can play movies 
and music, link older adults with their family members and 
friends through video chat. Besides that, it was also able to 
communicate through both touch and voice interaction and 
schedule reminders for different events, thus tackling the 

missing functionalities from the SocialRobot project. 
However, the users still requested more natural and 
intuitive speech interactions, possibly through a more 
intelligent natural language understanding module. 
Moreover, the robot was also missing a link to smart 
devices for monitoring environmental conditions and users’ 
health. 

While both HomeMate and SocialRobot tackled senior 
home environments, Gross et al. proposed a robot 
companion for private homes called Sympartner [41]. The 
companion can provide reminders, health updates, daily 
routines, greet visitors at the apartment door, detect and 
identify objects and faces. Sympartner had autonomous 
navigation but did not have a manipulator to carry objects. 
HRI was done through a graphical user interface as well as 
through simple speech commands. The robot was deployed 
with 20 participants in their private homes for five days 
each in Germany. Although the overall feedback from the 
participants was positive, they requested speech 
understanding capabilities. Moreover, the robot was 
reported to have failed several times and required remote 
teleoperation by the researchers, which presents a privacy 
concern to its users. 

The previous studies involved social robot 
implementations. However, none of them were integrated 
into smart home environments with other environmental 
and health monitoring sensors. The idea of including robots 
in the AAL environment is recommended by [42], [43], 
[121].

 
TABLE 6. Summary of the Social Robots Implementations for Care of Older Adults 

Authors Year Sensors in IoT 
Environment 

Robot Functionalities HRI Methods Comments 

Nasr et al. [42] 2020 Fitbit Versa2 
Smart Watch 

Autonomous navigation Speech 
interaction 

Needs validation for acceptance and 
usability through testing it with older 
adults in a real-world environment. 

Marques et al. 
[35] 

2019 Gas sensor: LPG, 
iso-butane, 
propane 

Autonomous navigation Notifications on 
Facebook (no user 
input) 

The system lacks HRI methods and 
provides no control for users over the 
system. The system needs a user 
interface with more functionalities 
needed for older adults. 

Lee and Naguib 
[39] 

2019 N/M Autonomous navigation, fetch-and 
carry, object handover, telepresence 
(video chat) 

Speech 
interaction, 
gesture control 

The system could only simple speech 
interaction and is missing a link to an 
IoT environment with smart sensors. 

Loza-Matovelle et 
al. [44] 

2019 Custom bracelet: 
HR, body 
temperature, 
angular 
acceleration, and 
heading 

Tele-operation, obstacle avoidance, 
facial recognition, telepresence 
(video chat) 

Speech 
Interaction 
and vision 

Needs validation for acceptance and 
usability through testing it with older 
adults in a real-world environment. The 
robot needs autonomous navigation to 
eliminate privacy concerns. 

Gomez-Donoso et 
al. [119] 

2019 Cameras Autonomous navigation, depth 
vision, object detection 

Alarms The system needs efficient means for 
user interaction and sensors/wearables 
for tracking body vitals. 

Portugal et al. [40], 
[111], [120] 

2018 N/M Autonomous navigation, 
personalized interactions, facial 
recognition, emotion detection 

Touch Screen The robot has no speech interaction 
capabilities and is not linked to an IoT 
environment with smart sensors. 
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Do et al. [43] 2017 Smartwatch, IMU, 
Passive Infrared 
Sensor, 
microphones 

Autonomous navigation, sound 
detection 

Touch screen UI 
(mobile phone or 
tablet) 

It needs validation for acceptance and 
usability through testing it with older 
adults. 

 
This can be thought of as an Internet of Robotic Things 
(IoRT) framework. Nasr et al. introduce a solution for AAL 
environments with robotics in [42]. The platform connects 
heterogeneous agents such as mobile robots, virtual 
assistants, and mobile phones with smart sensors and 
wearables. The system was designed with an emphasis on 
human-robot interaction and intuitive speech interaction 
with its users. The authors developed the platform with a 
MySQL database for storing reminders, a mobile phone to 
utilize Google Assistant’s speech-to-text functionality, a 
Fitbit Versa2 smartwatch for HR monitoring, and a 
simulated robot in ROS and Gazebo. Two different 
protocols for data sharing are provided in the system, 
MQTT and REST API, to allow all kinds of smart devices 
and agents. The system is shown to respond to natural ways 
of giving commands and without the training of users. It 
provides its users with control over the robotic system by 
sending navigation commands and teleoperation through 
speech. Also, the authors emphasize the idea of providing 
the same functionality across all devices through utilizing a 
common NLU and Dialogue Management agent. While the 
system shows great promise in integrating heterogeneous 
systems in a modular way, it still needs to be tested in a 
real-world environment and requires a functional robot 
capable of at least autonomous navigation and moving 
objects. 
 

Do et al. propose a similar approach to the problem 
through the robot-integrated smart home platform (RiSH) 
[43]. They utilize a Pioneer 3-DX platform based on ROS 
and are equipped with a microphone for acoustic detection. 
The robot is linked to a network with body sensors, 
including an inertial measurement unit (IMU), motion 
sensors, and a smartwatch to obtain ECG, SpO2, and 
respiration rate readings and a home sensor network which 
includes a passive infrared for binary motion detection and 
microphones for acoustic data. The authors present a 
system that is extensible and capable of leveraging smart 
home sensing capabilities. Furthermore, they conduct 
experiments with 12 older adults to detect human 
trajectories down to a 0.2 meter accuracy and recognize 37 
different human activities and falls with accuracy up to 
88% and 80%, respectively. 

Another study that follows the integration of robots for 
AAL is provided by Loza-Matovelle et al. in [44]. The 
system is composed of a heterogeneous network of sensors 
both on a robotic platform and a bracelet that the user 
wears. The bracelet can measure heart rate and body 
temperature and angular acceleration and heading 
(gyroscope). The accelerometer and gyroscope are used to 
detect falls of the older adult and send warnings to the 
family members. The robot is capable of localization and 
obstacle avoidance but needs to be teleoperated. In  

 
addition, it is capable of facial recognition to maintain 
contact with the user during interaction and allows for 
video conferencing with formal and informal caregivers 
(telepresence). The user is provided with the ability to 
interact with the robot and a hologram (called the 
interactive pyramid) through speech and a chatbot. The 
interactive pyramid’s speech interface updates the user on 
the weather, time, reminders on medications and visits, as 
well as health recommendations. In essence, the system is 
like the works in [42], [43]. However, it uses teleoperating, 
which creates a privacy risk and lower autonomy of the 
system, and the system is yet to be tested in a more realistic 
environment. 

Gomez-Donoso et al. [119] integrate a robotic system 
into an AAL environment equipped with cameras to detect 
dangerous situations. The authors found that the existing 
system does not detect dangers such as objects on the floor, 
knives (which change location), and dangers in occluded 
areas. Therefore, they added a Pepper robot based on ROS 
with an RGB-D camera to detect such dangers. The robot 
was capable of ground plane detection and clustering of 
pixels to find objects on the floor. Also, as the robot moves, 
it used an R-CNN to detect smaller sources of danger such 
as electrical outlets and knives. Pepper was also capable of 
autonomous navigation and detection of people who have 
fallen. The robot was linked to Wi-Fi and would send out 
an alarm whenever the older adult is in danger. The authors 
tested the robot in IoT environments that cover residential 
areas, clinical areas (nursing home), and an office. The 
robot is shown to increase the ability of the AAL to detect 
potentially harmful circumstances in different scenarios. 
Such a system is powerful but would benefit when 
integrated with other sensors that monitor the user’s health 
vitals. 
 
V. SOFTWARE INTEGRATION ARCHITECTURES 
Global business processes in IoMT demand information to 
be shared quickly and efficiently across many different 
software, tasks, and applications. Having discussed the 
general areas of research in IoMT, we find much common 
ground in approaching and the architectures utilized. To 
unify the approach and paving the road from research to 
implementing the systems in real-time environments, 
various architectures are provided in literature that attempts 
an inclusive solution for an IoMT environment that is 
modular and easily extensible in its functionalities. 
However, each architecture is tailored to a specific use case. 
This section gives an overview of the most promising 
architectures and frameworks proposed in the area and an 
in-depth analysis of their advantages and shortcomings. 

Petrovic et al. [122] popped the following question: 
Why´ recreate devices, sensors, and systems while we can 
use off-the-shelf solutions and augment their capabilities to 
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provide a far more useful system. Therefore, the authors use 
commercial off-the-shelf (COTS) smart devices (COTS 
component) and combine them through an Interactivity 
component that provides an interface to retrieve data from 
the COTS devices and performs pre-processing stages. This 
layer can also detect some patterns and issue warnings in 
danger to a patient’s health. The third and last component 
of the system is the Cloud component which synchronizes 
the COTS devices and takes care of big data analytics. 
While this solution offers faster solutions and lower costs, it 
is just mentioned as an idea, and no validation is provided. 

Both [123] and [36] create a very similar architecture to 
approach the integration of IoMT. In [123], the authors 
develop an integrated medical platform for RHM. The 
platform is multi-layered to enable easy integration and 
expandability. The first layer, the perception layer, 
combines all the sensors that collect data about the patient 
and their surrounding environment that could affect the 
patient’s health. The next layer is the network and gateway 
layer, which transfers the data from the perception layer 
and processes it. The last layer stores and integrates the data 
received from various sensors and makes informed 
decisions. The authors showcased the architecture using 
sensors to measure multiple vitals, including heart rate and 
body temperature and environmental data like light 
intensity, humidity, and temperature. They also utilized the 
system for fall detection. The system is promising but does 
not present a means of interacting with users. It also 
presents great resemblance to the architecture used in [36], 
which augmented it with the mHealth dataset and a UI for 
caregivers (in the application layer), yet not its primary 
users, patients. 

Most architectures in literature highly depend on cloud 
infrastructure for storage and analytics. Other architectures 
include Hadoop Map Reduce techniques to process vast 
amounts of data in parallel. Although utilizing the cloud 
provides virtually unlimited space and computational 
power, a side effect is the time delay in transferring data. 
This led researchers to utilize faster communication, 
analysis, and temporary storage within the user’s local 
network to promote a more effective response to dangerous 
situations with minimum to zero delays. 

The devices that provide these functionalities are referred 
to as fog devices. The name comes from the real-life fog to 
resemble its proximity to the ground (environment) instead 
of the cloud. One of the first research works in that area 
was presented by Vora et al. [118]. The system 
implemented is used for the detection of activities of daily 
living based on a radar sensor. The authors highlight further 
advantages in using fog devices for IoHT. It increases the 
bandwidth and lowers the latency of data transfer and offers 
a complementary decrease in energy consumption and data 
overload compared to cloud computing. 

Loza-Matovelle et al. [44] propose an architecture that 
focuses on integrating robotics and HRI methods. The 
system combines a network of heterogeneous sensors and 
actuators in a decentralized manner that decouples the 

functionalities of various agents. It is made of two servers 
that communicate together. A local (ROS-based) server 
oversees task achievement while a server for web services 
integrates with interactions with the users. All 
communications in the system use the MQTT protocol. The 
system is implemented with different sensors, a robotic 
platform, and a hologram for user interaction, thus 
showcasing its functionality. While the system shows great 
promise of integrating various kinds of agents and 
modularity, it will need a ROS network integration for each 
new agent, which is not useful for non-robotic agents. 
Therefore, further breakdown of the local server can prove 
more practical, as shown in other works discussed here. 

Nasr [42] provides a framework that focuses on 
modularity and scalability and integrates heterogeneous 
agents, sensors, robots, and HRI devices for AAL 
scenarios. In [124], the framework is deployed in two 
scenarios (RHM and AAL), using the same building blocks 
and combining both a cloud and a fog layer. The framework 
is divided into three independent layers, namely: 

 Device Layer: Includes smart sensors in the 
environment or on the user’s body, robotic agents, 
and agents used for user interaction such as mobile 
phones, virtual assistants, or gesture control 
devices. This layer covers all kinds of objects that 
can interact with the real world and users. 

 IoT Fog Layer: Decentralized computing and 
storage device(s) that receive the data from the 
device layer, preprocess it, and sends required data 
to the cloud. Fog devices reside in the local 
network of their users. 

 Cloud Layer: Central hub for large data storage 
and analytics. It allows easily expanding the 
capacity of the system for processing and 
prediction models. 

The authors argue that the proposed division of layers 
and clearly defined communication protocols and methods 
allow the framework to be flexible enough to fit into 
different use cases and personalize each user according to 
their needs. Two prototypes are created using the 
framework with different agents and capabilities, but the 
prototypes still need user testing and feedback in real-world 
scenarios. 

Similarly, a multi-layer architecture made of a device 
layer, fog computing layer, and a cloud layer is presented 
[46]. The device and fog layer house the physical devices in 
the environment and the fog devices, respectively. The 
cloud layer separates the data and devices from the 
application and manages the data, contains the rule and data 
analytics engine. The architecture is implemented in an 
AAL environment with real-time monitoring of HR and an 
indoor positioning system. The communication was done 
through the MQTT protocol. The data is stored using a 
Redis database in the fog layer and a MongoDB in the 
cloud. 
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Feria et al. [45] created an architecture of 3 separate 
layers. The remote portable device layer combines all the 
sensing and action devices in the physical world and allows 
data collection and manipulation of the environment. The 
devices in this layer contain either a sensor or an actuator, 
microcontroller, and a communication module, BLE, in 
their implementation. The second layer receives data from 
the remote portable device layer and coordinates the 
devices through adding, removing, or applying changes to 
devices. The collected data is also manipulated and 
temporarily saved before being sent to the next layer, and 
time-sensitive reactions are made at this layer. Therefore, it 
can be thought of as a fog layer like that proposed in [42], 
[46], [118]. The final layer is called the Web service 
application layer. It reorganizes the data to be presented to 
the users in different forms of user interfaces. The 
architecture utilizes BLE for communication with devices 
and JSON and RESTful API for communication with the 
web service layer. The system is presented to the user as a 
service-oriented architecture, where the users can interact 
and control the devices and functionalities in the form of 
services. The system, however, was not tested in a real-
world environment or implemented as a prototype. 

 
VI. DISCUSSIONS, CHALLENGES, AND FUTURE 
DIRECTIONS 
This section describes the open discussions of the reviewed 
frameworks and the challenges available in existing 
systems. In addition, the potential future research directions 
are highlighted to demonstrate the scope for further study. 

A. OPEN DISCUSSIONS 
In this review, we have described smart healthcare 
frameworks highlighting areas such as health monitoring 
systems based on wearable devices and smartphones, 
disease detection using machine learning, utilizing IoMT 
and social robots for AAL, and software integration 
architectures used to develop such assistive frameworks. 

The summary of the health monitoring systems based on 
wearable devices and smartphones is illustrated in Tables 1 
and 2. From Table 1, it is evident that almost all the 
systems can measure the heartbeat and body temperature of 
the patients, which shows the importance of these vitals. 
Additionally, some of the developed frameworks [54], [55], 
[56]. Furthermore, [21] measure blood pressure along with 
the heartbeat and body temperature. The commonly used 
edge device is NodeMCU in most cases; some of the 
schemes [51], [52], and [53] used two devices as an edge 
computing device. Almost all the systems used WiFi for 
data transfer; only the systems introduced in [55] and [56] 
utilized Bluetooth for data communication. ThingsPeak and 
web applications are very common for data visualization 
that assists the physicians to monitor the patients. Further, 
Adafruit and LabVIEW are used in [53] and [56] for data 
visualization. A common negative aspect among the 
surveyed studies is that the frameworks are not adequately 
manufactured for clinical uses. From Table 2, it is found 

that most of the reviewed systems monitored a single sign 
for the patients except the frameworks developed in [61] 
and [67]. The camera module (rear and front) is used in 
most cases as a sensing element; only the schemes 
introduced in [61] and [64] utilized a microphone and 
accelerometer for data perception. The different models of 
iPhone and Samsung brand smartphone are used for the 
experiment, although the prototype presented in [64] did 
not mention any smartphone model. The highest number of 
participants (205 people) are found in [63], and the lowest 
number (5 individuals) is in [66]. The collected data's 
maximum and minimum video duration is about 15 min and 
10 seconds for [63] and [66], respectively. A data sampling 
rate of 30 Hz is utilized almost in all cases. No security 
concerns are handled in most smartphone-based health 
monitoring systems. 

The summary of the machine learning-based disease 
diagnosis (COVID-19, heart disease, and diabetes) in the 
IoHT environment is shown in Tables 3, 4, and 5. It is 
observed from Table 3 that the reviewed systems utilized 
both the benchmark and real-time sensor data, as the 
amount of data for COVID-19 cases is relatively small. 
Most of the systems used CNN or variants of CNN as a 
classification algorithm; conventional machine learning 
technique is also used in some cases [81], [28], and [85]. 
The highest and lowest accuracy of 99.06% and 66.67% are 
found from [26] and [79]. Almost all the systems are not 
practically used in the target environment. It is shown from 
Table 4 that some common benchmark datasets like 
Hungarian and Cleveland databases, along with real-time 
sensor data, are used for the experiments. The highest 
accuracy of 99.45% is achieved from [31] using the MSSO-
ANFIS classification technique, and the minimum value of 
89% as an accuracy measure is obtained from [94] using 
bagging ensemble learning. No wearable prototypes are 
developed in almost all heart disease diagnosis systems. In 
diabetes detection, only a popular benchmark dataset (Pima 
Indians Diabetes dataset) is used in [108], and the other 
frameworks utilized real-time data collected from targeted 
individuals. Traditional machine learning techniques are 
applied to develop support systems for diabetes patients. 
The accuracy values 99.66% and 80.51% are appraised 
from [105], and [106] are treated as maximum and 
minimum. The clinical trials of the developed frameworks 
are absent from the study. 

Ambient assisted living has taken a huge portion of 
researchers’ interest in healthcare frameworks and IoT. The 
review presented here divided the efforts in the field into 
two portions. First, smart home environments utilize 
sensors and actuators to assist older adults in living longer, 
healthier lives while reducing the need for specialized 
healthcare professionals and its associated cost. Researchers 
focus on methods to track older adults’ motion and identify 
their activities in their home environments. The systems 
developed in [34], [114] utilized BLE and RSSI to develop 
a low-cost localization system and deployed machine 
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learning models for activity recognition [36]. Moreover, 
unobtrusive sensors have been of increasing importance 
over recent years. The primary motivation is to present 
solutions that would require minimal effort from older 
adults to incorporate into their daily lives. To that end, [37], 
[115], [117], [118] propose solutions that depend on radar, 
motion sensors, and door sensors to identify the senior’s 
location, activity and detect dangerous situations such as 
falls. Finally, approaches that involve more dependency on 
user interaction, cloud computing, and storage for better 
predictive analysis are presented in [22], [37], [118], [125]. 

These studies are all presented as work-alone systems 
and do not attempt to capture the full-capacity of 
capabilities IoT presents to this sector. For example, several 
studies propose utilizing robotic systems to provide social 
companionship, assistance in activities of daily living, and 
natural interaction with the provided home systems. Table 6 
summarizes the approaches to develop social robots in 
recent literature. A main component of the provided robots 
is their ability to autonomously navigate the indoor 
environment and assist older adults without human 
interference. Other capabilities requested by various 
stakeholders include fetch and carry facial recognition and 
video chatting for telepresence. Researchers developed 
robots to act as the sole agent for care of the older ad [39]–
[41]. Although this brings users personalization, it fails to 
capture the power of a fully integrated. To that end, [42]–
[44], [119] integrate existing commercial robotic agents 
into IoT environments. The main system behind the robotic 
systems was ROS, and the main communication protocols 
utilized were REST and MQTT. The sensors linked to these 
robotic systems included smartwatches/bracelets and 
cameras. A fallback of the proposed systems is the lack of 
real-world validation and extensive testing. Such testing is 
needed with user feedback to showcase its applicability 
beyond research and improve the design and functionalities 
in a user-based approach. 

The presented review also highlights the most recent 
suggestions for software architectures for smart healthcare. 
The main factor that combines the proposed systems is 
modularity and multi-layered architecture. The proposed 
architectures can be summarized to a generic framework as 
shown in Figure 4, comprised of the main users, a device 
layer, cloud layer, and user interaction devices. A 
perception layer or device layer is utilized to combine the 
sensory data from multiple sources and stream it to the rest 
of the system for processing. Such a layer is utilized in 
most recent literature. The collected data is then processed 
in either a local device or in the cloud. Fog Computing is 
proposed to accelerate response to real-time data and serve 
as temporary storage [42], [45], [46], [118]. Furthermore, 
researchers propose a link to the cloud for greater 
computational and storage power and enhanced scalability. 
This leads to the second approach, which combines both a 
fog layer and a cloud layer, as shown in Figure 5. Several 
discussed studies have used the fog layer to provide real-

time analytics and faster response to dangerous situations. 
The modularization of smart healthcare is essential, as 
shown in several studies explored in this paper. However, 
this emphasizes standardizing communication protocols 
between the layers, especially between the devices and the 
device or perception layer.  

 
FIGURE 4. Generalized Architecture in IoMT - 1. 
 
Several studies opted to create their sensors to conform to 
their proposed architectures, thus decreasing the potential 
benefit. Conforming to commercial off-the-shelf sensors 
and reaping the benefits of the wide-spread spectrum of 
sensors for remote healthcare is crucial, which led studies 
such as [42], [122] to provide a direct link to incorporate 
these systems. A major fallback in most software 
architectures is their abstract nature. Developing market-
ready software architectures goes beyond linking the layers 
and transmitting data. Other aspects such as security and 
privacy need to be addressed heavily to enable a 
commercial smart healthcare framework. Such aspects are 
usually addressed independently from the framework, and 
the authors see a vital need to include them in the design of 
the software architecture to enable a complete framework 
for smart healthcare. 

B. CHALLENGES AND FURTHER RESEARCH 
DIRECTIONS 
Although several assistive frameworks have been 
developed using modern technologies to ensure smart 
healthcare, some challenges need to be addressed to ensure 
a scalable, secure, easily accessible, and efficient healthcare 
system. The main challenges, along with the potential 
future research directions, are demonstrated here. 

The major challenge for implementing smart healthcare 
using wearable devices, including smartphones, is 
integrating the data from different sensors. As the various 
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sensors generate several data types, it is important to 
convert the signals from heterogeneous sensors attached to 
patients to a meaningful format for health monitoring 
applications. Several data fusion techniques [126]–[128] for 
integrating information derived from multi-sensory devices 
can be investigated as a means of providing streamlined 
signals for improving reliability and minimizing the 
bandwidth required for communication with the cloud layer 
as future work. Further, a hybrid body-sensor network 
architecture based on multi-sensor data fusion approaches 
will be investigated based on the work of [129]–[131].  

Another key issue relating to the healthcare system based 
on wearable devices is the security and privacy of patients’ 
responsive health records. The security issue has become a 
widespread and continuous challenge for wearable devices 
in IoT environments because of the increasing complexity 
of the data and the progressive network attacks. In the 
future, more secure and privacy-preserving frameworks 
using different security ensuring protocols like Blockchain 
[132]–[134] are recommended that can ensure secure data 
communication among the users (patients and their 
families, medical experts, and caregivers). Low power 
consumption and energy efficiency are very significant for 
smart healthcare systems based on wearable devices and 
smartphones, especially for long-term patient monitoring. 
These issues can be handled by using low power equipment 
[135], long-life batteries [136], and energy harvesting 
techniques [137], [138] in future research. Another way to 
increase the battery's lifetime is the ‘sleep’ and ‘wake up’ 
property of the sensors employed to ensure the desired goal.  

Along with the previous challenges, smartphone-based 
health monitoring systems face some noises as the collected 
data from smartphone cameras are in image/video format. 

 
Generally, the noise in the data delivers the misinformation 
to the users. Some major developments for healthcare 
applications are needed that are capable of handling noisy 
environments [139], [140], or some noise-free solutions 
[141] as future works. The developed prototypes should be 
maintained like low-cost, easy-to-use, and compatible 
platforms to increase the acceptance rate. More research 
and development activities can be ensured for developing 
assistive devices for smart healthcare considering the user 
needs. 

Machine learning-based disease diagnosis systems also 
suffer from various unique challenges that need to be 
resolved to develop efficient and accurate frameworks for 
disease detection in IoHT environments.  

Remote patient monitoring raises several real-world 
challenges, such as what to do with missing or incomplete 
data. Loss of electric power may cause the loss of some 
data being collected. In the worst case, a natural catastrophe 
such as an earthquake, weather related event may cause 
data loss before it is archived at a central cloud location. 
This would be particularly problematic for patients with 
serious illness at home. Also challenging is when multiple 
patients have severe conditions that require assistance 
beyond what can be responded in a timely way by 
healthcare teams. There will need to be ways to have a way 
to send those requests to another healthcare provider. 
Wearable devices may also fail, and so there may be 
incomplete and inconsistent data. We will need to have 
ways to deal with missing data, such as those proposed by 
Kaur and colleagues [150], [151]. 

 

 
FIGURE 5. Generalized Architecture in IoMT - 2. 
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Another challenge is to fit machine learning and deep 

learning algorithms with a small amount of data. To resolve 
the issues related to data shortage, optimized learning 
algorithms [142], end-to-end architecture [143], and 
synthetic data generation using Generative adversarial 
networks [144] are highly recommended as future studies. 
Furthermore, there are several unnecessary features in the 
dataset for detecting heart disease responsible for occurring 
the disease, and these features often degrade the 
performance of the developed systems. In this scenario, the 
use of some optimization and feature selection algorithms 
such as genetic algorithm [145], particle swarm 
optimization [146], principal component analysis [147], 
etc., would be a potential solution to improve the 
performance of the detection procedure in future research. 
Furthermore, most of the studies depicted that the diabetes 
detection systems used data from the glucose sensors to 
achieve their goal. Hence, the proper design of sensors with 
long life would be an excellent approach for diabetes 
monitoring and detection. The design of lightweight 
machine learning frameworks [148], [149] would be better 
suited in the embedded devices to ensure smart healthcare 
systems in the future study. Overall, it is found from the 
reviewed systems that the developed prototypes are not 
entirely manufactured for practical uses. In some cases, no 

clinical tests have been conducted yet. Most of the systems 
represented their results considering the laboratory 
environment. Addressing these issues considering human 
health conditions will lead to potential research directions 
in the future. 

AAL is a crucial application for smart healthcare, owing 
to the benefits it brings in improved and 24-hour 
monitoring of health and cost reductions on both the older 
adults and the healthcare system. Nevertheless, there are 
some challenges left to tackle. First, a user-based approach 
is required with feedback from older adults and redesign of 
the system accordingly. The aging society has special needs 
that are tough to identify without real-life tests and formal 
user studies. Moreover, the utilization of robotic agents and 
their integration into a smart environment is important to 
provide both physical assistance and social presence. 
Usability and acceptability of smart healthcare systems by 
older adults is linked to enabling independent living in their 
own home [36], [43], [109], [111], personalization [36], 
[37], and the intuitiveness of user-interface as highlighted 
by [39], [41], [42], [111]. As a result, it is important to 
directly tackle these three aspects in the design of AAL 
systems and follow user-based testing and improvement 
with older adults in the future study. 

 

FIGURE 6. Venn diagram of discussed studies grouped into the areas of focus (machine learning, remote health monitoring, and ambient assisted living). 
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To summarize the applications of IoHT in RHM and AAL 
and how ML is integrated into previous works, Figure 6 
summarizes most of the implemented works reviewed in 
this paper. The figure also shows how these fields intersect 
in many studies. In fact, more studies tackle them together 
than independently, which highlights how inter-dependent 
they are. This also emphasizes that a real IoHT system that 
would provide most benefit needs to be designed with a 
combination of these sectors in mind.  

Software architectures meant for smart healthcare have 
been improving and following the same direction of 
modularization and scalability. Recent studies highlighted 
the need for providing means of integrating COTS and 
therefore standardizing communication technologies and 
protocols. Such protocols need to enable multiple user 
interfaces to accommodate different users and applications. 
Moreover, both fog devices and cloud integration are 
needed for real-time response and the power of the cloud 
for big data analysis, storage, and scalability. Finally, 
security and privacy concerns are of utmost importance 
when it comes to health-related data. Consequently, these 
aspects need to be part of the design of the smart healthcare 
frameworks at an early stage, utilizing the most recent 
advancements in Blockchain technologies and allowing 
access to data appropriate to users in question. 

VII. CONCLUSION 
Smart healthcare provides a secure, effective, and easily 
deployable health monitoring system that can ensure quality 
healthcare services at a fraction of the cost currently incurred 
by hospitals or assisted living centers. In this review, we 
briefly discussed the state-of-the-art wearable devices and 
smartphones for basic signs monitoring, machine learning for 
three significant diseases such as (COVID-19, heart disease, 
and diabetes) diagnosis, and the frameworks developed to aid 
the adults in ambient assisted living. The software integration 
frameworks that are very substantial to develop smart 
healthcare are demonstrated in a nutshell in this review. We 
have reviewed the advantages and shortcomings of a wide 
range of systems. In addition, we discussed the major 
challenges of recently developed smart healthcare 
frameworks that are the main obstacles to develop assistive 
prototypes. Some potential future research directions are 
recommended for the further improvement of the existing 
healthcare system. It is quite impossible to replace the whole 
medical system with technology, but it can reduce the burden 
of medical experts by introducing some novel architectures. 
The development of such assistive systems would quite 
feasible while the medical experts and the researchers would 
work jointly in a platform. 
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