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Abstract 
 

Background: Researchers and medical practitioners have long sought the ability 
to continuously and automatically monitor patients beyond the confines of a 
doctor’s office.  We describe a smart home monitoring and analysis platform that 
facilitates the automatic gathering of rich databases of behavioral information in a 
manner that is transparent to the patient, which will be automatically or manually 
analyzed and reported to the caregivers, and may be interpreted for behavioral 
modification in the patient. 

 

Method: Our health platform consists of five technology layers.  The architecture 
is designed to be flexible, extensible, and transparent, to support plug-and-play 
operation of new devices and components, and to provide remote monitoring and 
programming opportunities. 

 

Results: The smart home-based health platform technologies have been tested in 
two physical smart environments.  Data that is collected in these implemented 
physical layers is processed and analyzed by our activity recognition and chewing 
classification algorithms.  All of these components have yielded accurate analyses 
for subjects in the smart environment testbeds. 

 

Conclusions: This work represents an important first step in the field of smart 
environment-based health monitoring and assistance. The architecture can be used 
to monitor the activity, diet, and exercise compliance of diabetes patients and to 
evaluate the effects of alternative medicine and behavior regimens. We believe 
these technologies are essential to provide accessible and low-cost health 
assistance in an individual’s own home and to provide the best possible quality of 
life for individuals with diabetes. 



 

Introduction 

Medical researchers and practitioners have long sought the ability to continuously 

and automatically monitor diabetes patients.  Additionally, the use of monitoring 

data to influence treatment dosage or regimen in real-time is an important 

objective of behavior modification practice. These capabilities can help healthcare 

systems to overcome key obstacles to delivering acceptable quality-of-service at a 

reasonable unit cost per patient.  A primary obstacle is patient noncompliance 

with respect to diet, exercise, and medication.  For example, over the past two 

decades the prevalence of overweight and obesity has increased at an alarming 

rate.  Recent data [1] shows that 60% of all adults in Florida (the retirement 

capital of the world) are overweight or obese.  Excess body weight contributes to 

diabetes and the resulting $312 billion annual cost to the US economy. 

In practice, implementing semi-automated, pervasive healthcare monitoring 

and delivery has proven to be a very difficult process.  The reasons for this 

include but are not limited to economic capabilities, lifestyle choices, ethnic 

customs, information access and physical limitations, as well as the generalized 

structure of our health care delivery system [2,3]. While all persons with Type 1 

diabetes rely on daily insulin injections, most people with Type 2 diabetes can 

control their diabetes by pursuing a healthy meal plan and exercise program, 

losing excess weight, and taking oral medication. Many people with diabetes also 

need to take medications to control their cholesterol and blood pressure. 

 



 

Government, academia, and business professionals have responded to this 

situation by designing educational programs [4-9], personal monitoring devices 

such as glucose monitors and calorie counters, and technology that transmits 

patient health data to the care provider.  Unfortunately, monitoring and 

connectivity devices are often applied in isolation, enforce rigid hardware 

requirements, and are must be used, operated, and maintained by patients 

consistently with monitoring, diagnosis, or treatment requirements.  Additionally, 

apart from self-reports to researchers, doctors, nurses, or caregivers, there is little 

or no knowledge of patient behavior in response to these monitoring devices, 

which means an absence of verification if behavior modulation is being 

implemented correctly. Commercializing such technologies will require a high 

level of interoperability, zero-configuration (plug and play), transparency, 

flexibility, and extensibility. 

  A promising direction for subject or patient monitoring utilizes emerging 

technologies for connecting sensors, monitoring personnel, and caregivers, via 

smart spaces (also called Intelligent Environments).  Several academic and 

industrial research projects have developed concepts and technology for Smart 

Homes with healthcare plug-ins to provide graphical feedback on behavioral 

patterns [10], to monitor residents’ health status [11-14], to provide reminders of 

daily activities [15,16] and to perform assessment of cognitive abilities [17].  

Synergistically, underlying hardware and software development has enabled 

Smart Healthcare [18-20]. 



 

In response to the preceding challenges, we developed a monitoring and 

analysis platform consisting of economically deployable connectivity technology 

and personal wearable devices.  This will enable automatic gathering of rich 

databases of behavioral information in a manner transparent to the patient. This 

health data will be analyzed and reported to caregivers for diagnosis and 

treatment. The technology is interoperable (usable across many hardware and 

software platforms), self-integrating (able to insert itself into existing and future 

sensor suites or networks), transparent (to the subject, patient, and researcher, for 

ease of applications development), and plug-and-play (for ease of installation and 

commercialization). 

In this paper we introduce our health platform architecture and explain how 

information from Smart Homes, personal monitoring devices, and data analysis 

software can be combined to provide a comprehensive approach to behavioral 

monitoring. 

Methods  

We have developed approaches and technologies that support transparent self-

integration of a very wide variety of devices, to implement interoperability, 

remote monitoring and remote programmability.  This supports wide-area 

deployment in laboratory, clinical, and residential/occupational monitoring, 

diagnostic, and behavior modification applications.  Our approaches also use 

machine learning technologies to automatically create models of resident 

behaviors, find interesting patterns in collected data, and generate inferences from 

these patterns. 
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Our health platform architecture, shown in Figure 1, consists of five layers. 

Firstly, the personal devices and smart space layer contains the set of available 

Smart Space or personal sensors. Secondly, the raw data layer accepts 

datastreams generated by the sensors in Layer 1.  These data are continuously 

streamed out of Smart Spaces into the third layer (data reduction middleware), 

which performs statistical analysis as well as data reduction and classification.  

For example, software at this layer performs error analysis to measure data quality 

and data fusion to combine multi-sensor outputs into an intelligible data stream. 

Fourthly, the analytical layer includes monitoring consoles and assessment 

consoles. These consoles can assist social and healthcare researchers and 

practitioners to monitor their patients, perform domain-specific analyses, and 

report relevant information and recommendations concerning their health and 

Figure 1.  Health platform architecture. 



 

behavior back to researchers, practitioners, and caregivers. Fifthly, the 

methodology limitations and policy layer is a knowledge base that achieves data 

quality assurance and compliance with stated requirements. 

The key distinguishing features of our health monitoring architecture are: 

1. Flexibility and Extensibility: Our approach is sufficiently flexible that 

heterogeneous monitoring devices (e.g., cameras, spectral and thermal 

sensors, location sensors, physiological monitors) and their supporting 

technologies need only be integrated once, then can be deployed 

anywhere without significant additional effort.  This directly facilitates 

system extensibility and maintainability, which is not a feature found in 

previous technologies [21,22].  

2. Interoperability and Transparency: Our approach facilitates 

transparent self-integration, while overcoming legacy system 

limitations usually found in hospital, clinical, and laboratory 

monitoring, diagnostic, and information systems [21,22]. 

3. Self-Integration: Our technology allows devices to transparently self-

integrate into back-end systems (including legacy systems) without the 

help of system integrators or engineers [25,26], thus facilitating plug-

and-play expansion over a wide variety of standards and protocols. 

4. Remote Monitoring and Programming: Our technology also 

supports remote programming and status monitoring of all devices, 

sensors, or communication networks in the system, to facilitate 



 

interactive monitoring and configuration in response to study, clinical, 

or regulatory constraints [21,22].   

5. Model Generation and Analysis:  Our machine learning algorithms 

analyze collected data on each patient to build a model of patient diet, 

exercise, activity, and health profile.  Other programs can use this 

model to classify the data into predetermined categories (e.g., 

compliant or non-compliant, health risk or healthy), to predict 

upcoming events, and to detect trends in data values [25,26]. 

In the following sections, we detail each layer of our architecture and illustrate 

how it enables behavioral health monitoring and facilitates behavioral alteration.  

 

 

Figure 2.  The Gator Tech smart house. 



 

Personal Devices and Smart Spaces Layer 

Layer 1 of our architecture contains physical components that capture data related 

to the health of an individual.  These components may include commercially-

available wearable sensors or sensor-rich smart spaces. Many already-available 

wearable sensors are worn next to the skin and are non-invasive, such as an 

Actigraph watch that monitors energy expenditure using an accelerometer and a 

wireless pulse monitor.  Other sensors are currently being developed that can be 

woven into clothing [28], allowing any number of sensors to be worn without 

additional burden placed on the patient. 

As an example, we 

have equipped two 

physical smart space 

testbeds for our health 

platform.  The first is 

the Gator Tech Smart 

House (GTSH, see 

Figure 2) [21,22], a 

2500 sq ft house located 

in the Oak Hammock 

retirement community.  The second is the CASAS smart apartment located on the 

Washington State University campus (see Figure 3) [26,27].  Both testbeds have 

common features, including sensors for motion, light, temperature, humidity, and 

door usage, and powerline controllers to automate control of lights and devices.  

Figure 3. The CASAS apartment.  Circles indicate the 
positions of motion (M), temperature (T), and item (I) 

sensors throughout the environment. 



 

sensor ID        |  

   date / time                | reading 

--------------------------------------- 

12048146000000B2         |  

                   2008-02-12 10:50:45.673225       |  ON 

12D27E460000000D        |  

                   2008-02-12 10:50:48.903745       |  ON 

12048146000000B2          |  

                   2008-02-12 10:50:49.339849       |  OFF 

2084A30D00000039B      |  

                    2008-02-12 10:50:53.27364        |    0.0459382 

2084A30D00000039B      |  

                    2008-02-12 10:51:05.6252          |     0.158401 

Figure 4.  Sensor data generated while the resident was 
washing hands, including motion ON/OFF readings 
and water flow amounts.

These coordinated research facilities are two of a very few research facilities in 

the US where human subjects are engaged in leading-edge healthcare research, by 

living in the smart space for varying periods of time. 

 

Raw Data Layer 

The amount of 

data that is 

generated by 

wearable devices 

and by smart 

spaces is 

enormous, 

amounting to 

thousands of 

readings per day.  

Figure 4 shows a 

small sample of data that captured in the CASAS smart apartment.  Capturing raw 

data in a form that is quickly accessible for manual interpretation or automatic 

analysis is the responsibility of the raw data layer.  However, pushing the raw data 

to the software component that processes this data is the responsibility of the 

middleware layer, which we describe next. 



 

Data Reduction Middleware Layer 

In order to achieve our goal of creating a smart home-based health platform that is 

flexible, extensible, transparent, and interoperable, we treat physical sensors, 

physical actuators, and software components as software services.  We achieve 

this with our Atlas sensor platform (shown in Figure 5). 

 Atlas contains hardware and software adaptors, which abstract devices, 

sensors, and networks into software entities that can be readily manipulated by 

programmers without additional effort by systems integrators or hardware 

engineers [31].  Atlas supports a plug-and-play approach – when powered on, a 

device such as a sensor or controller automatically registers itself, allowing 

programmers to access it in the same manner as a software service. 

Once selected, the devices are adapted via Atlas into our service-oriented 

device architecture [31]. Atlas then enables these devices to connect to a smart 

space through wireless local connectivity, which makes the devices securely 

accessible from remote internet sites as software services. This conversion from 

. . . 

. . . 

. . .  

. . . 

Figure 5. The Atlas middleware. 



 

devices (hardware) to services (software) is a major enabler and a unique 

capability for the creation and programming of our health assessment consoles. In 

addition, mobile phones can be integrated into the system and used as a channel to 

deliver health data and recommendations to the subjects or patients.  

Analytical Layer  

 Care providers usually do 

not have the time or expertise 

to interpret large volumes of 

raw data generated by Smart 

Spaces.  Fortunately, the 

analytical layer of our health 

platform provides 

configurable, friendly 

consoles that present data in 

an understandable format. For example, one graphical tool will show the energy 

consumed during each labeled activity and the total summarized over the last day, 

week, and month.  This type of feedback provides patients with real-time 

feedback on their behavioral habits and the effects of their lifestyle choices and 

changes. 

The consoles also allow caregivers to interact remotely with the patients and 

their environments.  For example, caregivers might want to change parameters in 

the patient’s profile, advise the patient, or alter the patient’s prescribed behavior.  

Figure 6. Generic assessment consoles. 



 

Such closed-loop feedback is a powerful tool with which physicians and 

caregivers can study the impact of different regimens.  

An issue that arises in the collection and analysis of this data is the concern of 

maintaining the privacy of the data.  To ensure that only the intended recipients 

view the information, all collected data is encrypted before it is stored or 

transmitted.  Healthcare providers, insurance companies, and family members can 

access only the data sources and reports to which they have been granted access 

by the patient.  

To date, we have designed two types of assessment programs that provide 

insights relevant for behavioral monitoring of diabetes patients.  The first is an 

algorithm that tracks an individual’s daily activities, which allows the caregiver to 

monitor behavioral compliance and judge functional well-being of the patient.  

The second is an algorithm that recognizes chewing behaviors from video, which 

is a useful step in monitoring and overall dietary habits of an individual. 

Activity recognition. In order to recognize activities being performed by Smart 

Home residents, mechanisms such as naïve Bayes classifiers, Markov models, and 

dynamic Bayes networks could be employed to mathematically combine and 

classify sensor datastreams [31-33]. However, existing approaches must be 

enhanced to work in real-world situations where tasks are interleaved, activities 

are incomplete, and learned models must be adapted for new individuals. 

We have designed an approach to probabilistically identify activities in a 

Smart Space from sensor data, while the activity is being performed. Specifically, 

a hidden Markov model is constructed for each task to be recognized. Since a 



 

fixed number of prior sensor events provide context for activity recognition, an 

activity can be identified even as the resident moves from one task to another.  By 

quantifying probabilistic anomalies in the received sensor data, we can compute a 

metric of how completely an activity is performed, with a qualitative description 

of omitted steps.  The results of tracking activities will be displayed in an 

assessment console (shown in Figure 6). 

Analysis of chewing motions. Our second analysis program focuses on 

assessment of diet routines and behavior compliance.  Here, video imagery is 

processed to detect and analyze chewing behavior, by segmenting mouth regions 

of video sequences containing chewing-related features.  Next, we compute 

frequency spectra in spatial and temporal dimensions that directly support 

classification of oral activity into categories such as chewing, talking, or yawning.  

The analyzed chewing activity can be used to estimate the quantity and type of 

food an individual is consuming. 

Feedback loops. For complete patient data analysis, closed-loop feedback, or 

the ability to change the analysis approach based on prior results and user 

response, must be provided.  As shown in Figure 6, the health platform should 

offer the following types of feedback: 

1. Sensor Control Feedback Loop will be directed by data quality assessment 

implemented in the data reduction and middleware layer.  This will allow 

sensors to be automatically and adaptively configured from a remote 

monitoring station in response to performance requirements.  For example, 

suppose a blood pressure monitor exhibits wide fluctuations in output.  In 



 

this case, the history of blood pressure data from that sensor would be 

analyzed to determine whether or not the sensor exhibits failure 

characteristics, or whether the patient was being medicated or exercised in 

ways that might cause such fluctuations.  In the former case, the sensor could 

be reconfigured or replaced.  In the latter case, the patient’s caregiver, 

researcher, or physician would be notified and corrective behaviors would be 

recommended. 

2. The Behavior Altering Control Loop transforms data from the assessment 

consoles into behavior modification directives for each patient.  For example, 

suppose that a patient’s wearable glucose sensor produces data whose 

analysis indicates an abnormally high glucose level.  Further assume that the 

patient is about to prepare dinner.  After receiving salient sensor data, the 

analytical layer would inform the caregiver of the elevated glucose level 

(sensor data) and impending dinner preparation (context). An analysis 

console would then generate the recommendation that sucrose levels in the 

patient’s dinner be reduced, for example, by elimination of sweet desserts.  

The healthcare personnel would then employ a monitoring console to inform 

the patient that his or her glucose level is high, and that sweet desserts should 

be avoided this evening. 

Results 

Our smart-home based health platform has been implemented and offers a health 

monitoring technology that is currently being investigated for diabetes patients.  

At the physical and raw data layers, we have implemented and have successfully 



 

demonstrated our technologies in the Gator Tech Smart Home and the CASAS 

Smart Apartment.  At the middleware layer, we have implemented the ATLAS 

architecture.  The resulting software entities can be readily manipulated by 

programmers in commonly-available languages such as Java, C, or C++. 

Because a key to the health application of this technology is the development 

of analysis tools, we have implemented and tested our activity recognition and 

chewing classification technologies.  In the case of activity recognition, we 

brought 20 adult participants into the CASAS smart apartment one at a time.  In 

each case the participant was asked to perform a sequence of five activities:  1) 

look up a number in the phone book, dial the number, and write down the cooking 

instructions they hear on the recording; 2) wash their hands in the kitchen sink; 3) 

cook a pot of oatmeal as specified from the phone directions; 4) eat the oatmeal 

while taking medicine, and 5) clean the dishes. 

Sensor information was collected from the apartment during the study and 

Markov models were learned for each of the five activities.  Using three-fold 

cross validation, the Markov model classification algorithm achieved 98% 

recognition accuracy. 

In a separate experiment, we brought an additional 20 participants into the 

apartment, then asked them to perform the activities, while we injected an error 

such as misdialing the number, leaving the water or stove burner on, forgetting 

the medicine, or cleaning dishes without water.  When we tested our algorithm’s 

ability to recognize these errors, all injected errors were detected for all but one 



 

case among the last four tasks.  In this “mistaken” case, the participant actually 

forgot to perform the task erroneously, instead performing correctly. 

Our chewing classification algorithm was tested on collected video sequences 

for five different activities (chewing with mouth open, chewing with mouth 

closed, talking, making faces, and no facial motion).  In the preliminary study, the 

behavioral classification results were widely separated in pattern space for 

chewing versus clutter data such as talking, making faces, or no facial motion.  

We were also able to automatically distinguish chewing with mouth closed versus 

chewing with mouth open.  In one case, chewing was confused with talking that 

occurred at the same temporal frequency and pattern of jaw motion as chewing. 

Conclusions  

We have designed a smart home-based software architecture that assists in 

behavioral monitoring for diabetes patients.  Through personal connected devices 

and Smart Home technologies, we are implementing ways to gather data that will 

help us overcome many of the obstacles to adequate diabetes care.  Through 

advances in analysis and diagnosis, this information will be utilized to improve 

the effectiveness of diabetes self-management education as well as the 

information available to health care professionals providing diabetes care. 

We successfully demonstrated a software architecture that provides flexible, 

interoperable, plug-and-play integration of health monitoring components from 

smart home data collection through data analysis and recommendation. This 

architecture will support behavioral monitoring for diabetes patients, beyond 

information that can be collected by self reports, or measured in a medical 



 

practitioner’s office. Although software components have not yet been designed 

for the methodology limitations and policy layer, integration of these components 

to support behavior alteration can be readily achieved.  Application of these 

innovative, emerging technologies can thus produce dramatic improvements in 

the lives of those living with diabetes, and reduce the public and private health 

care costs associated with treating the disease. 

While we have demonstrated the ability to integrate health monitoring software 

components together into a comprehensive system, we still have many issues to 

address related to the individual behavioral monitoring algorithms. In the next 

stage of this project we will perform intensive studies to validate the accuracy and 

understandability of our individual health assessment consoles with participants 

from target populations.  We will also gather initial feedback from healthcare 

providers based on data collected from these participants. 
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