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ABSTRACT

The paper develops a terminology to describe sensors
which have been enhanced in some way by the integration
of some additional processing circuitry. Several terms,
current in the literature, including 'smart sensors' and
'intelligent sensors' are discussed and the ‘cogent’ sensor is
introduced. This is followed by a brief review of existing
and potential applications of Artificial Intelligence (AI) to
microsystems, in terms of technology integration, device
level performance enhancement and system level added
functionality.
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1 INTRODUCTION

The fast maturing MEMS field is presently seen as a
core enabling technology both in the civil and military
application domains.

A particularly buoyant sector in the MEMS industry is
that of sensors. Traditionally, the main sensor requirements
were in terms of metrological performance, i.e. the (most
often) electrical signal produced by the sensor needed to
match relatively accurately the measurand. If such basic
sensor functionality was adequate several years back, this is
no more the case. The use of sensors by industry has seen a
gradual shift, away from large systems incorporating
relatively few and expensive transducers towards the
utilization of more and more sensors as components, or in
subsystems. A new set of requirements was therefore
generated which can potentially be met by using
micromachining as a sensor fabrication technology. MEMS
devices can be designed and produced to achieve: low cost,
low mass and low power consumption, plug and play,
digital output, enhanced reliability, sensitivity and
selectivity and high accuracy, to name a few, general,
desired sensor features.

Whilst some of the above requirements can be met by
advances in the manufacturing techniques of the sensing
element itself (to produce linear, accurate, highly sensitive
and reliable sensing devices), others have to rely on
efficient and clever processing of data generated by the
sensing device, before such data reaches the outer world.

It is here, in the area of data processing and extraction
of information, that the authors propose to clarify some

commonly used terminology and introduce new terms. The
definitions are supported by examples.

2 SMART, INTELLIGENT AND COGENT
SENSORS

The MEMS/micro sensors field has become an
interdisciplinary one, pulling together researchers from
microelectronics, mechanics, physics and computer
sciences. As a consequence, “borrowed” technologies,
methods and terminology from the macrosystems domain
began to be used in conjunction with the development of
microsystems. Several terms are current in the literature,
including 'smart sensors' and 'intelligent sensors'.
'Adaptive', 'distributed', 'autonomous' and other adjectives
are also routinely applied to pick out the function of a
particular sensor enhanced by some processing capability
from the common herd of 'dumb' sensors. (Such
terminology, a few years ago, was solely dedicated to
macrosystems, with a much stronger meaning.)

By comparison with the usage of these terms in other
fields, it would appear that the sensor community is over-
selling the 'intelligence' of their products. The phrase
'intelligent sensor' often merely indicates that the sensor is
integrated with a digital processor, it may say nothing about
the intuitive abilities of the functionality programmed into
the sensor. Given that the terms 'smart' and 'intelligent' have
become somewhat confusing and meaningless with respect
to sensors, we introduce a new term, the ‘cogent sensor’. In
contrast to the above terminology, we define the meaning
of cogent sensor by what it does, rather than what came
before it or how it is constructed.

Smart sensors -The original 'smart sensors' [1] came
about with the opportunity to enhance the capabilities of
sensors by the integration of some signal conditioning
circuitry within the sensor. According to the IEEE 1451
smart transducer interface standards (which describe a set
of open, common, and network-independent
communication interfaces for smart transducers),
“smartness” means on-board data storage/processing
capability, interfaced/integrated with the and/or digital
sensor [2]. Variations of the term referred to the hardware
implementation of the sensor, as follows: when a
microsensor is integrated with signal processing circuits in
a single package, it is referred to as an integrated sensor. A
monolithic integrated sensor has the signal processing
circuitry fabricated on the same chip as the sensor, while a
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hybrid integrated sensor has the signal processing circuit on
the same hybrid substrate as the sensor chip.

‘Smart’ is however a term which, although used in
conjunction with nearly every newly designed/produced
sensor, means different things to different people. To some,
it just means sensors which can communicate digitally,
while to others it means sensors that have serious
computing power integrated within them, to include
calibration, non-linearity correction, offset elimination,
failure detection, communication and decision making
ability. It is important to mention that, such designs have
been developed strictly for a sensor type and manufacturing
technique and are, mostly, highly application oriented, so
much so that, it is often difficult to assess whether it is the
sensor or the application that is ‘smart’.

Intelligent sensors - As the capacity of VLSI
techniques increased, it became possible to integrate
substantial digital or analogue processing capability onto a
sensor. The term 'intelligent sensors' was often used
incrementally from 'smart sensor'. Initially “intelligence”
meant and served the same purposes as the electronics in a
smart sensor: enhancement of the function of the sensor
itself. In macrosensors, the term intelligent sensor was
coined in 1992 [3]. Trade journal and popular news articles
still use smart and intelligent interchangeably [4].

There are however, several examples of work here,
where by using the term intelligent the authors implied the
use of macro-scale intelligent techniques (i.e. artificial
intelligence and most often neural networks (NN)). Such
works are discussed in Section 3. It should be noted
however that the nonlinear signal processing abilities of
NNs were merely exploited rather than more evolved
‘thinking/decision making in new situations’ aspects of the
technique.

Cogent sensors - What is common to the previous
classes of sensors is that they provide raw data. Essentially,
the readings of the original sensor are passed on, albeit
linearized, temperature corrected, hysteresis corrected,
packetised, network routed or re-packaged in one of many
ways specific to the 'intelligent sensor' in question. What
these sensors do not do is reduce the data to information,
neither do they do processing to remove unneeded data and
convert it to the particular form that the application
requires. We term a sensor that performs the above two
functions a 'cogent sensor'. Below we give some examples
of existing and proposed cogent sensors and discuss some
ways in which artificial intelligence techniques may be
used to implement them.

3 AI FOR MEMS INTELLIGENCE

Amongst the “borrowed” macrosystems design
techniques and tools, AI appears to be receiving increasing
attention [5, 6] in the microsensors world. Despite the
promise of application of ‘intelligence’, in many cases the
AI techniques contribute only to a ‘smart’ sensor, let alone
a cogent one. One exception to this is the case of

virtual/software sensors, where AI techniques act on a
system/array of microsensors and infer new information
from multiple sensor data. Examples for each sensor
category defined in Section 2 follow.

3.1 AI in smart sensors

We classify the applications below as ‘smart’ because
no additional functionality has been added to the sensor,
rather the quality of the data is enhanced by the AI
techniques.

Sensor metrological performance enhancement
Optimizing analogue and digital methods for a

transducer’s characteristic interpolation and/or linearization
is a field where constant research is being done. Different
calibration methods have been applied for a variety of
macro and microsensors (for example Newton, Lagrange,
LMS regression and ANN). It has been found that ANN
interpolation is more accurate than polynomial
interpolation, especially when multivariable extrapolation
or nonlinearity characteristics are under analysis. The
extrapolation errors with ANNs are lower both inside and
outside the calibration range. The computational load with
ANN interpolation is of the same order as polynomial
interpolation; however, ANN training requires more
computational resources. This is not important in NN
applications where training can be performed in a central
host or implemented locally based on previous training
weights and biases [7,8].

Sensor Data Validation
In this application of AI the ‘intelligence’ is applied to

validate [10] or restore missing or corrupted data [11], by
exploiting either physical sensor redundancy or other
observable states within the sensor or the application itself.
The output is still data, as opposed to information.

3.2 AI in intelligent sensor systems

In this category the system as a whole uses sensors and
AI but the sensor itself is not endowed with the data to
information transformation.

Multiple sensor systems – actuator control
The adventurous Silicon Active Skin project [12,13],

lead by the Center for Neuromorphic Systems Engineering
at Caltech, aims to integrate MEMS sensors and actuators,
neural network sensory processing, and control circuits all
on the same silicon substrate to form a “smart skin”,
capable of reducing drag on an aircraft wing. This is one of
the best examples of intelligent microsystems. The system
senses the shear stress, while a neural controller with
feedback mechanism efficiently actuates robust micro
actuators for surface stress reduction. The neural network
controller is trained off-line to predict actuation using data
from near-wall controlled experiments. The controller is
allowed to adapt on-line, as it is included in an on-line
adaptive inverse model scheme. In simulation, a 20% shear
stress reduction was obtained.
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3.3 AI in cogent sensors

Our category of ‘cogent sensors’ includes sensors
integrated with the means to reduce raw data to
‘information’, of the type required by a specific application.
Up to date, most examples of cogent sensors in the
literature are of a multidimensional nature, so they are,
strictly speaking cogent sensor systems. Two categories
here are: the mono-type sensor systems (all sensors
measure the same physical quantity) and the multi-type
ones. Examples follow for each category.

At individual sensor level, cogent functions have been
reported as work in progress and two examples are offered
here.

Multi-type sensor systems
In some applications, the information has to be inferred

from available measurements of observable quantities using
a statistical model, which is referred to as a “software” or
“virtual” sensor [14]. The actual measurement devices
within such virtual sensors are often MEMS components.
Software sensors were the first and major application of
ANN to the instrumentation field and today they continue
the lead in terms of number of research contributions. The
innovative aspects of such works are primarily application
specific and reside in the integration of various techniques
in a global system allowing for prediction of the quantity of
interest. Some contributions extend the role of ANN (or add
on specific NN modules) to enhance the designed system
with functions such as data validation, reconstruction, and
analysis of uncertainties. It is not the scope here to survey
the multitude of such applications. The work by Roppel et.
al. is however mentioned as it is a good example of design
for hardware integration of MEMS and AI. They
successfully designed a low-power, portable sensor system
using mixed analog and digital VLSI circuitry for on-board
data pre-processing together with pulse coupled neural
networks for feature extraction and also for pattern
recognition [15]. The design is aimed at minimizing cost,
size, weight, power and post-sensing computational burden.
The sensor testbed is a 30 nodes, MEMS sensor array
consisting of tin-oxide gas sensors and the target is to
discriminate among 7 odors (acetone, ammonia, beer, etc.).
Spatio-temporal encoding is used for pre-processing of the
dynamic sensor outputs. The system provides correct
identification rates of 96% for the odor data sets
considered. Other good example of a gas sensing array with
NN processing and a VLSI-MEMS was presented in [16].

Mono-type sensor arrays, smart sensor webs
Several researchers have noted the potential benefits of
organizing/designing and exploiting large sensor systems
based on the same principles as those governing both
natural and artificial neural processing. This has led to the
proposal that functions be distributed across a network of
‘intelligent’ sensors. The network itself then,
collaboratively extracts information from the data field
provided by the sensor network. Sensors are seen as ANN
nodes and ANNs are designed to have architectures

approximating those of the biological NN that performs
analogous functions [17]. Such systems are part of a “third
wave of computing” that could use NN to build sensors and
other machines capable of the unsupervised learning
exhibited by the human brain [18].

Fault detection and classification.
Over the past 10 years, neural networks have found

wide application in systems that are designed to recognize
fault conditions from sensor data, the derived information
being whether the data is trustworthy or not [19,20]. If
information of this kind is derived by a microsensor, about
its own data and independent of the application of which
the sensor is part of, such a microsensor would be
subscribing to our “cogent” property.

The authors’ work in this respect includes the
development of a microsensor with such ability [21]. The
fault detection function is intrinsic to the sensor
functionality and provides the cogent sensor not only with
the means of detecting its healthy/faulty state but also with
the power of decision about its appropriateness of
contributing its data to the specific application. Such a
sensor can be used when two or more sensors of the same
type are linked in an intelligent array. The method is based
on the use of Neural Networks (NN) both for detecting
faults and for classifying them. When implementing this
function, use is made of the existing hardware resources in
an array of intelligent sensors. The outmost merits of the
method are:
-the low communication level necessary for performing the
diagnosis: at any one time, only two neighboring sensors
need to exchange data in order for the diagnosis decision on
a particular sensor to be made;
-the real-time element – the diagnosis is performed based
on a 3 steps back only history of the sensor readings;
-no a priory information is needed on the devices
themselves as the sensor signatures are to be analyzed and
learnt by the NN;
-the method is application independent and easily scalable.
Work is in progress to add new cogent features to the
proposed sensor, apart form the diagnosis ability.
Real time monitoring
As part of the UMCP Small Smart Systems Program, a
team of researchers aims at developing MEMS-VLSI single
chip sensors where the smart portion of the system is a NN
[22]. In the proposed designs, a fluid or gas acts within a
portion etched out of the VLSI chip to activate the sensor.
Upon NN processing of the sensor data, decisions are taken
by the cogent sensor and feedback is produced for other
components of the application (biomedical or
environmental determinations for ex.)

4 CONCLUSIONS

As we have seen, the term ‘intelligent’ is applied to a
wide variety of MEMS systems, ranging from those that
have processing capability, through those that use artificial
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intelligence to those that, in a sense, think, sense, act and
communicate. We reserve the term ‘cogent’ for the latter.

Cogent sensors are of great interest in a variety of
industries. MEMS technology offers new ways of realizing
cogent sensors by combining sensing, signal processing and
actuation on a microscopic scale.

MEMS will open up a broad new array of cost-effective
solutions only if they prove sufficiently reliable and their
use does not pose insuperable systems design problems.
The basic purpose of sensors is measurement. Achieving
high metrology performance is the primary design aim,
which has been achieved/solved in two ways: by
technological perfection (which is inherently expensive and
difficult to achieve) or by the application of structural or
structural-algorithmic methods.

Relaxing the requirement for technological perfection
allows designers to achieve the same performance with
lower cost, design effort and on shorter time-scales. The
second approach not only allows for increased
measurement accuracy but also allows the extension of
functional capabilities of such systems. The concept of the
cogent sensor extends this principle further. What is
important is not so much the quality of measurement itself,
but the quality of the information derived from it. With
cogent sensors the information required by the application
may be available, in the form required by the application
directly from the sensor or network of sensors. The
information may directly reflect the sensed data or it may
have been deduced and sifted by the application of degrees
of ‘intelligence’.
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