
Vol.:(0123456789)1 3

Data Science and Engineering (2020) 5:65–79

https://doi.org/10.1007/s41019-019-00114-z

Smart Intra‑query Fault Tolerance for Massive Parallel Processing
Databases

Yunhong Ji1 · Yunpeng Chai1 · Xuan Zhou2 · Lipeng Ren1 · Yajie Qin1

Received: 11 June 2019 / Revised: 6 December 2019 / Accepted: 11 December 2019 / Published online: 19 December 2019

© The Author(s) 2019

Abstract

Intra-query fault tolerance has increasingly been a concern for online analytical processing, as more and more enterprises

migrate data analytical systems from mainframes to commodity computers. Most massive parallel processing (MPP) data-

bases do not support intra-query fault tolerance. They may suffer from prolonged query latency when running on unreliable

commodity clusters. While SQL-on-Hadoop systems can utilize the fault tolerance support of low-level frameworks, such as

MapReduce and Spark, their cost-effectiveness is not always acceptable. In this paper, we propose a smart intra-query fault

tolerance (SIFT) mechanism for MPP databases. SIFT achieves fault tolerance by performing checkpointing, i.e., material-

izing intermediate results of selected operators. Different from existing approaches, SIFT aims at promoting query success

rate within a given time. To achieve its goal, it needs to: (1) minimize query rerunning time after encountering failures and

(2) introduce as less checkpointing overhead as possible. To evaluate SIFT in real-world MPP database systems, we imple-

mented it in Greenplum. The experimental results indicate that it can improve success rate of query processing effectively,

especially when working with unreliable hardware.

Keywords Intra-query fault tolerance · Fault tolerance · Pipeline · Massive parallel processing databases

1 Introduction

Massive parallel processing (MPP) databases are popular

data platforms for enterprise and scientific data analysis.

Compared with other types of platforms, such as Hadoop and

Flink, the advantages of MPP databases lie in their matu-

rity and comprehensive functionalities established in the last

decades. Well-known MPP database products include Tera-

data [1], Greenplum [2], Vertica [3], as well as a number of

SQL-on-Hadoop systems such as Impala [4] and HAWQ [5].

In recent years, fault tolerance of query processing has

become increasingly important to MPP databases. Instead

of relying on expensive mainframes equipped with highly

available hardware components, more and more enterprises

are inclined to deploy their databases on cheap commodity

machines. Commodity clusters are much less reliable than

mainframes, such that databases have to deal with system

failures proactively. Moreover, execution time of today’s

OLAP queries has expanded a lot, due to the rapid growth

of data volume. The longer a query runs, the more it suffers

from system failures [6].

To handle failures during the execution of a query, exist-

ing solutions typically adopt one of the following two strat-

egies. The first strategy is to abandon the current round of

execution and redo the entire query. Most existing MPP

database systems adopt this strategy partly because they

are not originally designed for platforms with high failure

rate. If the query has to be completely rerun, it may lead to

a severe delay. There is even a risk that a query will never

finish, if system failures occur repeatedly.

The other strategy, which is adopted by some SQL-on-

Hadoop or SQL-on-Spark systems, is to build the query pro-

cessor on top of a fine-grained fault tolerance mechanism, such

 * Yunhong Ji

 jiyunhong@ruc.edu.cn

 Yunpeng Chai

 ypchai@ruc.edu.cn

 Xuan Zhou

 zhou.xuan@outlook.com

 Lipeng Ren

 lipeng_ren@163.com

 Yajie Qin

 qinyajie@msn.com

1 Renmin University of China, Beijing, China

2 East China Normal University, Shanghai, China

http://orcid.org/0000-0002-6950-1415
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-00114-z&domain=pdf

66 Y. Ji et al.

1 3

as MapReduce [7] and Spark [8]. These mechanisms materi-

alize the intermediate results of each query execution step,

so that only the lost steps need to be redone when a failure

occurs. However, this blind materialization approach is expen-

sive. Its overhead is sometimes unnecessarily high, resulting

in unacceptable query response time [9]. In fact, the benefit of

materialization does not always pay off its cost. Moreover, it

is difficult to apply this strategy to established MPP database

systems, as it requires a complete reconstruction of the system.

To achieve intra-query fault tolerance, we have to material-

ize intermediate data of query processing somehow. However,

a cost-effective approach will choose each materialization

point carefully, lest it incurs too much overhead. It should

also minimize the intervention to query processing pipelines,

on which MPP databases rely to achieve good performance.

Some existing approaches to intra-query fault tolerance [6, 10]

do perform materialization selectively, aiming to maximize its

cost-effectiveness. However, they either choose to block query

processing pipelines [6] or hold unrealistic assumptions [10]

that data transmission among query processing operators be

order preserving. They do not appear practical for existing

MPP databases. Besides, all these approaches emphasize per-

formance over success rate—the probability of successfully

finishing a query in a given time. In real world, enterprises

may regard success rate more important, as they need to get

work done in time, e.g., get the report in time .

In this paper, we propose a smart intra-query fault toler-

ance (SIFT) mechanism for MPP databases. SIFT always

selects appropriate operators for intermediate result mate-

rialization, by considering all the factors mentioned above.

It adopts a different optimization goal—maximizing query

success rate. In summary, SIFT can be characterized from

the following perspectives:

1. To minimize the negative impact on the performance

of query processing, SIFT chooses not to block pipe-

lines. To this end, it selectively materializes the blocking

operators (or the endpoints) of pipelines only.

2. SIFT autonomously determines which query operator to

materialize, by considering both the cost and the risk of

system failure. We devised a novel optimization algo-

rithm for selecting materialization points that allow the

system to achieve a desired success rate by performing

as little materialization as possible.

3. SIFT is light weighted and can be implemented in most

of the MPP databases at an affordable engineering cost.

As a proof, we implemented it in Greenplum, a widely

used open-source MPP database.

In the experimental study, we show how SIFT enables

Greenplum to achieve a certain degree of intra-query fault

tolerance while preserving its performance in query pro-

cessing. As our experiments suggest, with a 10% increase

of query processing time, SIFT can help Greenplum cutoff

60% of the latency for handling a failure.

The rest of the paper is organized as follows. In Sect. 2,

we review the conventional parallel query processing archi-

tecture and model. In Sect. 3, we introduce SIFT’s basic

approach to intra-query fault tolerance. The implementation

of our approach in GP is detailed in Sect. 4. Section 5 presents

results of our experimental evaluation. The related work is

discussed in Sect. 6. Finally, we conclude the paper in Sect. 7.

2 Background

This section provides an overview about the architecture

of MPP database (Sect. 2.1) and parallel query processing

(Sect. 2.2). As the goal of SIFT is to maximize query success

rate, a model about success rate is introduced in Sect. 2.3.

2.1 MPP Database Architecture

Typical MPP databases usually adopt a shared-nothing

architecture [2], composed of one master node and n slave

nodes. The master node is responsible for interacting with

clients, managing the whole cluster and coordinating the

query processing. Each of the n salve nodes is responsi-

ble for storing a partition of the data and performing query

processing on its partition. Each slave node hosts d data-

base instances, which will be referred to as segments subse-

quently. Figure 1 illustrates an example of this architecture,

in which n = 4 and d = 2.

Most MPP databases provide fault tolerance at stor-

age level. A mirror scheme, i.e., replication, is commonly

used to ensure durability and availability of data. As Fig. 1

shows, each segment (primary segment) is allocated with

a mirror (mirror segment) in another node. The master

node detects node failures by monitoring heartbeats of

slave nodes. If a slave node stops responding for a certain

Fig. 1 Architecture of MPP databases. There are a master and 4

slaves, with 2 segments on each slave and a mirror for each segment

on another machine.

67Smart Intra-query Fault Tolerance for Massive Parallel Processing Databases

1 3

amount of time, known as a system delay time (normally

around 1 min), the master will treat it as a failed node.

Once a failure is detected, the corresponding mirror will

be activated to replace the failed primary segment. Simi-

larly, a standby works as the replication/mirror of the mas-

ter node. Through the mirror scheme, the system’s avail-

ability can be significantly enhanced.

However, such a mirror scheme does not support intra-

query fault tolerance automatically. When a node failure

occurs, the running query’s state on the failed node will be

lost. After the corresponding mirror is activated, the whole

query has to be rerun. If it is a long running query, response

to the client will be severely delayed. In the worst case, a

query will run indefinitely, if the probability of failure is high.

2.2 Parallel Query Processing

Typical MPP databases model a query plan as a directed

acyclic graph [6, 10]. Each vertex in this figure corre-

sponds to an operator, which is regarded as the unit of

query processing. Typical operators include scan, sort,

aggregation, join, etc. A query plan is produced by the

master and broadcasted to all segments, which will execute

the same plan on their own data.

Operators are usually executed in pipelines in MPP

databases [10]. Pipelining can effectively reduce data

materialization during query processing. Intermediate

results will be immediately passed to the succeeding

operator to process as soon as they are generated by the

preceding operator.

In an MPP database, data need to be exchanged among

slave nodes during query processing. Communication

points break a query plan into multiple stages. On each

segment, a query plan will be carried out by s concurrent

processes or threads (further referred to as slices), each

responsible for a stage of the query plan.

Figure 2 shows the actual query plan for the 17th query

(Q17) of TPC-H benchmark [11] generated by Greenplum.

The query is defined in Fig. 3. It is a typical query plan on

a segment, with 15 operators and 4 slices. In this example,

4 processes or threads per segment will run in parallel

to execute the query. Figure 4 shows the situation where

Greenplum executes the query using 6 pipelines. It shows

the processing time of each operator. For instance, in P1,

intermediate results produced by Op.1 will be passed to

Op.4 as soon as they are generated. Thus, we could see

that the two operators overlap in executing time.

2.3 Query Success Rate

For an OLAP query, users usually expect a latency constraint,

to ensure the timeliness of decision making. Once a node fail-

ure occurs, execution of an ongoing query will be delayed. Our

goal of intra-query fault tolerance is to make sure that a query

can finish within its time constraint, even when confronted

with failures. We consider success rate as the probability of

successfully finishing a query within a time constraint T. In the

following, we show how to calculate success rate.

2.3.1 One‑Time Success Rate

One-time success rate refers to the probability of success-

fully finishing a query in a single round of execution, i.e., no

failure happens during the execution.

Let the mean time between failures (MTBF) of a sin-

gle node be MTBF. Then, the MTBF of an entire cluster

Fig. 2 Query plan for TPC-H Q17 generated by Greenplum

Fig. 3 The 17th query(Q17) of the TPC-H benchmark

68 Y. Ji et al.

1 3

containing n nodes is
MTBF

n
 . We assume that node failures

are independent. Then, intervals between node failures are

subject to exponential distribution. In other words, the prob-

ability that a failure occurs within a time interval t can be

calculated by 1 − e
−�t , where � is

1

MTBF
 . As what most data-

base systems do, we estimate the cost of query processing

by the number of I/O operations. Thus, the � of an MPP

database can be calculated as:

In the equation above, � is the throughput of disk and S
IO

 is

the block size of each I/O operation. MTBF
IO

 is the aver-

age number of I/O operations that occur between two con-

secutive failures. The parameter � can then be deduced from

MTBF
IO

.

Let t
0
 be the total time an MPP database takes to execute

a query without encountering a failure. Then, the one-time

success rate can be calculated as: e−�t
0.

2.3.2 Success Rate Without Fault Tolerance

For a system without intra-query fault tolerance, success

rate with given time T, Succ(T) can be calculated as follows:

(1)

MTBF
IO

=

S
IO

� × MTBF

� =
n

MTBF
IO

(2)

Succ0(T) = e−�t0

Succi(T) = fi(t0, T) ∗ e−�ti , i ∈ {1, 2,…}

ti = t0, i ∈ {1, 2,…}

fi(t0, T) = � …�D

i∏

j=1

�e−�xj dx1 … dxi,

D = {(x1,… , xi)|
i∑

j=1

xj ≤ T − t0}

Succ(T) = Succ0(T) + Succ1(T) + Succ2(T)

+⋯ + Succi(T) +⋯

In the equations above, Succ
i
(T) represents the success rate

after encountering i failures. t
i
 denotes the time needed to

finish the query after i failures. As the system does not sup-

port intra-query fault tolerance, we have to redo the query

from the beginning whenever there is a failure. Thus, the

time we need to finish a query is still t
0
 after i failures. The

success rate after i failures will be e−�t
0 . In Eq. 2, fi(t0, T) is

the probability of i failures occurring within time of T − t
0
 .

As we can see, the success rate decreases as t
i
 increases.

Intra-query fault tolerance enables us shorten t
i
 and thus

improve the success rate.

Table 1 shows the parameters we use in this paper.

3 The SIFT Mechanism

When a failure occurs, we expect that the query can be

resumed from an intermediate state rather than being re-exe-

cuted from the very beginning. This requires us to perform

checkpointing during query execution, i.e., selectively sav-

ing intermediate states into the persistent storage of mirrors.

As mentioned earlier, it is not cost-effective to perform

checkpointing arbitrarily. Instead, two steps are required

to make an appropriate checkpointing plan. First, a set of

query operators are selected as checkpoint candidates (see

Sect. 3.1). Second, success rates of possible checkpointing

plans are evaluated and an optimal one is finally chosen (see

Sect. 3.2).

3.1 Pipeline Preserving Checkpointing

Injection of checkpoints into a query plan may have two-

sided effects. Firstly, it may break the pipeline. Secondly,

extra cost will be introduced for materialization. To mini-

mize performance penalty, SIFT’s checkpoint candidates

must satisfy the following conditions.

Fig. 4 Situation of executing in pipelines for Q17. There are 6 pipe-

lines

Table 1 Parameters and description

Param Description

MTBF Mean time between failures

MTTR System delay used for the system to recover after a failure

n Number of physical machines

� Parameter of the failure model of the cluster

t
0

Total time a query used to run once without fault tolerance

t
SIFT

Total time a query used to run once with fault tolerance

Cr
i

Running cost of operator i without fault tolerance

Cm
i

Cost of operator i need to be materialized for fault tolerance

Mfi Materialization factor of operator i

SR
T

Target success rate for given time T

69Smart Intra-query Fault Tolerance for Massive Parallel Processing Databases

1 3

1. They should be breaking operators, i.e., those at the end

of pipelines. This does not break the original pipelines.

Meanwhile, as the intermediate results of these operators

will anyway be materialized locally, the overhead can be

minimized.

2. They must be deterministic operators, i.e., their inter-

mediate results are uniquely determined by the data

and the query plan. This guarantees the correctness of

fault tolerance. In other words, it guarantees that we will

reproduce correct results from checkpoints.

For instance, query operators in Greenplum include scan,

limit, sort, aggregation, motion, hashjoin, nestloopjoin,

sortjoin and etc. Among them, motion is a special type of

operator responsible for exchanging data. According to the

above rules, three kinds of operators can be candidates of

checkpoints. They are the hash operator within hashjoin,

sort, and aggregation. They are all endpoints of pipelines.

Besides, they are all common operators in query plans.

Upon a failure, the master will replace failed segments

with their mirrors and restart queries from their latest

checkpoints. Figure 5 explains the effects of intra-query

fault tolerance. It uses the same query as Fig. 3. As shown

in Fig. 3, the query plan consists of 4 slices and 6 pipe-

lines. In the plan, Operators 4, 5, 10, 11, 13, and 15 are

checkpoint candidates. We assume that all 6 checkpoints

are activated. Figure 5 shows a situation where a failure

occurs after finishing checkpointing Op.4 and Op.5. Dur-

ing rerunning, Operators 1–5 can be skipped. The query

execution can start from intermediate results of Op.4 and

Op.5. As a result, Slice 2 does not need to be launched

at all. Meanwhile, the work of Slice 1 and Slice 3 will

be reduced significantly and the query execution will be

accelerated. From this figure, we could see the time saved

by intra-query fault tolerance directly. As another example,

if a failure occurs after the checkpoint on Op.13, only

Slice 4 will be executed during the rerun.

3.2 Selection of Optimal Checkpoints

In a query plan, many operators can be candidates of check-

points. However, it is not necessary to materialize them all,

which may introduce unnecessary overhead to query pro-

cessing. As long as a desired success rate can be achieved,

checkpoints should be as fewer as possible. Thus, we need to

select an optimal set of checkpoints that incur the minimum

materialization cost.

Databases usually estimate the cost of a query plan dur-

ing query optimization. Based on their cost estimation, we

can estimate overhead of checkpointing as well as success

rate. This will lead us to an optimal checkpointing plan.

For instance, the query plan in Fig. 3 offers 6 checkpoint

candidates, i.e.,{Op.4, Op.5, Op.10, Op.11, Op.13, Op.15

}. A possible checkpointing plan is to activate any subsets

of them, e.g., {Op.4, Op.11, Op.13, Op.15}. In total, there

will be 26 combinations or 26 candidate checkpointing plans.

For each candidate plan, we can use Monte Carlo method to

estimate its success rate. Since the search space is exponen-

tial and Monte Carlo method is time-consuming, we employ

some pruning methods to accelerate searching.

In general, SIFT’s checkpointing plan optimization con-

sists of 3 steps:

1. Collapsing the query plan and estimating cost of each

candidate checkpointing plan (see Sect. 3.2.1);

2. Calculating success rate of each candidate checkpoint-

ing plan (see Sect. 3.2.2 for the computation model and

Sect. 3.2.3 for the Monte Carlo method);

3. Enumerating all candidate plans to identify an optimal

one (see Sect. 3.2.4).

3.2.1 Query Plan Collapsing and Cost Estimation

For a given checkpointing plan, we only need the query

processing costs between checkpoints to calculate the suc-

cess rate. For simplicity of analysis, we collapse the query

plan that only retain checkpointing operators. Collapsing

is performed twice for each query plan. First, it generates

a collapsed query plan, P
C
 , which preserve checkpointing

candidates only. Other operators are upwardly compressed

into the checkpointing candidates. Based on P
C
 , it then gen-

erates a collapsed checkpointing plan, P
MC

 , in which only

checkpoint operators remain. For example, the query plan

in Fig. 3 can be collapsed into the one in Fig. 6a. In the col-

lapsed plan, Op.1 is merged with Op.4 to form a new opera-

tor Op.A. The plan mentioned in Sect. 3.2 will be collapsed

into the checkpointing plan in Fig. 6b.

Fig. 5 A failure occurs during executing Q17. Before that, Op.4 and

Op.5 are materialized. The query will rerun from intermediate results

of Op.4 and Op.5 and Operators 1 ∼ 5 will be skipped. Slice 2 will not

be launched.

70 Y. Ji et al.

1 3

Cost estimation is performed on P
MC

 . The aggregated

costs of the operators between adjacent checkpoints are cal-

culated. For instance, cost of Op.A in Fig. 6b will represent

the cost or time consumed by the query processor before the

checkpoint Op.A. If a failure occurs after Op.A, this cost or

time will be saved during the rerun.

As I/O is usually the performance bottleneck, our cost

model is based on I/O. For each Op.i, we estimate its execu-

tion cost Cr
i
 and materialization cost Cm

i
 . Cr

i
 represents I/O

cost of executing Op.i. For an established database system,

it is directly available in the query plan. Cm
i
 is the overhead

of performing checkpointing on Op.i. In SIFT, Cm
i
 can be

estimated based on Ci
i
 , which is I/O cost for materializing

intermediate results of Op.i to local storage. We calculate

Cm
i
 as Cmi = Mfi ∗ Cii , where Mfi is a factor greater than

1, as checkpointing will incur extra cost of data transmis-

sion—rather than materializing intermediate results locally,

checkpointing will transmit the intermediate results to the

mirror node for materializing. We use Ct
i
 to represent the

total I/O cost consumed by an operator under SIFT, that is,

Ct
i
= Cr

i
+ Cm

i
 . Then, the total cost of running a query can

be calculated as,

3.2.2 Success Rate Calculation

In Sect. 2.3, we showed how to calculate success rate with-

out intra-query fault tolerance. In this section, we consider

the case when intra-query fault tolerance is enabled. Given

a time constraint T, the success rate Succ(T) can be amended

as follows:

In this equation, P
i
(t

SIFT
, T) represents the probability that a

query successfully finishes at the (i + 1)th attempt, i.e., after

i failures. Based on the assumption of exponential distribu-

tion, the timeline of the collapsed query plan in Sect. 3.2.1

(3)
t
SIFT

=

∑

i∈P
MC

Ct
i
.

(4)

Succ0(T) = e
−�t

SIFT

Succ
i
(T) = (1 − Succ

i−1(T)) ∗ P
i
(t

SIFT
, T), i ∈ 1, 2,⋯

Succ(T) = Succ0(T) + Succ1(T) + Succ2(T) +⋯ + Succ
i
(T) +⋯

can be illustrated by the first line in Fig. 7 (post-traveling of

P
MC

). Other lines illustrate the different situations of fail-

ures. By applying SIFT, the query will be rerun at the latest

checkpoint. SIFT can shorten the reruns remarkably.

P1(tSIFT
, T) is a complex piecewise function. If it is

unfolded, the direct calculation of P
i
(t

SIFT
, T) will be infea-

sible. To make the estimation of success rate possible, we

apply Monte Carlo method to compute P
i
(t

SIFT
, T).

3.2.3 Application of Monte Carlo

The essence of the Monte Carlo method [12] is simulation.

As the probability of one-time success might be high, it will

be wasteful to simulate the situations when no failure occurs.

Instead of estimating success rate directly, SIFT estimates

the conditional probability given that at least one failure

occurs. As an amendment of Eq. 4, our formula for estimat-

ing success rate is:

where P(t
SIFT

, T) presents the probability of a successful

query execution after one failure occurs. SIFT employs

Monte Carlo method to estimate P(t
SIFT

, T) , based on which

it calculates the success rate Succ(T).

When running the Monte Carlo method, we use the ran-

dom number r to represent the time interval before the next

failure, and s
t
 to represent the start point of this simulation,

which is initially 0. The simulation of query execution will

be repeated until one of the following inequalities holds.

(5)Succ(T) = e
−�t

SIFT + (1 − e
−�t

SIFT) ∗ P(t
SIFT

, T),

(6)
a ∶ tSIFT < st + r

b ∶ T < st + r + nf ∗ MTTR

Fig. 6 Collapsed query plan of Q17

Fig. 7 Timeline of Q17 and situations of one failure

71Smart Intra-query Fault Tolerance for Massive Parallel Processing Databases

1 3

In Eq. 6, nf represents the number of failures that have

already occurred. MTTR represents the Mean Time To

Repair, i.e., the time required to prepare the rerun. In each

round of simulation, if Eq. 6.a holds, a successful case is

recorded. Otherwise, a failed case is recorded. After a suf-

ficient number of simulations, the conditional probability

P(t
SIFT

, T) can be computed as the fraction of the succeeded

cases.

3.2.4 Enumerating Plans

For a collapsed plan with n
c
 candidate checkpoints, there

are 2n
c possible checkpointing plans. The search space of

checkpointing plans for a query can be structured as a tree.

For instance, the search space of Q17 is illustrated in Fig. 8.

SIFT performs Breadth-First Search over the tree to evaluate

the plans. It employs a pruning method to avoid unnecessary

work and accelerate the evaluation. In general, we set a target

success rate SR
T
 . SIFT will stop the search on a branch if it

has achieved SR
T
 . For instance, if checkpoints {A, B} has

already satisfied SR
T
 , we would not consider set of check-

points {A, B, C}, as {A, B, C} will only incur more materi-

alization cost than {A, B}. If no candidate plan could achieve

SR
T
 , SIFT chooses the plan with the highest success rate.

4 Implementation

We implemented SIFT in Greenplum [2], one of the most

popular open-source MPP database systems. It adopts a

scale-out and shared-nothing architecture and provides ana-

lytical capability on data of petabytes. Greenplum Version

4.3 contains more than 1.5 million lines of code in about

6000 files. To implement SIFT, about 7000 LOCs were

added or modified. The main changes are shown in Fig. 9,

and the detailed statistics can be found in Table 2.

4.1 Modification on the Master Node

The implementation on the master node includes the fol-

lowing four parts.

1. Failure handling Originally, Greenplum does not sup-

port intra-query fault tolerance. After a segment crashes,

the system replaces the failed segment with its mirror.

However, interrupted queries will be skipped. After

recovered, the system will continue to serve follow-

ing requests. To enable intra-query fault tolerance, we

adjusted the behavior of master node—it will actively

check for unfinished queries and rerun them automati-

cally.

2. Query re-execution To rerun an unfinished query,

the system needs to know which checkpoint to start

from. The judgment should be made by the master and

informed to the slaves. During query processing, each

operator will record their states of checkpointing. When

rerunning a query, the master will collect the states to

identify the latest completed checkpoint by traversing

the query plan tree. Then the operators succeeding the

checkpoint will be activated and the ones preceding

it will be skipped. For example, in Fig. 3, if Op.4 has

been checkpointed, Op.1 could be skipped. If Op.13 is

checkpointed, Op.10 and Op.11 will be skipped. If all

operators in a slice are skipped, the slice will not be

instantiated.

3. Checkpoint selection The module of checkpoint selec-

tion is implemented in the query optimizer on the master

node. To measure the I/O cost of checkpointing, we can

reuse the cost estimation module of Greenplum. The

resulting checkpointing plan will be broadcasted to

slaves along with the query plan.

4. Transaction management When rerunning queries,

it is necessary to consider transactional correctness.

Greenplum adopts multi-version concurrency control

(MVCC) [13]. The order of each transaction is deter-

mined by its Transaction ID and Transaction Snapshot.

Therefore, to ensure the correctness of a re-executed

query, we can simply reuse the ID and Snapshot of the

original transaction. This requires us to save the original

ID and Snapshot on both master and slave nodes.

4.2 Modification on the Slave Node

The implementation on the slave side mainly aims to ena-

ble checkpointing. That includes materializing their inter-

mediate results on mirrors and reusing them after failures.

Table 2 shows that the implementation of the checkpoint-

ing module constitute a large part of the changes on the

whole system. The module of checkpointing was imple-

mented on operators of hash, sort, and aggregation.

1. States of checkpoints For each candidate operator, we

need to maintain its checkpointing states. This allows us

to judge whether an operator has been checkpointed and

whether the checkpoint is complete when rerunning a Fig. 8 Searching space of checkpointing plans for Q17

72 Y. Ji et al.

1 3

query. For the former, we defined a label to identify the

status of checkpoints. Its format is:

queryId identifies the query. Similarly, sliceId and

operatorId are identifiers of the slice and the operator.

timestamp is used to distinguish between the different

rounds of execution of the same query, as more than one

failure may occur. In addition, an integrity tag is used

to detect unexpected media failure. During recovery, a

salve needs to check the integrity tag to determine the

usability of the intermediate results.

2. Transmission of intermediate results In the original

Greenplum, intermediate results of breaking operators

are materialized locally. The checkpointing module only

queryId_sliceId_operatorId_timestamp.

needs to move them to the mirrors. It is obviously faster

to transmit the data on the fly. If we do the transmis-

sion after all the intermediate results are generated, we

have to read them from disk, which incurs extra I/Os.

Greenplum uses a temporary file structure called BFZ

to store intermediate results. BFZ utilizes an in-memory

buffer. Intermediate results will first be written into the

buffer. When the buffer is full, it is flushed to disks. To

reduce overhead of checkpointing, we transmit data to

the mirror when it is still in the buffer. This can save a

significant amount of I/Os.

3. Compression of intermediate results To further reduce

the overhead of intermediate result materialization, we

perform compression. Compression is a common tech-

nology to reduce disk I/O in database, but it is rarely

used for intermediate results by default. Greenplum

provides a built-in compression module called zlib [14].

Instead of using zlib, we applied the compression library

Zstandard [15], as it offers a better compression rate

and a greater speed of compression and decompression.

Moreover, it supports streaming compression, i.e., com-

press the file incrementally, which fits in our framework

better.

5 Evaluation

We conducted experiments to evaluate SIFT. In this sec-

tion, we show the effectiveness and overheads of SIFT, and

compare it against some alternative approaches.

5.1 Experimental Setup

In the experiments, we used the TPC-H benchmark [11].

Its schema includes 8 tables. To show robustness of our

strategy, we used two computer clusters of different scales,

whose machine configurations are summarized in Table 3.

• Cluster A one master node and 16 slave nodes, with a

data size of 500GB.

• Cluster B one master node and 8 slave nodes, with a data

size of 200GB.

In the two clusters, each slave hosts two primary and two

mirror segments. Data of each table is partitioned hori-

zontally into segments and distributed to all slave nodes.

Among the 22 queries of the TPC-H benchmark, we chose

6 typical queries to carry out our experiments. They

include the 2nd, 7th, 9th, 16th, 17th, and 21st queries(Q2,

Q7, Q9, Q16, Q17, Q21).

Fig. 9 Mainly changes for applying SIFT to Greenplum

Table 2 Code statistics for implementing SIFT on Greenplum data-

base system

Model Line of code

Optimized checkpointing selection 1800

Query restart 300

Redo point checking 300

Consistency guarantee 300

Intermediate result storage 600

Copy intermediate result to mirror 400

Intermediate result materialization 3300

Total 7000

73Smart Intra-query Fault Tolerance for Massive Parallel Processing Databases

1 3

Our experiments evaluated four systems:

• orig the original Greenplum (Version 4.3), which is not

intra-query fault tolerant.

• SIFT the Greenplum system that implements SIFT.

• materi-all the Greenplum system that materializes all

candidate operators of SIFT.

• simulated-XDB an simulated-XDB system [6] on Green-

plum. It regards all operators as checkpointing candi-

dates. (SIFT only considers breaking operators.)

5.2 Effects of Intra‑query Fault Tolerance

Each of our experiments was performed for at least 20 times.

Figure 10 shows the average success rates on the first three

systems. Average success rates with 90% confidence inter-

vals are shown in Fig. 10. And we can see from the figure,

results are stable. For all the experiments, we set MTBF

as 48h and time constraint T as 1.6 times of t
0
(1.6t

0
). We

ignored MTTR in the experiments, as it is much shorter than

execution time of long queries. We can see that SIFT can

promote the success rates significantly, especially for Q17

and Q21. These two queries’ original success rates are rela-

tively low, which makes the effects of fault tolerance more

significant. They also offer more candidates for checkpoint-

ing, which enables us to find better checkpointing plans. On

both clusters, we obtained similar results.

For some queries, such as Q16, the improvements made

by SIFT are less visible. The execution times of the queries

are shorter. Thus, their original success rates are already

high and near to 100%, and little space is left for improve-

ments. If we assume that at least one failure will occur dur-

ing the query execution, the conditional probability will

become the ones in Fig. 11. In this case, the effect of intra-

query fault tolerance is amplified. For instance, SIFT can

raise the success rate of Q21 from 24.4% to 76.6% on cluster

A, and from 50.1% to 97.6% on cluster B. Intra-query fault

tolerance will be more effective if the clusters are less stable.

We chose 4 queries, Q7, Q9, Q17, and Q21, to carry

out further experiments, in which we manually shut down

a slave node to see the impact of failures. Two rounds of

experiments were performed for each query. In each round,

one failure occurred, but at a different stage. Figure 12 shows

results on cluster A, and Fig. 13 shows results on cluster B.

In the figures, qij represents the jth round of test of the ith

query; bt represents the time span between the start of the

query and the failure; ct represents the time required to rerun

a query when fault tolerance is enabled; et
c
 presents the time

required to rerun a query when fault tolerance is disabled,

i.e., the time needed for rerun a query with one failed node.

et represents the time required to execute a query without

failure. Usually, et
c
 is larger than et as there is one less node

usable for executing the query. In the figure, the first bar

represents the time a query required without failure. The

second bar represents the time a query required if a failure

occurs and fault tolerance is enabled. And the third bar rep-

resents the time a query required if a failure occurs and fault

tolerance is disabled.

As Figs. 12 and 13 shows, bt + ct is significantly smaller

than bt + et
c
 . The former is the query time at the presence of

one failure for SIFT. The latter is that value for the system

without intra-query fault tolerance. This indicates that SIFT

can effectively shorten the latency of query re-execution.

Besides, we can see that ct drops as bt increases. This indi-

cates that less work is needed to rerun a query when the

failure is near to end of the query. This complies with our

analysis in Sect. 1. That is, the later the failure occurs, the

more work can be checkpointed. As the original system will

waste what have already done before failures, the later the

failure is, the more time it will waste. Thus, compared to

original system, our approach could reduce the wasted time

significantly while the failure is near to end of the query. As

we can see, bt + ct can be bigger than et. On the one hand,

Table 3 Configuration of the experimental machines

Operating system Centos 7.3

Vendor_id GenuineIntel

Address sizes 40 bits physi-

cal, 48 bits

virtual

Disk throughput 700 MB/S

Number of cores 2

CPU (MHz) 1995.192

Cache size (KB) 4096

Memory (GB) 8

Disk (GB) 300
Fig. 10 Success rate of different queries on different clusters

74 Y. Ji et al.

1 3

the work after the latest checkpoint is still wasted. On the

other hand, after recovering, less slaves, i.e., less resources,

are employed to execute the query, making the query pro-

cessing slower. Figure 14 shows the ratio of time saved by

intra-query fault tolerance, i.e.,
et

c
−ct

bt+et
c
−et

 . It represents benefits

of using SIFT. As we can see, in most cases the ratio is more

than 60%.

5.3 Overhead of SIFT

Overhead of checkpointing is inevitable. We tested all the

four systems in Sect. 5.1 on cluster A, and the first two on

cluster B, and recorded their query times. For the system,

simulated-XDB, we measured the runtime when it attempted

to achieve similar success rates as ours. Each of our experi-

ments was performed for at least 10 times. We treat query

time on original Greenplum system as 1.0, and normalize

the query times of other systems based on it. This helps us

see the differences. The average normalized execution time

with 90% confidence intervals is shown in Fig. 15. As we

can see, for most of the queries, the overheads of SIFT is

visible. However, it is low most of the time. On average,

the overhead introduced by SIFT is about 10% of the total

execution time on cluster A and 8% on cluster B. As we

mentioned before, intermediate results need to be materi-

alized locally and remotely. And it is the main part of the

overhead. In other words, the size of intermediate results

impact the overhead significantly. This explains the higher

overheads for some queries. In the architecture of Green-

plum, mirrors and primaries reside on the same physical

machines (Sect. 2.1). Thus, backups on mirrors will interfere

with the original query execution and introduce significant

overhead. However, this overhead could be easily reduced if

we backup intermediate results somewhere else.

The results also indicate that it is not necessary to

activate all candidate checkpoints, as it does not always

benefits performance or success rates. In other words,

optimized checkpoint selection can both reduce the over-

head and improve the success rate. Table 4 shows the

total number of candidate checkpoints and the number of

checkpoints selected by SIFT. In our tests, as we regard

success rate as our goal, materializing all candidates is

usually not an ideal strategy. For instance, for Q2, if we

do not perform checkpoint selection, the success rate is

94.86%. If we perform checkpoint selection, the success

rate can rise to 99.08%. When the execution time is short-

ened, the probability of run-time failure can be naturally

reduced (Sect. 2.3.2).

The experiment results on the simulated-XDB show

that not all operators are good candidates for checkpoint-

ing. If a checkpoint breaks the query processing pipeline,

it usually introduces a significant overhead. In this case,

the system needs to materialize much more intermediate

results, making the query time much longer. As we can

see, SIFT remarkably outperforms XDB in quite a number

of queries, as it never intends to break pipelines.

Fig. 11 Conditional probability under the condition of at least one

failure

Fig. 12 Crash experiment on Cluster A

Fig. 13 Crash experiment on Cluster B

75Smart Intra-query Fault Tolerance for Massive Parallel Processing Databases

1 3

5.4 Impacts of Parameters

In this set of experiments, we evaluated how differ-

ent parameters affect the performance of SIFT. Firstly,

we consider the influence of the time constraint T. Fig-

ure 16 shows the success rates when T is set as T = 1.3t
0
 ,

T = 1.4t
0
 , T = 1.5t

0
 , T = 1.6t

0
 and T = 1.8t

0
 . MTBF was

still set as 48h. As expected, the larger the T, the higher

the success rate. And for all of them, there is an increase

on success rate compared with the original system. And

Fig. 17 shows the conditional probability under the condi-

tion of at least one failure with different given time. For

the queries Q2, Q9, Q17 and Q21, the success rates of

system applying SIFT under the condition of T = 1.3t
0
 are

even higher than those of original Greenplum under the

condition of T = 1.6t
0
.

Another set of experiments were conducted to study

the influence of MTBF, in which T was set to 1.6t
0
 . The

results can be found in Fig. 18. We can see that the drop

of MTBF will increase the probability of failure and thus

magnify the fault tolerance effect of SIFT. In other words,

the benefits of SIFT will be more significant if MTBF is

smaller. On the other hand, MTBF will drop as the scale

of the cluster increases. Thus, SIFT is supposed to be

more effective on larger clusters. Figure 19 shows how

the conditional probability of at least one failure varies

with MTBF . We can see that, on original system, the con-

ditional probability will converge to 60%, as T is set to

1.6t
0
 . For the system implementing SIFT, that value can

be significantly improved. For instance, on the queries Q2,

Q17, and Q21, it could approach 100%.

The results of Q21 on the two clusters are shown in

Figs. 20 and 21 respectively. In the figures, S_SR_C means

the success rate on the cluster C for the system S, and

S_CP_C means the conditional probability with at least one

failure on the cluster C for the system S. These results lead

us to the same conclusion.

5.5 Effects of Compression

Although I/O operations are often seen as a performance

bottleneck, CPU operations cannot be ignored. Compression

can effectively reduce I/O operations. However, it comes

with a price of extra CPU cost. In order to understand the

Fig. 14 Ratio of time saved by intra-query fault tolerance, i.e.,
et

c
−ct

bt+et
c
−et

Fig. 15 Overhead of SIFT

Table 4 Optimization strategy

results
Qid 2 7 9 16 17 21

Candidate number 11 8 9 7 6 9

Checkpoint number 6 4 4 3 3 4

Fig. 16 Success rate changed with the given time on cluster A

76 Y. Ji et al.

1 3

influence of compression, we designed a simple query plan

shown in Fig. 22. It comprises two hashjoin operators, Op.3

and Op.8, which we chose as checkpoints. On each segment,

the average sizes of hash tables of Op.3 and Op.8 are 194MB

and 757.5MB respectively. To speedup the checkpointing

process, we perform compression on the hash tables. The

compression ratios are 2.8 and 3.48 respectively. In other

words, the data size after compression is about 30% of the

original.

Figure 23 shows the time consumption of different stages

of query processing. tc
i
 represents time required by compres-

sion in Slice i. td
i
 represents time required by decompression

in Slice i. IO
i
 represents time for persisting the intermediate

results before compression. IO
comp

i
 represents persistence time

after compression. In the figure, the first bar measures the total

time for materializing intermediate results with compression

Fig. 17 Increase of success rate changed with the given time on clus-

ter A

Fig. 18 Success rate changed with the MTBF on cluster A

Fig. 19 Conditional probability changed with the MTBF on cluster A

Fig. 20 Success rate of Q21 changed with the given time on the two

clusters

Fig. 21 Success rate of Q21 changed with the MTBF on the two clus-

ters

77Smart Intra-query Fault Tolerance for Massive Parallel Processing Databases

1 3

for Slice2, the second are measures that without compression.

The other two bars represent those values of Slice3. We can see

that compression is useful. Its effect is especially significant

for Slice 2, in which a half of the time can be saved. Figure 24

shows the total execution time of the query in the four tests. It

shows that compression can speedup query processing.

6 Related Work

6.1 Intra‑query Fault Tolerance in Databases

Traditional relational databases [16–18] implement fault

tolerance mainly through replication [19] and check-

pointing at storage level. They usually do not take intra-

query fault tolerance into consideration as queries on

them usually could finish in seconds or minutes most

of the time. There is little need for intra-query fault

tolerance.

Well-known MPP DB products include Teradata [1],

Greenplum [2], Vertica [3], as well as some SQL-on-

Hadoop systems such as Impala [4] and HAWQ [5]. They

all support fault tolerance at the storage level as the tradi-

tional databases do. To the best of our knowledge, none of

them support intra-query fault tolerance.

The known work on intra-query fault tolerance includes

FTOpt [10] and XDB [6]. XDB supports cost-based fault

tolerance by choosing operators in a query plan to mate-

rialize. Its goal is to find a materialization configura-

tion that would lead to minimum expected running time.

However, XDB has little consideration about pipelines

of query processing. It is prone to break pipelines of

the original query and impair its performance. Besides,

XDB is more complex to implement, as it needs to make

every operators possible to materialize, which leads to

re-implementation of all the query operators. We have

shown in our experimental evaluation, SIFT tends to be

more efficient as it always tries to preserve the query

processing pipelines.

FTOpt considers pipelines and presents an extensible

and heterogeneous fault tolerance framework. It also con-

siders the differences between operators and applies dif-

ferent strategies to handle them. However, FTOpt assumes

that data transmission over the network among operators

is always order preserving. This makes FTOpt impractical

for most MPP databases, which normally do not guarantee

order preserving data transmission.

Neither XDB nor FTOpt was implemented in real MPP

databases. In contrast, the design of SIFT emphasizes

practicality. Our goal is a light weighted fault tolerance

mechanism that can be applied to most real MPP data-

bases. Besides, SIFT aims to ensure success rate, so that

it adopts a unique approach to optimize checkpointing

plans.

Fig. 22 Query processing plan of compression test query

Fig. 23 Time consumption of different stages of query processing

while using compressing

Fig. 24 Efficiency of compression

78 Y. Ji et al.

1 3

6.2 Intra‑query Fault Tolerance in Big Data
Platforms

Since Google published the work of MapReduce [20] and

GFS [21], open-source data processing platforms such

as Hadoop [7] have become popular. Multiple stacks of

systems have been built on top of them. Some SQL-On-

Hadoop implement intra-query fault tolerance by utiliz-

ing the fault tolerance function of Hadoop [7]. However

they usually suffer from too much overhead. The work

of [22] implemented pipeline within the Hadoop MapRe-

duce framework. Experiments showed that its overhead of

materialization is high. Osprey [23] applies the thought of

MapReduce to MPP systems. It splits a analytical query

over a star schema into short sub-queries. Its fault toler-

ance builds upon the data replication scheme of chained

declustering [24]. However, it does not consider query suc-

cess rate, making it difficult to achieve a good trade-off

between fault tolerance and performance.

Microsoft has introduced a general-purpose, distributed

execution engine, Dryad [25]. It executes queries over what

is a communication graph. It allows data between operators

to either be pipelined or materialized. However, it requires

manual configuration and pushes the work of optimization to

the user of the system. Bubble Execution [26] is a new query

processing framework for interactive workloads at cloud

scale introduced by Microsoft. It balances cost-based query

optimization, fault tolerance, optimal resource management,

and execution orchestration. It divides a query execution

graph into a collection of query sub-graphs (bubbles), which

is unit of scheduling and fault tolerance. Inside a bubble,

tasks are connected via pipe channels. And between bub-

bles, tasks are connected via recoverable channels. While

for SIFT, the unit of fault tolerance is divided by checkpoint

operators, which are breaking operators.

Many stream processing systems implement fault toler-

ance [27–33] by redundant processing, checkpointing, and

remote logging. They often allow weaker recovery guaran-

tees in exchange for improved performance, but it is not

allowed by databases. Some systems, such as Flink, provide

exactly-once semantics. However, as a stream processing

systems, they usually don’t allow the existence of breaking

operators, such as hashjoin and sort. The system proposed

in [30] aims at find a materialization configuration with

minimized overhead. But it considers only one failure.

In summary, most big data platforms, such as Hadoop,

Spark and Flink, provide fault tolerance support at the data

processing level. OLAP engines over these platforms can

take advantage of it. While the existing OLAP engines still

face performance issues, they can hopefully be improved as

more optimization techniques are introduced. Nevertheless,

SIFT is designed for traditional MPP databases rather than

big data platforms.

7 Conclusions

In summary, we made the following contributions in this

paper:

1. We proposed a smart intra-query fault tolerance (SIFT)

mechanism for MPP databases, which can achieve a

good trade-off among fault tolerance effect, perfor-

mance, and implementation cost. It helps MPP data-

base improves the success rates in processing large scale

OLAP queries.

2. SIFT provides an optimization algorithm, which chooses

the most appropriate set of checkpoints for a given query

plan, to promote the query success rate and boost the

performance of query processing.

3. We demonstrated the effectiveness of our techniques

through an implementation of SIFT in a real-world

MPP database, Greenplum. Experiments on TPC-H

benchmark showed SIFT allows the system to achieve

improved query success rates at the minimum price of

intermediate result materialization. Nevertheless, fur-

ther experiments and optimizations may be taken in the

future to confirm the generality of the work in a wider

range of scenarios.

Acknowledgements Thanks to WHC, ZYZ, ZJW, WCW who helped

implement the idea. This work is partially supported by the NSFC

Project No. 61772202.

Author Contributions ZX and CYP guided this research and proposed

the idea. JYH, QIY and RLP specified and implemented the idea.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Teradata. https ://www.terad ata.com/

 2. Greenplum. http://green plum.org/

 3. Vertica. https ://www.verti ca.com/

 4. Apache Impala. https ://impal a.apach e.org/

 5. Apache HAWQ. http://hawq.incub ator.apach e.org/

 6. Salama A, Binnig C, Kraska T, Zamanian E (2015) Cost-based

fault-tolerance for parallel data processing. In: Proceedings of the

http://creativecommons.org/licenses/by/4.0/
https://www.teradata.com/
http://greenplum.org/
https://www.vertica.com/
https://impala.apache.org/
http://hawq.incubator.apache.org/

79Smart Intra-query Fault Tolerance for Massive Parallel Processing Databases

1 3

2015 ACM SIGMOD international conference on management of

data, SIGMOD’15. ACM, New York, NY, USA, pp 285–297

 7. Apache Hadoop. http://hadoo p.apach e.org/

 8. Apache Spark. https ://spark .apach e.org/

 9. Cant T, Mahony B, McCarthy J, Vu L (2006) Hierarchical verifi-

cation environment. In: Proceedings of the 10th Australian work-

shop on safety critical systems and software—vol 55, SCS’05,

Darlinghurst, Australia. Australian Computer Society, Inc, Aus-

tralia, pp 47–57

 10. Upadhyaya P, Kwon Y, Balazinska M (2011) A latency and fault-

tolerance optimizer for online parallel query plans, pp 241–252

 11. TPC-H Benchmark. http://www.tpc.org/tpch/

 12. Raychaudhuri S (2008) Introduction to Monte Carlo simulation.

In: Proceedings of the 40th conference on winter simulation,

WSC’08. Winter simulation conference, pp 91–100

 13. Bernstein PA, Goodman N (1981) Concurrency control in distrib-

uted database systems. ACM Comput. Surv. 13(2):185–221

 14. Zlib. https ://zlib.net/

 15. Zstd. http://faceb ook.githu b.io/zstd/

 16. Bartkowski S et al (2018) High availability and scalability guide

for Db2 on Linux, UNIX and Windows. http://www.redbo oks.ibm.

com/redbo oks/pdfs/sg247 363.pdf. Accessed 4 Mar 2012

 17. Bartkowski S et al. (2018) Oracle data guard. https ://docs.oracl

e.com/cd/B1930 6_01/serve r.102/b1423 9.pdf. Accessed 4 Mar

2008

 18. Microsoft. High availability solutions (SQL server). https ://techn

et.micro soft.com/en-us/libra ry/ms190 202(v=sql.110).aspx.

Accessed 4 Mar 2018

 19. Hsiao H-I, Dewitt DJ (1993) A performance study of three high

availability data replication strategies. Distrib Parallel Databases

1(1):53–79

 20. Dean J, Ghemawat S (2008) Mapreduce: simplified data process-

ing on large clusters. Commun. ACM 51(1):107–113

 21. Ghemawat S, Gobioff H, Leung S-T (2003) The Google file sys-

tem. In: Proceedings of the nineteenth ACM symposium on oper-

ating systems principles, SOSP’03. ACM, New York, NY, USA,

pp 29–43

 22. Condie T, Conway N, Alvaro P, Hellerstein JM, Elmeleegy K,

Sears R (2009) Mapreduce online. Technical report UCB/EECS-

2009-136, EECS Department, University of California, Berkeley

 23. Yang CM, Yen CY, Tan CC, Madden S (2010) Osprey: imple-

menting mapreduce-style fault tolerance in a shared-nothing dis-

tributed database. In: ICDE, pp 657–668, 11

 24. Hsiao H-I, DeWitt DJ (1990) Chained declustering: a new avail-

ability strategy for multiprocessor database machines. In: Pro-

ceedings of the sixth international conference on data engineering.

IEEE Computer Society, Washington, DC, USA, pp 456–465

 25. Isard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad: dis-

tributed data-parallel programs from sequential building blocks.

In: Proceedings of the 2007 Eurosys conference. Association for

Computing Machinery, Inc, Lisbon, Portugal

 26. Yint Z, Sun J, Li M, Ekanayake J, Lin H, Friedman M, Blakeley JA,

Szyperski C, Devanur NR (2018) Bubble execution: resource-aware

reliable analytics at cloud scale. Proc VLDB Endow 11(7):746–758

 27. Hwang J-H, Balazinska M, Rasin A, Cetintemel U, Stonebraker

M, Zdonik S (2005) High-availability algorithms for distributed

stream processing. In: Proceedings of the 21st international con-

ference on data engineering, ICDE’05. IEEE Computer Society,

Washington, DC, USA, pp 779–790

 28. Flink. https ://ci.apach e.org/proje cts/flink /flink -docs-relea se-1.4/

inter nals/strea m_check point ing.html

 29. Tatbul N, Ahmad Y, Çetintemel U, Hwang J-H, Xing Y, Zdonik

S (2008) Load management and high availability in the borealis

distributed stream processing engine. Springer, Berlin, pp 66–85

 30. Li H, Wu J, Jiang Z, Li X, Wei X (2017) Minimum backups for

stream processing with recovery latency guarantees. IEEE Trans

Reliab 66:783–794

 31. Carbone P, Ewen S, Fóra G, Haridi S, Richter S, Tzoumas

K (2017) State management in apache flink®: consist-

ent stateful distributed stream processing. Proc VLDB Endow

10(12):1718–1729

 32. Murray DG, McSherry F, Isaacs R, Isard M, Barham P, Abadi M

(2013) Naiad: a timely dataflow system. In: Proceedings of the

twenty-fourth ACM symposium on operating systems principles,

SOSP’13. ACM, New York, NY, USA, pp 439–455

 33. Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM,

Kulkarni S, Jackson J, Gade K, Fu M, Donham J, Bhagat N, Mit-

tal S, Ryaboy D (2014) Storm@twitter. In: Proceedings of the

2014 ACM SIGMOD international conference on management

of data, SIGMOD’14. ACM, New York, NY, USA, pp 147–156

http://hadoop.apache.org/
https://spark.apache.org/
http://www.tpc.org/tpch/
https://zlib.net/
http://facebook.github.io/zstd/
http://www.redbooks.ibm.com/redbooks/pdfs/sg247363.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247363.pdf
https://docs.oracle.com/cd/B19306_01/server.102/b14239.pdf
https://docs.oracle.com/cd/B19306_01/server.102/b14239.pdf
https://technet.microsoft.com/en-us/library/ms190202%28v=sql.110%29.aspx
https://technet.microsoft.com/en-us/library/ms190202%28v=sql.110%29.aspx
https://ci.apache.org/projects/flink/flink-docs-release-1.4/internals/stream_checkpointing.html
https://ci.apache.org/projects/flink/flink-docs-release-1.4/internals/stream_checkpointing.html

	Smart Intra-query Fault Tolerance for Massive Parallel Processing Databases
	Abstract
	1 Introduction
	2 Background
	2.1 MPP Database Architecture
	2.2 Parallel Query Processing
	2.3 Query Success Rate
	2.3.1 One-Time Success Rate
	2.3.2 Success Rate Without Fault Tolerance

	3 The SIFT Mechanism
	3.1 Pipeline Preserving Checkpointing
	3.2 Selection of Optimal Checkpoints
	3.2.1 Query Plan Collapsing and Cost Estimation
	3.2.2 Success Rate Calculation
	3.2.3 Application of Monte Carlo
	3.2.4 Enumerating Plans

	4 Implementation
	4.1 Modification on the Master Node
	4.2 Modification on the Slave Node

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effects of Intra-query Fault Tolerance
	5.3 Overhead of SIFT
	5.4 Impacts of Parameters
	5.5 Effects of Compression

	6 Related Work
	6.1 Intra-query Fault Tolerance in Databases
	6.2 Intra-query Fault Tolerance in Big Data Platforms

	7 Conclusions
	Acknowledgements
	References

