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Abstract

Intra-query fault tolerance has increasingly been a concern for online analytical processing, as more and more enterprises 

migrate data analytical systems from mainframes to commodity computers. Most massive parallel processing (MPP) data-

bases do not support intra-query fault tolerance. They may suffer from prolonged query latency when running on unreliable 

commodity clusters. While SQL-on-Hadoop systems can utilize the fault tolerance support of low-level frameworks, such as 

MapReduce and Spark, their cost-effectiveness is not always acceptable. In this paper, we propose a smart intra-query fault 

tolerance (SIFT) mechanism for MPP databases. SIFT achieves fault tolerance by performing checkpointing, i.e., material-

izing intermediate results of selected operators. Different from existing approaches, SIFT aims at promoting query success 

rate within a given time. To achieve its goal, it needs to: (1) minimize query rerunning time after encountering failures and 

(2) introduce as less checkpointing overhead as possible. To evaluate SIFT in real-world MPP database systems, we imple-

mented it in Greenplum. The experimental results indicate that it can improve success rate of query processing effectively, 

especially when working with unreliable hardware.

Keywords Intra-query fault tolerance · Fault tolerance · Pipeline · Massive parallel processing databases

1 Introduction

Massive parallel processing (MPP) databases are popular 

data platforms for enterprise and scientific data analysis. 

Compared with other types of platforms, such as Hadoop and 

Flink, the advantages of MPP databases lie in their matu-

rity and comprehensive functionalities established in the last 

decades. Well-known MPP database products include Tera-

data [1], Greenplum [2], Vertica [3], as well as a number of 

SQL-on-Hadoop systems such as Impala [4] and HAWQ [5].

In recent years, fault tolerance of query processing has 

become increasingly important to MPP databases. Instead 

of relying on expensive mainframes equipped with highly 

available hardware components, more and more enterprises 

are inclined to deploy their databases on cheap commodity 

machines. Commodity clusters are much less reliable than 

mainframes, such that databases have to deal with system 

failures proactively. Moreover, execution time of today’s 

OLAP queries has expanded a lot, due to the rapid growth 

of data volume. The longer a query runs, the more it suffers 

from system failures [6].

To handle failures during the execution of a query, exist-

ing solutions typically adopt one of the following two strat-

egies. The first strategy is to abandon the current round of 

execution and redo the entire query. Most existing MPP 

database systems adopt this strategy partly because they 

are not originally designed for platforms with high failure 

rate. If the query has to be completely rerun, it may lead to 

a severe delay. There is even a risk that a query will never 

finish, if system failures occur repeatedly.

The other strategy, which is adopted by some SQL-on-

Hadoop or SQL-on-Spark systems, is to build the query pro-

cessor on top of a fine-grained fault tolerance mechanism, such 
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as MapReduce [7] and Spark [8]. These mechanisms materi-

alize the intermediate results of each query execution step, 

so that only the lost steps need to be redone when a failure 

occurs. However, this blind materialization approach is expen-

sive. Its overhead is sometimes unnecessarily high, resulting 

in unacceptable query response time [9]. In fact, the benefit of 

materialization does not always pay off its cost. Moreover, it 

is difficult to apply this strategy to established MPP database 

systems, as it requires a complete reconstruction of the system.

To achieve intra-query fault tolerance, we have to material-

ize intermediate data of query processing somehow. However, 

a cost-effective approach will choose each materialization 

point carefully, lest it incurs too much overhead. It should 

also minimize the intervention to query processing pipelines, 

on which MPP databases rely to achieve good performance. 

Some existing approaches to intra-query fault tolerance [6, 10] 

do perform materialization selectively, aiming to maximize its 

cost-effectiveness. However, they either choose to block query 

processing pipelines [6] or hold unrealistic assumptions [10] 

that data transmission among query processing operators be 

order preserving. They do not appear practical for existing 

MPP databases. Besides, all these approaches emphasize per-

formance over success rate—the probability of successfully 

finishing a query in a given time. In real world, enterprises 

may regard success rate more important, as they need to get 

work done in time, e.g., get the report in time .

In this paper, we propose a smart intra-query fault toler-

ance (SIFT) mechanism for MPP databases. SIFT always 

selects appropriate operators for intermediate result mate-

rialization, by considering all the factors mentioned above. 

It adopts a different optimization goal—maximizing query 

success rate. In summary, SIFT can be characterized from 

the following perspectives:

1. To minimize the negative impact on the performance 

of query processing, SIFT chooses not to block pipe-

lines. To this end, it selectively materializes the blocking 

operators (or the endpoints) of pipelines only.

2. SIFT autonomously determines which query operator to 

materialize, by considering both the cost and the risk of 

system failure. We devised a novel optimization algo-

rithm for selecting materialization points that allow the 

system to achieve a desired success rate by performing 

as little materialization as possible.

3. SIFT is light weighted and can be implemented in most 

of the MPP databases at an affordable engineering cost. 

As a proof, we implemented it in Greenplum, a widely 

used open-source MPP database.

In the experimental study, we show how SIFT enables 

Greenplum to achieve a certain degree of intra-query fault 

tolerance while preserving its performance in query pro-

cessing. As our experiments suggest, with a 10% increase 

of query processing time, SIFT can help Greenplum cutoff 

60% of the latency for handling a failure.

The rest of the paper is organized as follows. In Sect. 2, 

we review the conventional parallel query processing archi-

tecture and model. In Sect. 3, we introduce SIFT’s basic 

approach to intra-query fault tolerance. The implementation 

of our approach in GP is detailed in Sect. 4. Section 5 presents 

results of our experimental evaluation. The related work is 

discussed in Sect. 6. Finally, we conclude the paper in Sect. 7.

2  Background

This section provides an overview about the architecture 

of MPP database (Sect. 2.1) and parallel query processing 

(Sect. 2.2). As the goal of SIFT is to maximize query success 

rate, a model about success rate is introduced in Sect. 2.3.

2.1  MPP Database Architecture

Typical MPP databases usually adopt a shared-nothing 

architecture [2], composed of one master node and n slave 

nodes. The master node is responsible for interacting with 

clients, managing the whole cluster and coordinating the 

query processing. Each of the n salve nodes is responsi-

ble for storing a partition of the data and performing query 

processing on its partition. Each slave node hosts d data-

base instances, which will be referred to as segments subse-

quently. Figure 1 illustrates an example of this architecture, 

in which n = 4 and d = 2.

Most MPP databases provide fault tolerance at stor-

age level. A mirror scheme, i.e., replication, is commonly 

used to ensure durability and availability of data. As Fig. 1 

shows, each segment (primary segment) is allocated with 

a mirror (mirror segment) in another node. The master 

node detects node failures by monitoring heartbeats of 

slave nodes. If a slave node stops responding for a certain 

Fig. 1  Architecture of MPP databases. There are a master and 4 

slaves, with 2 segments on each slave and a mirror for each segment 

on another machine.
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amount of time, known as a system delay time (normally 

around 1 min), the master will treat it as a failed node. 

Once a failure is detected, the corresponding mirror will 

be activated to replace the failed primary segment. Simi-

larly, a standby works as the replication/mirror of the mas-

ter node. Through the mirror scheme, the system’s avail-

ability can be significantly enhanced.

However, such a mirror scheme does not support intra-

query fault tolerance automatically. When a node failure 

occurs, the running query’s state on the failed node will be 

lost. After the corresponding mirror is activated, the whole 

query has to be rerun. If it is a long running query, response 

to the client will be severely delayed. In the worst case, a 

query will run indefinitely, if the probability of failure is high.

2.2  Parallel Query Processing

Typical MPP databases model a query plan as a directed 

acyclic graph [6, 10]. Each vertex in this figure corre-

sponds to an operator, which is regarded as the unit of 

query processing. Typical operators include scan, sort, 

aggregation, join, etc. A query plan is produced by the 

master and broadcasted to all segments, which will execute 

the same plan on their own data.

Operators are usually executed in pipelines in MPP 

databases  [10]. Pipelining can effectively reduce data 

materialization during query processing. Intermediate 

results will be immediately passed to the succeeding 

operator to process as soon as they are generated by the 

preceding operator.

In an MPP database, data need to be exchanged among 

slave nodes during query processing. Communication 

points break a query plan into multiple stages. On each 

segment, a query plan will be carried out by s concurrent 

processes or threads (further referred to as slices), each 

responsible for a stage of the query plan.

Figure 2 shows the actual query plan for the 17th query 

(Q17) of TPC-H benchmark [11] generated by Greenplum. 

The query is defined in Fig. 3. It is a typical query plan on 

a segment, with 15 operators and 4 slices. In this example, 

4 processes or threads per segment will run in parallel 

to execute the query. Figure 4 shows the situation where 

Greenplum executes the query using 6 pipelines. It shows 

the processing time of each operator. For instance, in P1, 

intermediate results produced by Op.1 will be passed to 

Op.4 as soon as they are generated. Thus, we could see 

that the two operators overlap in executing time.

2.3  Query Success Rate

For an OLAP query, users usually expect a latency constraint, 

to ensure the timeliness of decision making. Once a node fail-

ure occurs, execution of an ongoing query will be delayed. Our 

goal of intra-query fault tolerance is to make sure that a query 

can finish within its time constraint, even when confronted 

with failures. We consider success rate as the probability of 

successfully finishing a query within a time constraint T. In the 

following, we show how to calculate success rate.

2.3.1  One‑Time Success Rate

One-time success rate refers to the probability of success-

fully finishing a query in a single round of execution, i.e., no 

failure happens during the execution.

Let the mean time between failures (MTBF) of a sin-

gle node be MTBF. Then, the MTBF of an entire cluster 

Fig. 2  Query plan for TPC-H Q17 generated by Greenplum

Fig. 3  The 17th query(Q17) of the TPC-H benchmark
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containing n nodes is 
MTBF

n
 . We assume that node failures 

are independent. Then, intervals between node failures are 

subject to exponential distribution. In other words, the prob-

ability that a failure occurs within a time interval t can be 

calculated by 1 − e
−�t , where � is 

1

MTBF
 . As what most data-

base systems do, we estimate the cost of query processing 

by the number of I/O operations. Thus, the � of an MPP 

database can be calculated as:

In the equation above, � is the throughput of disk and S
IO

 is 

the block size of each I/O operation. MTBF
IO

 is the aver-

age number of I/O operations that occur between two con-

secutive failures. The parameter � can then be deduced from 

MTBF
IO

.

Let t
0
 be the total time an MPP database takes to execute 

a query without encountering a failure. Then, the one-time 

success rate can be calculated as: e−�t
0.

2.3.2  Success Rate Without Fault Tolerance

For a system without intra-query fault tolerance, success 

rate with given time T, Succ(T) can be calculated as follows:

(1)

MTBF
IO

=

S
IO

� × MTBF

� =
n

MTBF
IO

(2)

Succ0(T) = e−�t0

Succi(T) = fi(t0, T) ∗ e−�ti , i ∈ {1, 2,…}

ti = t0, i ∈ {1, 2,…}

fi(t0, T) = � …�D

i∏

j=1

�e−�xj dx1 … dxi,

D = {(x1,… , xi)|
i∑

j=1

xj ≤ T − t0}

Succ(T) = Succ0(T) + Succ1(T) + Succ2(T)

+⋯ + Succi(T) +⋯

In the equations above, Succ
i
(T) represents the success rate 

after encountering i failures. t
i
 denotes the time needed to 

finish the query after i failures. As the system does not sup-

port intra-query fault tolerance, we have to redo the query 

from the beginning whenever there is a failure. Thus, the 

time we need to finish a query is still t
0
 after i failures. The 

success rate after i failures will be e−�t
0 . In Eq. 2, fi(t0, T) is 

the probability of i failures occurring within time of T − t
0
 . 

As we can see, the success rate decreases as t
i
 increases. 

Intra-query fault tolerance enables us shorten t
i
 and thus 

improve the success rate.

Table 1 shows the parameters we use in this paper.

3  The SIFT Mechanism

When a failure occurs, we expect that the query can be 

resumed from an intermediate state rather than being re-exe-

cuted from the very beginning. This requires us to perform 

checkpointing during query execution, i.e., selectively sav-

ing intermediate states into the persistent storage of mirrors.

As mentioned earlier, it is not cost-effective to perform 

checkpointing arbitrarily. Instead, two steps are required 

to make an appropriate checkpointing plan. First, a set of 

query operators are selected as checkpoint candidates (see 

Sect. 3.1). Second, success rates of possible checkpointing 

plans are evaluated and an optimal one is finally chosen (see 

Sect. 3.2).

3.1  Pipeline Preserving Checkpointing

Injection of checkpoints into a query plan may have two-

sided effects. Firstly, it may break the pipeline. Secondly, 

extra cost will be introduced for materialization. To mini-

mize performance penalty, SIFT’s checkpoint candidates 

must satisfy the following conditions.

Fig. 4  Situation of executing in pipelines for Q17. There are 6 pipe-

lines

Table 1  Parameters and description

Param Description

MTBF Mean time between failures

MTTR System delay used for the system to recover after a failure

n Number of physical machines

� Parameter of the failure model of the cluster

t
0

Total time a query used to run once without fault tolerance

t
SIFT

Total time a query used to run once with fault tolerance

Cr
i

Running cost of operator i without fault tolerance

Cm
i

Cost of operator i need to be materialized for fault tolerance

Mfi Materialization factor of operator i

SR
T

Target success rate for given time T
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1. They should be breaking operators, i.e., those at the end 

of pipelines. This does not break the original pipelines. 

Meanwhile, as the intermediate results of these operators 

will anyway be materialized locally, the overhead can be 

minimized.

2. They must be deterministic operators, i.e., their inter-

mediate results are uniquely determined by the data 

and the query plan. This guarantees the correctness of 

fault tolerance. In other words, it guarantees that we will 

reproduce correct results from checkpoints.

For instance, query operators in Greenplum include scan, 

limit, sort, aggregation, motion, hashjoin, nestloopjoin, 

sortjoin and etc. Among them, motion is a special type of 

operator responsible for exchanging data. According to the 

above rules, three kinds of operators can be candidates of 

checkpoints. They are the hash operator within hashjoin, 

sort, and aggregation. They are all endpoints of pipelines. 

Besides, they are all common operators in query plans.

Upon a failure, the master will replace failed segments 

with their mirrors and restart queries from their latest 

checkpoints. Figure 5 explains the effects of intra-query 

fault tolerance. It uses the same query as Fig. 3. As shown 

in Fig. 3, the query plan consists of 4 slices and 6 pipe-

lines. In the plan, Operators 4, 5, 10, 11, 13, and 15 are 

checkpoint candidates. We assume that all 6 checkpoints 

are activated. Figure 5 shows a situation where a failure 

occurs after finishing checkpointing Op.4 and Op.5. Dur-

ing rerunning, Operators 1–5 can be skipped. The query 

execution can start from intermediate results of Op.4 and 

Op.5. As a result, Slice 2 does not need to be launched 

at all. Meanwhile, the work of Slice 1 and Slice 3 will 

be reduced significantly and the query execution will be 

accelerated. From this figure, we could see the time saved 

by intra-query fault tolerance directly. As another example, 

if a failure occurs after the checkpoint on Op.13, only 

Slice 4 will be executed during the rerun.

3.2  Selection of Optimal Checkpoints

In a query plan, many operators can be candidates of check-

points. However, it is not necessary to materialize them all, 

which may introduce unnecessary overhead to query pro-

cessing. As long as a desired success rate can be achieved, 

checkpoints should be as fewer as possible. Thus, we need to 

select an optimal set of checkpoints that incur the minimum 

materialization cost.

Databases usually estimate the cost of a query plan dur-

ing query optimization. Based on their cost estimation, we 

can estimate overhead of checkpointing as well as success 

rate. This will lead us to an optimal checkpointing plan. 

For instance, the query plan in Fig. 3 offers 6 checkpoint 

candidates, i.e.,{Op.4, Op.5, Op.10, Op.11, Op.13, Op.15

}. A possible checkpointing plan is to activate any subsets 

of them, e.g., {Op.4, Op.11, Op.13, Op.15}. In total, there 

will be 26 combinations or 26 candidate checkpointing plans. 

For each candidate plan, we can use Monte Carlo method to 

estimate its success rate. Since the search space is exponen-

tial and Monte Carlo method is time-consuming, we employ 

some pruning methods to accelerate searching.

In general, SIFT’s checkpointing plan optimization con-

sists of 3 steps:

1. Collapsing the query plan and estimating cost of each 

candidate checkpointing plan (see Sect. 3.2.1);

2. Calculating success rate of each candidate checkpoint-

ing plan (see Sect. 3.2.2 for the computation model and 

Sect. 3.2.3 for the Monte Carlo method);

3. Enumerating all candidate plans to identify an optimal 

one (see Sect. 3.2.4).

3.2.1  Query Plan Collapsing and Cost Estimation

For a given checkpointing plan, we only need the query 

processing costs between checkpoints to calculate the suc-

cess rate. For simplicity of analysis, we collapse the query 

plan that only retain checkpointing operators. Collapsing 

is performed twice for each query plan. First, it generates 

a collapsed query plan, P
C
 , which preserve checkpointing 

candidates only. Other operators are upwardly compressed 

into the checkpointing candidates. Based on P
C
 , it then gen-

erates a collapsed checkpointing plan, P
MC

 , in which only 

checkpoint operators remain. For example, the query plan 

in Fig. 3 can be collapsed into the one in Fig. 6a. In the col-

lapsed plan, Op.1 is merged with Op.4 to form a new opera-

tor Op.A. The plan mentioned in Sect. 3.2 will be collapsed 

into the checkpointing plan in Fig. 6b.

Fig. 5  A failure occurs during executing Q17. Before that, Op.4 and 

Op.5 are materialized. The query will rerun from intermediate results 

of Op.4 and Op.5 and Operators 1 ∼ 5 will be skipped. Slice 2 will not 

be launched.
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Cost estimation is performed on P
MC

 . The aggregated 

costs of the operators between adjacent checkpoints are cal-

culated. For instance, cost of Op.A in Fig. 6b will represent 

the cost or time consumed by the query processor before the 

checkpoint Op.A. If a failure occurs after Op.A, this cost or 

time will be saved during the rerun.

As I/O is usually the performance bottleneck, our cost 

model is based on I/O. For each Op.i, we estimate its execu-

tion cost Cr
i
 and materialization cost Cm

i
 . Cr

i
 represents I/O 

cost of executing Op.i. For an established database system, 

it is directly available in the query plan. Cm
i
 is the overhead 

of performing checkpointing on Op.i. In SIFT, Cm
i
 can be 

estimated based on Ci
i
 , which is I/O cost for materializing 

intermediate results of Op.i to local storage. We calculate 

Cm
i
 as Cmi = Mfi ∗ Cii , where Mfi is a factor greater than 

1, as checkpointing will incur extra cost of data transmis-

sion—rather than materializing intermediate results locally, 

checkpointing will transmit the intermediate results to the 

mirror node for materializing. We use Ct
i
 to represent the 

total I/O cost consumed by an operator under SIFT, that is, 

Ct
i
= Cr

i
+ Cm

i
 . Then, the total cost of running a query can 

be calculated as,

3.2.2  Success Rate Calculation

In Sect. 2.3, we showed how to calculate success rate with-

out intra-query fault tolerance. In this section, we consider 

the case when intra-query fault tolerance is enabled. Given 

a time constraint T, the success rate Succ(T) can be amended 

as follows:

In this equation, P
i
(t

SIFT
, T) represents the probability that a 

query successfully finishes at the (i + 1)th attempt, i.e., after 

i failures. Based on the assumption of exponential distribu-

tion, the timeline of the collapsed query plan in Sect. 3.2.1 

(3)
t
SIFT

=

∑

i∈P
MC

Ct
i
.

(4)

Succ0(T) = e
−�t

SIFT

Succ
i
(T) = (1 − Succ

i−1(T)) ∗ P
i
(t

SIFT
, T), i ∈ 1, 2,⋯

Succ(T) = Succ0(T) + Succ1(T) + Succ2(T) +⋯ + Succ
i
(T) +⋯

can be illustrated by the first line in Fig. 7 (post-traveling of 

P
MC

 ). Other lines illustrate the different situations of fail-

ures. By applying SIFT, the query will be rerun at the latest 

checkpoint. SIFT can shorten the reruns remarkably.

P1(tSIFT
, T) is a complex piecewise function. If it is 

unfolded, the direct calculation of P
i
(t

SIFT
, T) will be infea-

sible. To make the estimation of success rate possible, we 

apply Monte Carlo method to compute P
i
(t

SIFT
, T).

3.2.3  Application of Monte Carlo

The essence of the Monte Carlo method [12] is simulation. 

As the probability of one-time success might be high, it will 

be wasteful to simulate the situations when no failure occurs. 

Instead of estimating success rate directly, SIFT estimates 

the conditional probability given that at least one failure 

occurs. As an amendment of Eq. 4, our formula for estimat-

ing success rate is:

where P(t
SIFT

, T) presents the probability of a successful 

query execution after one failure occurs. SIFT employs 

Monte Carlo method to estimate P(t
SIFT

, T) , based on which 

it calculates the success rate Succ(T).

When running the Monte Carlo method, we use the ran-

dom number r to represent the time interval before the next 

failure, and s
t
 to represent the start point of this simulation, 

which is initially 0. The simulation of query execution will 

be repeated until one of the following inequalities holds.

(5)Succ(T) = e
−�t

SIFT + (1 − e
−�t

SIFT ) ∗ P(t
SIFT

, T),

(6)
a ∶ tSIFT < st + r

b ∶ T < st + r + nf ∗ MTTR

Fig. 6  Collapsed query plan of Q17

Fig. 7  Timeline of Q17 and situations of one failure
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In Eq. 6, nf  represents the number of failures that have 

already occurred. MTTR  represents the Mean Time To 

Repair, i.e., the time required to prepare the rerun. In each 

round of simulation, if Eq. 6.a holds, a successful case is 

recorded. Otherwise, a failed case is recorded. After a suf-

ficient number of simulations, the conditional probability 

P(t
SIFT

, T) can be computed as the fraction of the succeeded 

cases.

3.2.4  Enumerating Plans

For a collapsed plan with n
c
 candidate checkpoints, there 

are 2n
c possible checkpointing plans. The search space of 

checkpointing plans for a query can be structured as a tree. 

For instance, the search space of Q17 is illustrated in Fig. 8. 

SIFT performs Breadth-First Search over the tree to evaluate 

the plans. It employs a pruning method to avoid unnecessary 

work and accelerate the evaluation. In general, we set a target 

success rate SR
T
 . SIFT will stop the search on a branch if it 

has achieved SR
T
 . For instance, if checkpoints {A, B} has 

already satisfied SR
T
 , we would not consider set of check-

points {A, B, C}, as {A, B, C} will only incur more materi-

alization cost than {A, B}. If no candidate plan could achieve 

SR
T
 , SIFT chooses the plan with the highest success rate.

4  Implementation

We implemented SIFT in Greenplum [2], one of the most 

popular open-source MPP database systems. It adopts a 

scale-out and shared-nothing architecture and provides ana-

lytical capability on data of petabytes. Greenplum Version 

4.3 contains more than 1.5 million lines of code in about 

6000 files. To implement SIFT, about 7000 LOCs were 

added or modified. The main changes are shown in Fig. 9, 

and the detailed statistics can be found in Table 2.

4.1  Modification on the Master Node

The implementation on the master node includes the fol-

lowing four parts.

1. Failure handling Originally, Greenplum does not sup-

port intra-query fault tolerance. After a segment crashes, 

the system replaces the failed segment with its mirror. 

However, interrupted queries will be skipped. After 

recovered, the system will continue to serve follow-

ing requests. To enable intra-query fault tolerance, we 

adjusted the behavior of master node—it will actively 

check for unfinished queries and rerun them automati-

cally.

2. Query re-execution To rerun an unfinished query, 

the system needs to know which checkpoint to start 

from. The judgment should be made by the master and 

informed to the slaves. During query processing, each 

operator will record their states of checkpointing. When 

rerunning a query, the master will collect the states to 

identify the latest completed checkpoint by traversing 

the query plan tree. Then the operators succeeding the 

checkpoint will be activated and the ones preceding 

it will be skipped. For example, in Fig. 3, if Op.4 has 

been checkpointed, Op.1 could be skipped. If Op.13 is 

checkpointed, Op.10 and Op.11 will be skipped. If all 

operators in a slice are skipped, the slice will not be 

instantiated.

3. Checkpoint selection The module of checkpoint selec-

tion is implemented in the query optimizer on the master 

node. To measure the I/O cost of checkpointing, we can 

reuse the cost estimation module of Greenplum. The 

resulting checkpointing plan will be broadcasted to 

slaves along with the query plan.

4. Transaction management When rerunning queries, 

it is necessary to consider transactional correctness. 

Greenplum adopts multi-version concurrency control 

(MVCC) [13]. The order of each transaction is deter-

mined by its Transaction ID and Transaction Snapshot. 

Therefore, to ensure the correctness of a re-executed 

query, we can simply reuse the ID and Snapshot of the 

original transaction. This requires us to save the original 

ID and Snapshot on both master and slave nodes.

4.2  Modification on the Slave Node

The implementation on the slave side mainly aims to ena-

ble checkpointing. That includes materializing their inter-

mediate results on mirrors and reusing them after failures. 

Table 2 shows that the implementation of the checkpoint-

ing module constitute a large part of the changes on the 

whole system. The module of checkpointing was imple-

mented on operators of hash, sort, and aggregation.

1.  States of checkpoints For each candidate operator, we 

need to maintain its checkpointing states. This allows us 

to judge whether an operator has been checkpointed and 

whether the checkpoint is complete when rerunning a Fig. 8  Searching space of checkpointing plans for Q17
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query. For the former, we defined a label to identify the 

status of checkpoints. Its format is: 

queryId identifies the query. Similarly, sliceId and 

operatorId are identifiers of the slice and the operator. 

timestamp is used to distinguish between the different 

rounds of execution of the same query, as more than one 

failure may occur. In addition, an integrity tag is used 

to detect unexpected media failure. During recovery, a 

salve needs to check the integrity tag to determine the 

usability of the intermediate results.

2. Transmission of intermediate results In the original 

Greenplum, intermediate results of breaking operators 

are materialized locally. The checkpointing module only 

queryId_sliceId_operatorId_timestamp.

needs to move them to the mirrors. It is obviously faster 

to transmit the data on the fly. If we do the transmis-

sion after all the intermediate results are generated, we 

have to read them from disk, which incurs extra I/Os. 

Greenplum uses a temporary file structure called BFZ 

to store intermediate results. BFZ utilizes an in-memory 

buffer. Intermediate results will first be written into the 

buffer. When the buffer is full, it is flushed to disks. To 

reduce overhead of checkpointing, we transmit data to 

the mirror when it is still in the buffer. This can save a 

significant amount of I/Os.

3. Compression of intermediate results To further reduce 

the overhead of intermediate result materialization, we 

perform compression. Compression is a common tech-

nology to reduce disk I/O in database, but it is rarely 

used for intermediate results by default. Greenplum 

provides a built-in compression module called zlib [14]. 

Instead of using zlib, we applied the compression library 

Zstandard [15], as it offers a better compression rate 

and a greater speed of compression and decompression. 

Moreover, it supports streaming compression, i.e., com-

press the file incrementally, which fits in our framework 

better.

5  Evaluation

We conducted experiments to evaluate SIFT. In this sec-

tion, we show the effectiveness and overheads of SIFT, and 

compare it against some alternative approaches.

5.1  Experimental Setup

In the experiments, we used the TPC-H benchmark [11]. 

Its schema includes 8 tables. To show robustness of our 

strategy, we used two computer clusters of different scales, 

whose machine configurations are summarized in Table 3.

• Cluster A one master node and 16 slave nodes, with a 

data size of 500GB.

• Cluster B one master node and 8 slave nodes, with a data 

size of 200GB.

In the two clusters, each slave hosts two primary and two 

mirror segments. Data of each table is partitioned hori-

zontally into segments and distributed to all slave nodes. 

Among the 22 queries of the TPC-H benchmark, we chose 

6 typical queries to carry out our experiments. They 

include the 2nd, 7th, 9th, 16th, 17th, and 21st queries(Q2, 

Q7, Q9, Q16, Q17, Q21).

Fig. 9  Mainly changes for applying SIFT to Greenplum

Table 2  Code statistics for implementing SIFT on Greenplum data-

base system

Model Line of code

Optimized checkpointing selection 1800

Query restart 300

Redo point checking 300

Consistency guarantee 300

Intermediate result storage 600

Copy intermediate result to mirror 400

Intermediate result materialization 3300

Total 7000
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Our experiments evaluated four systems:

• orig the original Greenplum (Version 4.3), which is not 

intra-query fault tolerant.

• SIFT the Greenplum system that implements SIFT.

• materi-all the Greenplum system that materializes all 

candidate operators of SIFT.

• simulated-XDB an simulated-XDB system [6] on Green-

plum. It regards all operators as checkpointing candi-

dates. (SIFT only considers breaking operators.)

5.2  Effects of Intra‑query Fault Tolerance

Each of our experiments was performed for at least 20 times. 

Figure 10 shows the average success rates on the first three 

systems. Average success rates with 90% confidence inter-

vals are shown in Fig. 10. And we can see from the figure, 

results are stable. For all the experiments, we set MTBF 

as 48h and time constraint T as 1.6 times of t
0
(1.6t

0
 ). We 

ignored MTTR  in the experiments, as it is much shorter than 

execution time of long queries. We can see that SIFT can 

promote the success rates significantly, especially for Q17 

and Q21. These two queries’ original success rates are rela-

tively low, which makes the effects of fault tolerance more 

significant. They also offer more candidates for checkpoint-

ing, which enables us to find better checkpointing plans. On 

both clusters, we obtained similar results.

For some queries, such as Q16, the improvements made 

by SIFT are less visible. The execution times of the queries 

are shorter. Thus, their original success rates are already 

high and near to 100%, and little space is left for improve-

ments. If we assume that at least one failure will occur dur-

ing the query execution, the conditional probability will 

become the ones in Fig. 11. In this case, the effect of intra-

query fault tolerance is amplified. For instance, SIFT can 

raise the success rate of Q21 from 24.4% to 76.6% on cluster 

A, and from 50.1% to 97.6% on cluster B. Intra-query fault 

tolerance will be more effective if the clusters are less stable.

We chose 4 queries, Q7, Q9, Q17, and Q21, to carry 

out further experiments, in which we manually shut down 

a slave node to see the impact of failures. Two rounds of 

experiments were performed for each query. In each round, 

one failure occurred, but at a different stage. Figure 12 shows 

results on cluster A, and Fig. 13 shows results on cluster B. 

In the figures, qij represents the jth round of test of the ith 

query; bt represents the time span between the start of the 

query and the failure; ct represents the time required to rerun 

a query when fault tolerance is enabled; et
c
 presents the time 

required to rerun a query when fault tolerance is disabled, 

i.e., the time needed for rerun a query with one failed node. 

et represents the time required to execute a query without 

failure. Usually, et
c
 is larger than et as there is one less node 

usable for executing the query. In the figure, the first bar 

represents the time a query required without failure. The 

second bar represents the time a query required if a failure 

occurs and fault tolerance is enabled. And the third bar rep-

resents the time a query required if a failure occurs and fault 

tolerance is disabled.

As Figs. 12 and 13 shows, bt + ct is significantly smaller 

than bt + et
c
 . The former is the query time at the presence of 

one failure for SIFT. The latter is that value for the system 

without intra-query fault tolerance. This indicates that SIFT 

can effectively shorten the latency of query re-execution. 

Besides, we can see that ct drops as bt increases. This indi-

cates that less work is needed to rerun a query when the 

failure is near to end of the query. This complies with our 

analysis in Sect. 1. That is, the later the failure occurs, the 

more work can be checkpointed. As the original system will 

waste what have already done before failures, the later the 

failure is, the more time it will waste. Thus, compared to 

original system, our approach could reduce the wasted time 

significantly while the failure is near to end of the query. As 

we can see, bt + ct can be bigger than et. On the one hand, 

Table 3  Configuration of the experimental machines

Operating system Centos 7.3

Vendor_id GenuineIntel

Address sizes 40 bits physi-

cal, 48 bits 

virtual

Disk throughput 700 MB/S

Number of cores 2

CPU (MHz) 1995.192

Cache size (KB) 4096

Memory (GB) 8

Disk (GB) 300
Fig. 10  Success rate of different queries on different clusters
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the work after the latest checkpoint is still wasted. On the 

other hand, after recovering, less slaves, i.e., less resources, 

are employed to execute the query, making the query pro-

cessing slower. Figure 14 shows the ratio of time saved by 

intra-query fault tolerance, i.e., 
et

c
−ct

bt+et
c
−et

 . It represents benefits 

of using SIFT. As we can see, in most cases the ratio is more 

than 60%.

5.3  Overhead of SIFT

Overhead of checkpointing is inevitable. We tested all the 

four systems in Sect. 5.1 on cluster A, and the first two on 

cluster B, and recorded their query times. For the system, 

simulated-XDB, we measured the runtime when it attempted 

to achieve similar success rates as ours. Each of our experi-

ments was performed for at least 10 times. We treat query 

time on original Greenplum system as 1.0, and normalize 

the query times of other systems based on it. This helps us 

see the differences. The average normalized execution time 

with 90% confidence intervals is shown in Fig. 15. As we 

can see, for most of the queries, the overheads of SIFT is 

visible. However, it is low most of the time. On average, 

the overhead introduced by SIFT is about 10% of the total 

execution time on cluster A and 8% on cluster B. As we 

mentioned before, intermediate results need to be materi-

alized locally and remotely. And it is the main part of the 

overhead. In other words, the size of intermediate results 

impact the overhead significantly. This explains the higher 

overheads for some queries. In the architecture of Green-

plum, mirrors and primaries reside on the same physical 

machines (Sect. 2.1). Thus, backups on mirrors will interfere 

with the original query execution and introduce significant 

overhead. However, this overhead could be easily reduced if 

we backup intermediate results somewhere else.

The results also indicate that it is not necessary to 

activate all candidate checkpoints, as it does not always 

benefits performance or success rates. In other words, 

optimized checkpoint selection can both reduce the over-

head and improve the success rate. Table 4 shows the 

total number of candidate checkpoints and the number of 

checkpoints selected by SIFT. In our tests, as we regard 

success rate as our goal, materializing all candidates is 

usually not an ideal strategy. For instance, for Q2, if we 

do not perform checkpoint selection, the success rate is 

94.86%. If we perform checkpoint selection, the success 

rate can rise to 99.08%. When the execution time is short-

ened, the probability of run-time failure can be naturally 

reduced (Sect. 2.3.2).

The experiment results on the simulated-XDB show 

that not all operators are good candidates for checkpoint-

ing. If a checkpoint breaks the query processing pipeline, 

it usually introduces a significant overhead. In this case, 

the system needs to materialize much more intermediate 

results, making the query time much longer. As we can 

see, SIFT remarkably outperforms XDB in quite a number 

of queries, as it never intends to break pipelines.

Fig. 11  Conditional probability under the condition of at least one 

failure

Fig. 12  Crash experiment on Cluster A

Fig. 13  Crash experiment on Cluster B
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5.4  Impacts of Parameters

In this set of experiments, we evaluated how differ-

ent parameters affect the performance of SIFT. Firstly, 

we consider the influence of the time constraint T. Fig-

ure 16 shows the success rates when T is set as T = 1.3t
0
 , 

T = 1.4t
0
 , T = 1.5t

0
 , T = 1.6t

0
 and T = 1.8t

0
 . MTBF was 

still set as 48h. As expected, the larger the T, the higher 

the success rate. And for all of them, there is an increase 

on success rate compared with the original system. And 

Fig. 17 shows the conditional probability under the condi-

tion of at least one failure with different given time. For 

the queries Q2, Q9, Q17 and Q21, the success rates of 

system applying SIFT under the condition of T = 1.3t
0
 are 

even higher than those of original Greenplum under the 

condition of T = 1.6t
0
. 

Another set of experiments were conducted to study 

the influence of MTBF, in which T was set to 1.6t
0
 . The 

results can be found in Fig. 18. We can see that the drop 

of MTBF will increase the probability of failure and thus 

magnify the fault tolerance effect of SIFT. In other words, 

the benefits of SIFT will be more significant if MTBF is 

smaller. On the other hand, MTBF will drop as the scale 

of the cluster increases. Thus, SIFT is supposed to be 

more effective on larger clusters. Figure 19 shows how 

the conditional probability of at least one failure varies 

with MTBF . We can see that, on original system, the con-

ditional probability will converge to 60%, as T is set to 

1.6t
0
 . For the system implementing SIFT, that value can 

be significantly improved. For instance, on the queries Q2, 

Q17, and Q21, it could approach 100%. 

The results of Q21 on the two clusters are shown in 

Figs. 20 and 21 respectively. In the figures, S_SR_C means 

the success rate on the cluster C for the system S, and 

S_CP_C means the conditional probability with at least one 

failure on the cluster C for the system S. These results lead 

us to the same conclusion. 

5.5  Effects of Compression

Although I/O operations are often seen as a performance 

bottleneck, CPU operations cannot be ignored. Compression 

can effectively reduce I/O operations. However, it comes 

with a price of extra CPU cost. In order to understand the 

Fig. 14  Ratio of time saved by intra-query fault tolerance, i.e., 
et

c
−ct

bt+et
c
−et

Fig. 15  Overhead of SIFT

Table 4  Optimization strategy 

results
Qid 2 7 9 16 17 21

Candidate number 11 8 9 7 6 9

Checkpoint number 6 4 4 3 3 4

Fig. 16  Success rate changed with the given time on cluster A
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influence of compression, we designed a simple query plan 

shown in Fig. 22. It comprises two hashjoin operators, Op.3 

and Op.8, which we chose as checkpoints. On each segment, 

the average sizes of hash tables of Op.3 and Op.8 are 194MB 

and 757.5MB respectively. To speedup the checkpointing 

process, we perform compression on the hash tables. The 

compression ratios are 2.8 and 3.48 respectively. In other 

words, the data size after compression is about 30% of the 

original.

Figure 23 shows the time consumption of different stages 

of query processing. tc
i
 represents time required by compres-

sion in Slice i. td
i
 represents time required by decompression 

in Slice i. IO
i
 represents time for persisting the intermediate 

results before compression. IO
comp

i
 represents persistence time 

after compression. In the figure, the first bar measures the total 

time for materializing intermediate results with compression 

Fig. 17  Increase of success rate changed with the given time on clus-

ter A

Fig. 18  Success rate changed with the MTBF on cluster A

Fig. 19  Conditional probability changed with the MTBF on cluster A

Fig. 20  Success rate of Q21 changed with the given time on the two 

clusters

Fig. 21  Success rate of Q21 changed with the MTBF on the two clus-

ters
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for Slice2, the second are measures that without compression. 

The other two bars represent those values of Slice3. We can see 

that compression is useful. Its effect is especially significant 

for Slice 2, in which a half of the time can be saved. Figure 24 

shows the total execution time of the query in the four tests. It 

shows that compression can speedup query processing.

6  Related Work

6.1  Intra‑query Fault Tolerance in Databases

Traditional relational databases [16–18] implement fault 

tolerance mainly through replication  [19] and check-

pointing at storage level. They usually do not take intra-

query fault tolerance into consideration as queries on 

them usually could finish in seconds or minutes most 

of the time. There is little need for intra-query fault 

tolerance.

Well-known MPP DB products include Teradata [1], 

Greenplum  [2], Vertica  [3], as well as some SQL-on-

Hadoop systems such as Impala [4] and HAWQ [5]. They 

all support fault tolerance at the storage level as the tradi-

tional databases do. To the best of our knowledge, none of 

them support intra-query fault tolerance.

The known work on intra-query fault tolerance includes 

FTOpt [10] and XDB [6]. XDB supports cost-based fault 

tolerance by choosing operators in a query plan to mate-

rialize. Its goal is to find a materialization configura-

tion that would lead to minimum expected running time. 

However, XDB has little consideration about pipelines 

of query processing. It is prone to break pipelines of 

the original query and impair its performance. Besides, 

XDB is more complex to implement, as it needs to make 

every operators possible to materialize, which leads to 

re-implementation of all the query operators. We have 

shown in our experimental evaluation, SIFT tends to be 

more efficient as it always tries to preserve the query 

processing pipelines.

FTOpt considers pipelines and presents an extensible 

and heterogeneous fault tolerance framework. It also con-

siders the differences between operators and applies dif-

ferent strategies to handle them. However, FTOpt assumes 

that data transmission over the network among operators 

is always order preserving. This makes FTOpt impractical 

for most MPP databases, which normally do not guarantee 

order preserving data transmission.

Neither XDB nor FTOpt was implemented in real MPP 

databases. In contrast, the design of SIFT emphasizes 

practicality. Our goal is a light weighted fault tolerance 

mechanism that can be applied to most real MPP data-

bases. Besides, SIFT aims to ensure success rate, so that 

it adopts a unique approach to optimize checkpointing 

plans.

Fig. 22  Query processing plan of compression test query

Fig. 23  Time consumption of different stages of query processing 

while using compressing

Fig. 24  Efficiency of compression
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6.2  Intra‑query Fault Tolerance in Big Data 
Platforms

Since Google published the work of MapReduce [20] and 

GFS [21], open-source data processing platforms such 

as Hadoop [7] have become popular. Multiple stacks of 

systems have been built on top of them. Some SQL-On-

Hadoop implement intra-query fault tolerance by utiliz-

ing the fault tolerance function of Hadoop [7]. However 

they usually suffer from too much overhead. The work 

of [22] implemented pipeline within the Hadoop MapRe-

duce framework. Experiments showed that its overhead of 

materialization is high. Osprey [23] applies the thought of 

MapReduce to MPP systems. It splits a analytical query 

over a star schema into short sub-queries. Its fault toler-

ance builds upon the data replication scheme of chained 

declustering [24]. However, it does not consider query suc-

cess rate, making it difficult to achieve a good trade-off 

between fault tolerance and performance.

Microsoft has introduced a general-purpose, distributed 

execution engine, Dryad [25]. It executes queries over what 

is a communication graph. It allows data between operators 

to either be pipelined or materialized. However, it requires 

manual configuration and pushes the work of optimization to 

the user of the system. Bubble Execution [26] is a new query 

processing framework for interactive workloads at cloud 

scale introduced by Microsoft. It balances cost-based query 

optimization, fault tolerance, optimal resource management, 

and execution orchestration. It divides a query execution 

graph into a collection of query sub-graphs (bubbles), which 

is unit of scheduling and fault tolerance. Inside a bubble, 

tasks are connected via pipe channels. And between bub-

bles, tasks are connected via recoverable channels. While 

for SIFT, the unit of fault tolerance is divided by checkpoint 

operators, which are breaking operators.

Many stream processing systems implement fault toler-

ance [27–33] by redundant processing, checkpointing, and 

remote logging. They often allow weaker recovery guaran-

tees in exchange for improved performance, but it is not 

allowed by databases. Some systems, such as Flink, provide 

exactly-once semantics. However, as a stream processing 

systems, they usually don’t allow the existence of breaking 

operators, such as hashjoin and sort. The system proposed 

in [30] aims at find a materialization configuration with 

minimized overhead. But it considers only one failure.

In summary, most big data platforms, such as Hadoop, 

Spark and Flink, provide fault tolerance support at the data 

processing level. OLAP engines over these platforms can 

take advantage of it. While the existing OLAP engines still 

face performance issues, they can hopefully be improved as 

more optimization techniques are introduced. Nevertheless, 

SIFT is designed for traditional MPP databases rather than 

big data platforms.

7  Conclusions

In summary, we made the following contributions in this 

paper:

1. We proposed a smart intra-query fault tolerance (SIFT) 

mechanism for MPP databases, which can achieve a 

good trade-off among fault tolerance effect, perfor-

mance, and implementation cost. It helps MPP data-

base improves the success rates in processing large scale 

OLAP queries.

2. SIFT provides an optimization algorithm, which chooses 

the most appropriate set of checkpoints for a given query 

plan, to promote the query success rate and boost the 

performance of query processing.

3. We demonstrated the effectiveness of our techniques 

through an implementation of SIFT in a real-world 

MPP database, Greenplum. Experiments on TPC-H 

benchmark showed SIFT allows the system to achieve 

improved query success rates at the minimum price of 

intermediate result materialization. Nevertheless, fur-

ther experiments and optimizations may be taken in the 

future to confirm the generality of the work in a wider 

range of scenarios.
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