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Smart literature review: a practical topic 
modelling approach to exploratory literature 
review

Claus Boye Asmussen*  and Charles Møller

Introduction

Manual exploratory literature reviews are soon to be outdated. It is a time-consuming 

process, with limited processing power, resulting in a low number of papers analysed. 

Researchers, especially junior researchers, often need to find, organise, and understand 

new and unchartered research areas. As a literature review in the early stages often 

involves a large number of papers, the options for a researcher is either to limit the 

amount of papers to review a priori or review the papers by other methods. So far, the 

handling of large collections of papers has been structured into topics or categories by 

the use of coding sheets [2, 12, 22], dictionary or supervised learning methods [30]. The 

use of coding sheets has especially been used in social science, where trained humans 

have created impressive data collections, such as the Policy Agendas Project and the 

Congressional Bills Project in American politics [30]. These methods, however, have a 

high upfront cost of time, requiring a prior understanding where papers are grouped 

by categories based on pre-existing knowledge. In an exploratory phase where a gen-

eral overview of research directions is needed, many researchers may be dismayed by 

having to spend a lot of time before seeing any results, potentially wasting efforts that 

could have been better spent elsewhere. With the advancement of machine learning 
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methods, many of the issues can be dealt with at a low cost of time for the researcher. 

Some authors argue that when human processing such as coding practice is substituted 

by computer processing, reliability is increased and cost of time is reduced [12, 23, 30]. 

Supervised learning and unsupervised learning, are two methods for automatically 

processing papers [30]. Supervised learning relies on manually coding a training set of 

papers before performing an analysis, which entails a high cost of time before a result is 

achieved. Unsupervised learning methods, such as topic modelling, do not require the 

researcher to create coding sheets before an analysis, which presents a low cost of time 

approach for an exploratory review with a large collection of papers. Even though, topic 

modelling has been used to group large amounts of documents, few applications of topic 

modelling have been used on research papers, and a researcher is required to have pro-

gramming skills and statistical knowledge to successfully conduct an exploratory litera-

ture review using topic modelling.

This paper presents a framework where topic modelling, a branch of the unsupervised 

methods, is used to conduct an exploratory literature review and how that can be used 

for a full literature review. The intention of the paper is to enable the use of topic model-

ling for researchers by providing a practical approach to topic modelling, where a frame-

work is presented and used on a case step-by-step. The paper is organised as follows. 

The following section will review the literature in topic modelling and its use in explora-

tory literature reviews. The framework is presented in “Method” section, and the case is 

presented in “Framework” section. “Discussion” and “Conclusion” sections conclude the 

paper with a discussion and conclusion.

Topic modelling for exploratory literature review

While there are many ways of conducting an exploratory review, most methods require a 

high upfront cost of time and having pre-existent knowledge of the domain. Quinn et al. 

[30] investigated the costs of different text categorisation methods, a summary of which 

is presented in Table 1, where the assumptions and cost of the methods are compared.

What is striking is that all of the methods, except manually reading papers and topic 

modelling, require pre-existing knowledge of the categories of the papers and have a 

high pre-analysis cost. Manually reading a large amount of papers will have a high cost 

of time for the researcher, whereas topic modelling can be automated, substituting the 

use of the researcher’s time with the use of computer time. This indicates a potentially 

good fit for the use of topic modelling for exploratory literature reviews.

The use of topic modelling is not new. However, there are remarkably few papers uti-

lising the method for categorising research papers. It has been predominantly been used 

in the social sciences to identify concepts and subjects within a corpus of documents. 

An overview of applications of topic modelling is presented in Table 2, where the type of 

data, topic modelling method, the use case and size of data are presented.

The papers in Table  2 analyse web content, newspaper articles, books, speeches, 

and, in one instance, videos, but none of the papers have applied a topic modelling 

method on a corpus of research papers. However, [27] address the use of LDA for 

researchers and argue that there are four parameters a researcher needs to deal with, 

namely pre-processing of text, selection of model parameters and number of topics 

to be generated, evaluation of reliability, and evaluation of validity. The uses of topic 
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modelling are to identify themes or topics within a corpus of many documents, or 

to develop or test topic modelling methods. The motivation for most of the papers 

is that the use of topic modelling enables the possibility to do an analysis on a large 

amount of documents, as they would otherwise have not been able to due to the cost 

of time [30]. Most of the papers argue that LDA is a state-of-the-art and preferred 

method for topic modelling, which is why almost all of the papers have chosen the 

LDA method. The use of topic modelling does not provide a full meaning of the text 

but provides a good overview of the themes, which could not have been obtained oth-

erwise [21]. DiMaggio et al. [12] find a key distinction in the use of topic modelling 

is that its use is more of utility than accuracy, where the model should simplify the 

data in an interpretable and valid way to be used for further analysis They note that 

a subject-matter expert is required to interpret the outcome and that the analysis is 

formed by the data.

The use of topic modelling presents an opportunity for researchers to add a tool 

to their tool box for an exploratory and literature review process. Topic modelling 

has mostly been used on online content and requires a high degree of statistical 

and technical skill, skills not all researchers possess. To enable more researchers 

to apply topic modelling for their exploratory literature reviews, a framework will 

be proposed to lower the requirements for technical and statistical skills of the 

researcher.

Table 1 Summary of assumptions and costs of discrete text categorisation [30]

Method

Reading Human coding Dictionaries Supervised 
learning

Topic model

A. Assumptions

 Categories are known No Yes Yes Yes No

 Category nesting. If any, is 
known

No Yes Yes Yes No

 Relevant text features are 
known

No No Yes Yes Yes

 Mapping is known No No Yes No No

 Coding can be automated No No Yes Yes Yes

B. Costs

 Preanalysis costs

  Person-hours spent concep-
tualizing

Low High High High Low

  Level of substantive knowl-
edge

Moderate/high High High High Low

 Analysis costs

  Person hours spent per text High High Low Low Low

  Level of substantive knowl-
edge

Moderate/high Moderate Low Low Low

 Postanalysis costs

  Person-hours spent interpret-
ing

High Low Low Low Moderate

  Level of substantive knowl-
edge

High High High High High
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Topic modelling for exploratory literature review

Topic modelling has proven itself as a tool for exploratory analysis of a large number 

of papers [14, 24]. However, it has rarely been applied in the context of an explora-

tory literature review. The selected topic modelling method, for the framework, is 

Latent Dirichlet Allocation (LDA), as it is the most used [6, 12, 17, 20, 32], state-of-

the-art method [25] and simplest method [8]. While other topic modelling methods 

could be considered, the aim of this paper is to enable the use of topic modelling for 

researchers. For enabling topic modelling for researchers, ease of use and applicabil-

ity are highly rated, where LDA is easily implemented and understood. Other topic 

Table 2 Applications of topic modelling

Reference Data Method Intended use Size

DiMaggio et al. [12] Newspapers LDA Identify central 
concepts in news 
coverage

8000

Grimmer [17] Press releases Own developed 
method

Development of 
a Bayesian topic 
model

24,000

Quinn et al. [30] Speeches (Text) Own developed 
method

Development of a 
statistical learning 
model

118,000

Jockers and Mimno 
[21]

Books LDA Identify literature 
themes

3346

Baum, [5] Speeches (Video) LDA Identify topics of Ger-
man politicians

2581

Ghosh and Guha [16] Tweets LDA Identify tweets related 
to obesity

2,581,283

Evans [15] Newspapers LDA Identify subjects of 
discussion

14,952

Guo et al. [19] Tweets Dictionary-based 
analysis and LDA

Compare dictionary-
based analysis vs. 
LDA

77,000,000

Jacobi et al. [20] Newspapers LDA Show the usefulness 
of LDA

Newspaper articles 
from 1945 to 
2013

Maier et al. [27] Web pages LDA Investigate the validity 
and reliability of LDA

344,456

Bonilla and Grimmer 
[9]

Newspapers LDA Investigate impact of 
terror alerts in US 
media

50,000

Elgesem et al. [13] Blogs LDA Identify topics in blogs 
regarding the arrest 
of Edward Snowden

15,000

Elgesem et al. [14] Blogs LDA Investigate how 
climate change is 
discussed in blogs

1,300,000

Koltsova and Koltcov 
[24]

Web forum posts LDA Investigate the politi-
cal agenda of Rus-
sians in LiveJournal

> 100,000

Welbers et al. [4] Newspapers LDA Validate the use of 
LDA

99,572

Parra et al. [29] Tweets LDA Investigate how 
Twitter has been 
used in academic 
conferences

109,076
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modelling methods could potentially be used in the framework, where reviews of 

other topic models is presented in [1, 26].

The topic modelling method LDA is an unsupervised, probabilistic modelling 

method which extracts topics from a collection of papers. A topic is defined as a 

distribution over a fixed vocabulary. LDA analyses the words in each paper and cal-

culates the joint probability distribution between the observed (words in the paper) 

and the unobserved (the hidden structure of topics). The method uses a ‘Bag of 

Words’ approach where the semantics and meaning of sentences are not evaluated. 

Rather, the method evaluates the frequency of words. It is therefore assumed that 

the most frequent words within a topic will present an aboutness of the topic. As 

an example, if one of the topics in a paper is LEAN, then it can be assumed that 

the words LEAN, JIT and Kanban are more frequent, compared to other non-LEAN 

papers. The result is a number of topics with the most prevalent topics grouped 

together. A probability for each paper is calculated for each topic, creating a matrix 

with the size of number of topics multiplied with the number of papers. A detailed 

description of LDA is found in [6].

The framework is designed as a step-by-step procedure, where its use is pre-

sented in a form of a case where the code used for the analysis is shared, enabling 

other researchers to easily replicate the framework for their own literature review. 

The code is based on the open source statistical language R, but any language with 

the LDA method is suitable for use. The framework can be made fully automated, 

presenting a low cost of time approach for exploratory literature reviews. An inspi-

ration for the automation of the framework can be found in [10], who created an 

online-service, towards processing Business Process Management documents where 

text-mining approaches such as topic modelling are automated. They find that topic 

modelling can be automated and argue that the use of a good tool for topic model-

ling can easily present good results, but the method relies on the ability of people to 

find the right data, guide the analytical journey and interpret the results.

Method

The aim of the paper is to create a generic framework which can be applied in any 

context of an exploratory literature review and potentially be used for a full litera-

ture review. The method provided in this paper is a framework which is based upon 

well-known procedures for how to clean and process data, in such a way that the 

contribution from the framework is not in presenting new ways to process data but 

in how known methods are combined and used. The framework will be validated by 

the use of a case in the form of a literature review. The outcome of the method is a 

list of topics where papers are grouped. If the grouping of papers makes sense and 

is logical, which can be evaluated by an expert within the research field, then the 

framework is deemed valid. Compared to other methods, such as supervised learn-

ing, the method of measuring validity does not produce an exact degree of validity. 

However, invalid results will likely be easily identifiable by an expert within the field. 

As stated by [12], the use of topic modelling is more for utility than for accuracy.
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Framework

The developed framework is illustrated in Fig. 1, and the R-code and case output files 

are located at https ://githu b.com/claus ba/Smart -Liter ature -Revie w. The smart litera-

ture review process consists of the three steps: pre-processing, topic modelling, and 

post-processing.

The pre-processing steps are getting the data and model ready to run, where the topic-

modelling step is executing the LDA method. The post-processing steps are translat-

ing the outcome of the LDA model to an exploratory review and using that to identify 

papers to be used for a literature review. It is assumed that the papers for review are 

downloaded and available, as a library with the pdf files.

Pre‑processing

The pre-processing steps consist of loading and preparing the papers for processing, an 

essential step for a good analytical result. The first step is to load the papers into the R 

environment. The next step is to clean the papers by removing or altering non-value-

adding words. All words are converted to lower case, and punctuation and whitespaces 

are removed. Special characters, URLs, and emails are removed, as they often do not 

contribute to identification of topics. Stop words, misread words and other non-seman-

tic contributing words are removed. Examples of stop words are “can”, “use”, and “make”. 

These words add no value to the aboutness of a topic. The loading of papers into R can 

in some instances cause words to be misread, which must either be rectified or removed. 

Further, some websites add a first page with general information, and these contain 

words that must be removed. This prevents unwanted correlation between papers down-

loaded from the same source. Words are stemmed to their root form for easier com-

parison. Lastly, many words only occur in a single paper, and these should be removed 

to make computations easier, as less frequent words will likely provide little benefit in 

grouping papers into topics.

The cleansing process is often an iterative process, as it can be difficult to identify all 

misread and non-value adding-words a priori. Different papers’ corpora contain differ-

ent words, which means that an identical cleaning process cannot be guaranteed if a new 

exploratory review is conducted. As an example, different non-value-adding words exist 

for the medical field compared to sociology or supply chain management (SCM). The 

cleaning process is finished once the loaded papers mainly contain value-adding words. 

Pre-

Processing

Topic 

Modeling

Post-

Processing

Load Papers
Clean 

Documents

Validate 

Cleaning
Cross-Validation

LDA Topic Overview
Select Relevant 

Topics

Literature 

Review

Set Parameters 

for LDA

Fig. 1 Process overview of the smart literature review framework

https://github.com/clausba/Smart-Literature-Review
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There is no known way to scientifically evaluate when the cleaning process is finished, 

which in some instances makes the cleaning process more of an art than science. How-

ever, if a researcher is technically inclined methods, provided in the preText R-package 

can aid in making a better cleaning process [11].

LDA is an unsupervised method, which means we do not, prior to the model being 

executed, know the relationship between the papers. A key aspect of LDA is to group 

papers into a fixed number of topics, which must be given as a parameter when execut-

ing LDA. A key process is therefore to estimate the optimal number of topics. To esti-

mate the number of topics, a cross-validation method is used to calculate the perplexity, 

as used in information theory, and it is a metric used to evaluate language models, where 

a low score indicates a better generalisation model, as done by [7, 31, 32]. Lowering the 

perplexity score is identical to maximising the overall probability of papers being in a 

topic. Next, test and training datasets are created: the LDA algorithm is run on the train-

ing set, and the test set is used to validate the results. The criteria for selecting the right 

number of topics is to find the balance between a useable number of topics and, at the 

same time, to keep the perplexity as low as possible. The right number of topics can dif-

fer greatly, depending on the aim of the analysis. As a rule of thumb, a low number of 

topics is used for a general overview and a higher number of topics is used for a more 

detailed view.

The cross-validation step is used to make sure that a result from an analysis is reli-

able, by running the LDA method several times under different conditions. Most of the 

parameters set for the cross-validation should have the same value, as in the final topic 

modelling run. However, due to computational reasons, some parameters can be altered 

to lower the amount of computation to save time. As with the number of topics, there is 

no right way to set the parameters, indicating a trial-and-error process. Most of the LDA 

implementations have default values set, but in this paper’s case the following param-

eters were changed: burn-in time, number of iterations, seed values, number of folds, 

and distribution between training and test sets.

Topic modelling

Once the papers have been cleaned and a decision has been made on the number of top-

ics, the LDA method can be run. The same parameters as used in the cross-validation 

should be used as a guidance but for more precise results, parameters can be changed 

such as a higher number of iterations. The number of folds should be removed, as we do 

not need a test set, as all papers will be used to run the model. The outcome of the model 

is a list of papers, a list of probabilities for each paper for each topic, and a list of the 

most frequent words for each topic.

If an update to the analysis is needed, new papers simply have to be loaded and the 

post-processing and topic modelling steps can be re-run without any alterations to 

the parameters. Thus, the framework enables an easy path for updating an exploratory 

review.

Post‑processing

The aim of the post-processing steps is to identify and label research topics and topics 

relevant for use in a literature review. An outcome of the LDA model is a list of topic 
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probabilities for each paper. The list is used to assign a paper to a topic by sorting the 

list by highest probability for each paper for each topic. By assigning the papers to the 

topics with the highest probability, all of the topics contain papers that are similar to 

each other. When all of the papers have been distributed into their selected topics, the 

topics need to be labelled. The labelling of the topics is found by identifying the main 

topic of each topic group, as done in [17]. Naturally, this is a subjective matter, which 

can provide different labelling of topics depending on the researcher. To lower the risk 

of wrongly identified topics, a combination of reviewing the most frequent words for 

each topic and a title review is used. After the topics have been labelled, the exploratory 

search is finished.

When the exploratory search has finished, the results must be validated. There are 

three ways to validate the results of an LDA model, namely statistical, semantic, or pre-

dictive [12]. Statistical validation uses statistical methods to test the assumptions of 

the model. An example is [28], where a Bayesian approach is used to estimate the fit of 

papers to topics. Semantic validation is used to compare the results of the LDA method 

with expert reasoning, where the results must make semantic sense. In other words, 

does the grouping of papers into a topic make sense, which ideally should be evaluated 

by an expert. An example is [18], who utilises hand coding of papers and compare the 

coding of papers to the outcome of an LDA model. Predictive validation is used if an 

external incident can be correlated with an event not found in the papers. An example 

is in politics where external events, such as presidential elections which should have an 

impact on e.g. press releases or newspaper coverage, can be used to create a predictive 

model [12, 17].

The chosen method for validation in this framework is semantic validation. The reason 

is that a researcher will often be or have access to an expert who can quickly validate if 

the grouping of papers into topics makes sense or not. Statistical validation is a good way 

to validate the results. However, it would require high statistical skills from the research-

ers, which cannot be assumed. Predictive validation is used in cases where external 

events can be used to predict the outcome of the model, which is seldom the case in an 

exploratory literature review.

It should be noted that, in contrast to many other machine learning methods, it is not 

possible to calculate a specific measure such as the F-measure or RMSE. To be able to 

calculate such measures, there must exist a correct grouping of papers, which in this 

instance would often mean comparing the results to manually created coding sheets [11, 

19, 20, 30]. However, it is very rare that coding sheets are available, leaving the seman-

tic validation approach as the preferred validation method. The validation process in 

the proposed framework is two-fold. Firstly, the title of the individual paper must be 

reviewed to validate that each paper does indeed belong in its respective topic. As LDA 

is an unsupervised method, it can be assumed that not all papers will have a perfect fit 

within each topic, but if the majority of papers are within the theme of the topic, it is 

evaluated to be a valid result. If the objective of the research is only an exploratory lit-

erature review, the validation ends here. However, if a full literature review is conducted, 

the literature review can be viewed as an extended semantic validation method. By 

reviewing the papers in detail within the selected topics of research, it can be validated if 

the vast majority of papers belong together.
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Using the results from the exploratory literature review for a full literature review is 

simple, as all topics from the exploratory literature review will be labelled. To conduct 

the full literature review, select the relevant topics and conduct the literature review on 

the selected papers.

Result

To validate the framework, a case will be presented, where the framework is used to 

conduct a literature review. The literature review is conducted in the intersection of the 

research fields analytics, SCM, and enterprise information systems [3]. As the research 

areas have a rapidly growing interest, it was assumed that the number of papers would 

be large, and that an exploratory review was needed to identify the research directions 

within the research fields. The case used broadly defined keywords for searching for 

papers, ensuring to include as many potentially relevant papers as possible. Six hun-

dred and fifty papers were found, which were heavily reduced by the use of the smart 

literature review framework to 76 papers, resulting in a successful literature review. 

The amount of papers is evaluated to be too time-consuming for a manual exploratory 

review, which provides a good case to test the smart literature review framework. The 

steps and thoughts behind the use of the framework are presented in this case section.

Pre‑processing

The first step was to load the 650 papers into the R environment. Next, all words were 

converted to lowercase and punctuation, whitespaces, email addresses, and URLs were 

removed. Problematic words were identified, such as words incorrectly read from the 

papers. Words included in a publisher’s information page were removed, as they add no 

semantic value to the topic of a paper. English stop words were removed, and all words 

were stemmed. As a part of an iterative process, several papers were investigated to 

evaluate the progress of cleaning the papers. The investigations were done by displaying 

words in a console window and manually evaluating if more cleaning had to be done.

After the cleaning steps, 256,747 unique words remained in the paper corpus. This is a 

large number of unique words, which for computational reasons is beneficial to reduce. 

Therefore, all words that did not have a sparsity or likelihood of 99% to be in any paper 

were removed. The operation lowered the amount of unique words to 14,145, greatly 

reducing the computational needs. The LDA method will be applied on the basis of the 

14,145 unique words for the 650 papers. Several papers were manually reviewed, and it 

was evaluated that removal of the unique words did not significantly worsen the ability 

to identify main topics of the paper corpus.

The last step of pre-processing is to identify the optimal number of topics. To approxi-

mate the optimal number of topics, two things were considered. The perplexity was 

calculated for different amounts of topics, and secondly the need for specificity was 

considered.

At the extremes, choosing one topic would indicate one topic covering all papers, 

which will provide a very coarse view of the papers. On the other hand, if the number 

of topics is equal to the number of papers, then a very precise topic description will be 

achieved, although the topics will lose practical use as the overview of topics will be too 

complex. Therefore, a low number of topics was preferred as a general overview was 
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required. Identifying what is a low number of topics will differ depending on the cor-

pus of papers, but visualising the perplexity can often provide the necessary aid for the 

decision.

The perplexity was calculated over five folds, where each fold would identify 75% of 

the papers for training the model and leave out the remaining 25% for testing purposes. 

Using multiple folds reduces the variability of the model, ensuring higher reliability and 

reducing the risk of overfitting. For replicability purposes, specific seed values were set. 

Lastly, the number of topics to evaluate is selected. In this case, the following amounts of 

topics were selected: 2, 3, 4, 5, 10, 20, 30, 40, 50, 75, 100, and 200. The perplexity method 

in the ‘topicmodels’ R library is used, where the specific parameters can be found in the 

provided code.

The calculations were done over two runs. However, there is no practical reason for 

not running the calculations in one run. The first run included all values of number of 

topics below 100, and the second run calculated the perplexity for 100 and 200 number 

of topics. The runtimes for the calculations were respectively 9 and 10 h on a standard 

issue laptop. The combined results are presented in Fig. 2, and the converged results can 

be found in the shared repository.

The goal in this case is to find the lowest number of topics, which at the same time 

have a low perplexity. In this case, the slope of the fitted line starts to gradually decline at 

twenty topics, which is why the selected number of topics is twenty.

Case: topic modelling

As the number of topics is chosen, the next step is to run the LDA method on the 

entire set of papers. The full run of 650 papers for 20 topics took 3.5 h to compute 

on a standard issue laptop. An outcome of the method is a 650 by 20 matrix of topic 

probabilities. In this case, the papers with the highest probability for each topic were 

used to allocate the papers. The allocation of papers to topics was done in Micro-

soft Excel. An example of how a distribution of probabilities is distributed across 

20 Topics

Fig. 2 5-Fold cross-validation of topic modelling. Results of cross-validation
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topics for a specific paper is depicted in Fig. 3. Some papers have topic probability 

values close to each other, which could indicate a paper belonging to an intersection 

between two or more topics. These cases were not considered, and the topic with 

the highest probability was selected.

The allocation of papers to topics resulted in the distribution depicted in Fig.  4. 

As can be seen, the number of papers varies for each topic, indicating that some 

research areas have more publications than others do.

Fig. 3 Example of probability distribution for one document (Topic 16 selected)

Fig. 4 Distribution of papers per topic
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Post‑processing

Next step is to process the findings and find an adequate description of the topics. 

A combination of reviewing the most frequent words and a title review was used 

to identify the topic names. Practically, all of the paper titles and the most frequent 

words for each topic, were transferred to a separate Excel spreadsheet, providing an 

easy overview of paper titles. An example for topic 17 can be seen in Table  3. The 

most frequent words for the papers in topic 17 are “data”, “big” and “analyt”. Many of 

the paper titles also indicate usage of big data and analytics for application in a busi-

ness setting. The topic is named “Big Data Analytics”.

The process was repeated for all other topics. The names of the topics are presented 

in Tables 4 and 5.

Table 3 Paper titles and ten most frequent words for topic 17

Document titles Top 10 words 
by frequency

A perspective on applications of in-memory analytics in supply chain management Data

A tool to evaluate the business intelligence of enterprise systems Big

A service oriented approach to Business Intelligence in Telecoms industry Analyt

An analytic infrastructure for harvesting big data to enhance supply chain performance Applic

Big data applications in operations/supply-chain management: a literature review Analysi

Big data driven customer insights for SMEs in redistributed manufacturing Decis

Big data for supply chain management in the service and manufacturing sectors: Challenges, 
opportunities, and future perspectives

Busi

Click here for a data scientist: big data, predictive analytics, and theory development in the era 
of a maker movement supply chain

Predict

Coping with demand volatility in retail pharmacies with the aid of big data exploration Comput

CRM in social media: predicting increases in Facebook usage frequency Manag

Holistic approach to machine tool data analytics

Impact of business analytics and enterprise systems on managerial accounting

Industrial materials informatics: analyzing large-scale data to solve applied problems in R&D, 
manufacturing, and supply chain

Insights from hashtag #supplychain and Twitter Analytics: Considering Twitter and Twitter data 
for supply chain practice and research

Intelligent business processes in CRM

Machine-learning techniques for customer retention a comparative study

Managing a Big Data project The case of Ramco Cements Limited

Past, present and future of contact centers a literature review

Utilizing enterprise systems for managing enterprise risks

Visual analytics for supply network management: system design and evaluation

Table 4 Names of topics 1–10

Topic 1: Demand and 
inventory deci-
sion models and 
systems

Topic 2: Fuzzy deci-
sion models

Topic 3: SCM and 
manufacturing 
planning systems

Topic 4: Scheduling 
and optimisation 
models

Topic 5: Data and 
enterprise system 
configuration

Topic 6: Price, sup-
plier and contract 
policies and plans

Topic 7: Optimisation 
and configuration 
of switched reluc-
tance drive

Topic 8: Route and 
job scheduling

Topic 9: Performance 
measurement

Topic 10: Imple-
mentation and 
system selection
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Based on the names of the topics, three topics were selected based on relevancy for the 

literature review. Topics 5, 13, and 17 were selected, with a total of 99 papers. In this spe-

cific case, it was deemed that there might be papers with a sub-topic that is not relevant 

for the literature review. Therefore, an abstract review was conducted for the 99 papers, 

creating 10 sub-topics, which are presented in Table 6.

The sub-topics RFID, Analytical Methods, Performance Management, and Evaluation 

and Selection of IT Systems were evaluated to not be relevant for the literature review. 

Seventy-six papers remained, grouped by sub-topics.

The outcome of the case was an overview of the research areas within the paper cor-

pus, represented by the twenty topics and the ten sub-topics. The selected sub-topics 

were used to conduct a literature review. The validation of the framework consisted of 

two parts. The first part addressed the question of whether the grouping of papers, eval-

uated by the title and keywords, makes sense and the second part addressed whether the 

literature review revealed any misplaced papers. The framework did successfully place 

the selected papers into groups of papers that resemble each other. There was only one 

case where a paper was misplaced, namely that a paper about material informatics was 

placed among the papers in the sub-topic EIS and Analytics. The grouping and selec-

tion of papers in the literature review, based on the framework, did make semantic sense 

and was successfully used for a literature review. The framework has proven its utility in 

enabling a faster and more comprehensive exploratory literature review, as compared 

to competing methods. The framework has increased the speed for analysing a large 

amount of papers, as well as having increased the reliability in comparison with man-

ual reviews as the same result can be obtained by running the analysis once again. The 

transparency in the framework is higher than in competing methods, as all steps of the 

framework are recorded in the code and output files.

Table 5 Names of topics 11–20

Topic 11: Marketing 
and CRM

Topic 12: Misc Topic 13: Imple-
mentation and 
integration of ERP 
systems

Topic 14: MRP plan-
ning methods

Topic 15: Transpor-
tation methods 
and models

Topic 16: Supplier 
selection

Topic 17: Big data 
analytics

Topic 18: Production 
and manufacturing 
system and models

Topic 19: Knowl-
edge and process 
management of 
IT-systems

Topic 20: Misc

Table 6 Overview of sub-topic of papers

Name Count

ERP Implementation and Post-Implementation 37

EIS and Analytics 16

Data and System integration 7

Literature Review 7

RFID 6

Evaluating and Selection of IT Systems 7

Analytical Methods 6

Networked Manufactoring and ERP systems 6

Performance Measurement 4

Data and Analytics 3
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Discussion

This paper presents an approach not often found in academia, by using machine learn-

ing to explore papers to identify research directions. Even though the framework has 

its limitations, the results and ease of use leave a promising future for topic-modelling-

based exploratory literature reviews.

The main benefit of the framework is that it provides information about a large num-

ber of papers, with little effort on the researcher’s part, before time-costly manual work 

is to be done. It is possible, by the use of the framework, to quickly navigate many differ-

ent paper corpora and evaluate where the researchers’ time and focus should be spent. 

This is especially valuable for a junior researcher or a researcher with little prior knowl-

edge of a research field. If default parameters and cleaning settings can be found for the 

steps in the framework, a fully automatic grouping of papers could be enabled, where 

very little work has to be done to achieve an overview of research directions. From a 

literature review perspective, the benefit of using the framework is that the decision to 

include or exclude papers for a literature review will be postponed to a later stage where 

more information is provided, resulting in a more informed decision-making process. 

The framework enables reproducibility, as all of the steps in the exploratory review pro-

cess can be reproduced, and enables a higher degree of transparency than competing 

methods do, as the entire review process can, in detail, be evaluated by other researchers.

There is practically no limit of the number of papers the framework is able to process, 

which could enable new practices for exploratory literature reviews. An example is to 

use the framework to track the development of a research field, by running the topic 

modelling script frequently or when new papers are published. This is especially potent 

if new papers are automatically downloaded, enabling a fully automatic exploratory lit-

erature review. For example, if an exploratory review was conducted once, the review 

could be updated constantly whenever new publications are made, grouping the publica-

tions into the related topics. For this, the topic model has to be trained properly for the 

selected collection of papers, where it can be assumed that minor additions of papers 

would likely not warrant any changes to the selected parameters of the model. However, 

as time passes and more papers are processed, the model will learn more about the col-

lection of papers and provide a more accurate and updated result. Having an automated 

process could also enable a faster and more reliable method to do post-processing of the 

results, reducing the post-analysis cost identified for topic modelling by [30], from mod-

erate to low.

The framework is designed to be easily used by other researchers by designing the 

framework to require less technical knowledge than a normal topic model usage would 

entail and by sharing the code used in the case work. The framework is designed as a 

step-by-step approach, which makes the framework more approachable. However, 

the framework has yet not been used by other researchers, which would provide valu-

able lessons for evaluating if the learning curve needs to be lowered even further for 

researchers to successfully use the framework.

There are, however, considerations that must be addressed when using the smart lit-

erature review framework. Finding the optimal number of topics can be quite difficult, 

and the proposed method of cross-validation based on the perplexity presented a good, 

but not optimal, solution. An indication of why the number of selected topics is not 
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optimal is the fact that it was not possible to identify a unifying topic label for two of the 

topics. Namely topics 12 and 20, which were both labelled miscellaneous. The current 

solution to this issue is to evaluate the relevancy of every single paper of the topics that 

cannot be labelled. However, in future iterations of the framework, a better identifica-

tion of the number of topics must be developed. This is a notion also recognised by [6], 

who requested that researchers should find a way to label and assign papers to a topic 

other than identifying the most frequent words. An attempt was made by [17] to gener-

ate automatic labelling on press releases, but it is uncertain if the method will work in 

other instances. Overall, the grouping of papers in the presented case into topics gener-

ally made semantic sense, where a topic label could be found for the majority of topics.

A consideration when using the framework is that not all steps have been clearly 

defined, and, e.g., the cleaning step is more of an art than science. If a researcher has no 

or little experience in coding or executing analytical models, suboptimal results could 

occur. [11, 25, 27] find that especially the pre-processing steps can have a great impact 

on the validity of results, which further emphasises the importance of selecting model 

parameters. However, it is found that the default parameters and cleaning steps set in 

the code provided a sufficiently valid and useable result for an exploratory literature 

analysis. Running the code will not take much of the researcher’s time, as the execution 

of code is mainly machine time, and verifying the results takes a limited amount of a 

researcher time.

Due to the semantic validation method used in the framework, it relies on the avail-

ability of a domain expert. The domain expert will not only validate if the grouping of 

papers into topics makes sense, but it is also their responsibility to label the topics [12]. If 

a domain expert is not available, it could lead to wrongly labelled topics and a non-valid 

result.

A key issue with topic modelling is that a paper can be placed in several related topics, 

depending on the selected seed value. The seed value will change the starting point of the 

topic modelling, which could result in another grouping of papers. A paper consists of 

several sub-topics and depending on how the different sub-topics are evaluated, papers 

can be allocated to different topics. A way to deal with this issue is to investigate papers 

with topic probabilities close to each other. Potential wrongly assigned papers can be 

identified and manually moved if deemed necessary. However, this presents a less auto-

matic way of processing the papers, where future research should aim to improve the 

assignments of papers to topics or create a method to provide an overview of potentially 

misplaced papers. It should be noted that even though some papers can be misplaced, 

the framework provides outcome files than can easily be viewed to identify misplaced 

papers, by a manual review.

As the smart literature review framework heavily relies on topic modelling, improve-

ments to the selected topic model will likely present better results. The results of the 

LDA method have provided good results, but more accurate results could be achieved if 

the semantic meaning of the words would be considered. The framework has only been 

tested on academic papers, but there is no technical reason to not include other types of 

documents. An example is to use the framework in a business context to analyse meet-

ing minutes notes to analyse the discussion within the different departments in a com-

pany. For this to work, the cleaning parameters would likely have to change, and another 
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evaluation method other than a literature review would be applicable. Further, the appli-

cability of the framework has to be assessed on other streams of literature to be certain 

of its use for exploratory literature reviews at large.

Conclusion

This paper aimed to create a framework to enable researchers to use topic modelling 

to, do an exploratory literature review, decreasing the need for manually reading papers 

and, enabling the possibility to analyse a greater, almost unlimited, amount of papers, 

faster, more transparently and with greater reliability. The framework is based upon 

the use of the topic model Latent Dirichlet Allocation, which groups related papers 

into topic groups. The framework provides greater reliability than competing explora-

tory review methods provide, as the code can be rerun on the same papers, which will 

provide identical results. The process is highly transparent, as most decisions made by 

the researcher can be reviewed by other researchers, unlike, e.g., in the creation of cod-

ing sheets. The framework consists of three main phases: Pre-processing, Topic Model-

ling, and Post-Processing. In the pre-processing stage, papers are loaded, cleaned, and 

cross-validated, where recommendations to parameter settings are provided in the case 

work, as well as in the accompanied code. The topic modelling step is where the LDA 

method is executed, using the parameters identified in the pre-processing step. The 

post-processing step creates outputs from the topic model and addresses how validity 

can be ensured and how the exploratory literature review can be used for a full litera-

ture review. The framework was successfully used in a case with 650 papers, which was 

processed quickly, with little time investment from the researcher. Less than 2 days was 

used to process the 650 papers and group them into twenty research areas, with the use 

of a standard laptop. The results of the case are used in the literature review by [3].

The framework is seen to be especially relevant for junior researchers, as they often 

need an overview of different research fields, with little pre-existing knowledge, where 

the framework can enable researchers to review more papers, more frequently.

For an improved framework, two main areas need to be addressed. Firstly, the pro-

posed framework needs to be applied by other researchers on other research fields to 

gain knowledge about the practicality and gain ideas for further development of the 

framework. Secondly, research in how to automatically identity model parameters could 

greatly improve the usability for the use of topic modelling for non-technical researchers, 

as the selection of model parameters has a great impact on the result of the framework.
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