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Abstract—We describe the concept, architecture and key 
design decisions of Smart-M3 interoperability platform. The 
platform is based on the ideas of space-based information 
sharing and semantic web ideas about information 
representation and ontologies. The interoperability platform 
has been used as the basis for multiple case studies. 
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I.  INTRODUCTION 
The ongoing digital convergence has resulted in 

multitude of devices that have considerable computing 
power and are capable of communicating with the external 
world in various ways, often wirelessly. Furthermore, the 
information contained in these devices may be interesting 
also to other devices. Also, the number of nomadic devices 
such as smart phones has increased dramatically in recent 
years. 

The potential of these devices has also greatly increased 
the interest in getting these devices to interoperate. 
Currently, the standards for interoperability have been 
mostly created for single domains, such as UPnP for home 
entertainment, or are controlled by a single company, such as 
the Apple ecosystem. 

The domain specific interoperability standards pose 
considerable challenges for nomadic devices which ideally 
should be able to interoperate with whatever devices are in 
the locality at any given time. A nomadic device will 
currently have to implement several different standards to be 
able to participate in the different domains. Furthermore, the 
existing standards often target specific use cases rather than 
attempt to specify a general framework for interoperability. 

One attempt to define and implement a generic 
interoperability framework is the semantic web [7]. The 
semantic web aims to provide machine understandable 
semantic information about the World Wide Web in order to 
allow automating many tasks that the web is currently used 
for manually. Eventually this would result in one “giant 
global graph” describing the resources of the web in RDF 
[17] according to Ontologies defined in OWL [18]. 

However, the web is not a good mechanism to share the 
rapidly changing, dynamic local information about the 
immediate environment of a device. Thus, we propose 
Smart-M3 as an information interoperability approach for 
devices to easily share and access local semantic 
information, while also allowing access to the locally 

relevant parts of the “giant global graph” to be available. The 
information is represented by using same mechanisms as in 
semantic web, thus allowing easy exchange of global and 
local information. The RDF representation also allows 
extremely easy linking of data also between different 
ontologies, thus making cross-domain interoperability 
straightforward. 

Furthermore, as interoperability is based on the exchange 
of information expressed according to some ontology, we 
aim to lift interoperability standardization from use case 
standardization to ontology standardization. Standardizing1 
an ontology allows an indefinite set of use cases to be 
implemented, keeping the door open for future innovation 
without the need to commit to lengthy and uncertain 
standardization process.  

Smart-M3 is publicly available under BSD open source 
license [8] and thus suitable both for research purposes and 
industrial use. 

II. OVERVIEW 
The Smart-M3 interoperability platform is based on a 

blackboard architectural model and the ideas of space-based 
computing. It consists of two main components: semantic 
information broker (SIB) and knowledge processor (KP). A 
smart space is defined as a named search extent of 
information, where the information is stored in one or more 
SIBs. A domain model describing the central concepts of a 
smart space is presented in Figure 1: Smart-M3 domain 
model. In the simplest case, one SIB will store all 
information in a smart space, but there is a possibility of 
connecting multiple SIBs to make up a smart space. The 
SIBs making up a smart space will be connected with a 
protocol that provides distributed deductive closure [3]. 
Thus, any KP sees the same information content in the smart 
space regardless of the SIB it connects to2. 

The information in the smart space is stored as a RDF 
graph, usually according to some defined ontology. The use 
of any specific ontology is not mandated, however. The KPs 
may modify and query the information using the insert, 
remove, update, query and subscribe operations provided by 
SIB. 

                                                           
1 The standard could be also a de-facto standard not coming 

from an official standardization body. 
2 The distributed deductive closure protocol is not 

implemented in the current Smart-M3 implementation. 



The communication between KPs and SIB may be 
implemented by using any SOA style service network such 
as the Network on Terminal architecture [16], or by using a 
suitable transport protocol such as XMPP or TCP/IP. This 
approach allows using already deployed communication 
mechanisms and protects previous investments. Furthermore, 
it also means that KPs can connect to smart spaces by using 
the mechanism most suited to them. 
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Figure 1: Smart-M3 domain model 

 
Figure 2 shows a logical architecture with a SIB 

providing the SIB service on three different communication 
mechanisms, and two KP implementations, one with the SIB 
service accessible with communication mechanisms X and 
Y, and one with communication mechanism Z. The SIB 
service should implement all the SSAP operations described 
in Section IV. The developers of the application logic of KPs 
use a knowledge processor interface (KPI) to access 
information in smart space. The KPI may provide means to 
call the basic operations of insert, remove, etc, or may 
provide an ontology specific API to allow developers to 
program the application logic using the concepts of the 
chosen ontology. In addition, there may be ontology libraries 
providing the ontology concepts for the developers. These 
ontology libraries may be either manually or automatically 
generated. 

 Figure 3 shows the overview of the current Smart-M3 
implementation architecture. The SIB daemon handles the 
information access and storage. Two communication 
mechanisms, TCP/IP and NoTA are handled by separate 
processes connected to SIB daemon over DBus. There are 
three KPIs implemented. The C/GLib and C++/Qt share 
common infrastructure whose purpose is to allow on-the-fly 
insertion and removal of communication modules. The KP 
Daemon process hides the different communication 
mechanisms, allowing the KPIs to handle only the SSAP 

communication with the SIB, without having to know the 
underlying communication mechanism. The Python KPI is a 
standalone pure-python library. There are also design time 
ontology library generators for generating ontology APIs for 
C/GLib, Python [9] and ANSI C [11] KPIs. 

The principles guiding the design of Smart-M3 are 
simplicity, extensibility and being agnostic to the used 
communication mechanisms. The simplicity ensures 
scalability for small devices, and also for large number of 
users, while the extensibility makes it possible to tailor the 
implementation easily to uses where the standard 
functionality is not sufficient. Furthermore, by not dictating a 
specific communication mechanism the Smart-M3 should be  
easy to deploy on top of any existing infrastructure. 
 

 
Figure 2: Smart-M3 logical architecture 

 

 
Figure 3: Smart-M3 current implementation 
architecture 



III. NOTION OF APPLICATION 
The notion of application in a smart space differs 

radically from the concept of traditional application. Instead 
of a monolithic application running on a single screen, the 
smart space applications are better seen as scenarios that can 
be executed to meet the goals of the user. The scenario 
emerges from the observable actions taken by knowledge 
processors based on the information in the smart space, and 
also from the use of available services. The scenarios may 
also be transient: the scenario will change as the participating 
KPs join and leave the smart space, and also as services 
become available or unavailable. 

One of the targets of Smart-M3 has been to make 
combining the scenarios easy. This is achieved by the loose 
coupling between the KPs, as they only communicate by 
modifying and querying the information in the smart space3. 
Thus, any effect that appearance or disappearance of KPs 
may have on the rest of the environment is limited to the 
information seen in the smart space. 

A KP understands its own, non-exclusive set of 
information4 as illustrated in Figure 4. Overlap of the sets of 
information understood by KPs is an essential precondition 
for achieving interoperability. Otherwise the KPs will never 
see each others actions. 

A. Case Studies using Smart-M3 
Smart-M3 has been used as a basis for several smart 

space application case studies.  
A case study of cross domain interoperability is 

described in [1]. The scenario involved a wellness domain 
represented by SportsTracker application, home 
entertainment domain represented by music streaming using 
a UPnP service, gaming domain represented by SuperTux 
game, and telecom domain represented by a phone call 
observer application. All domains share information using a 
M3 smart space, resulting in improved user experience 
compared to the case where the components operate 
independently. For example, when a call is received, the 
game and music player see the information that a call is 
ongoing in the smart space and can take appropriate action, 
in this case pause the music and game. When the call ends, 
music continues automatically. Furthermore, the played 
music changes according to the state of the game, for 
example, when the player loses lives, the music changes 
appropriately. Finally, the game may award extra lives if the 
player has been exercising lately.  

Other case studies include a building automation case [4], 
a smart meeting room case [5], a home sensor network case 
[12], and a health care case developed by University of 
Bologna. 

                                                           
3 KPs may communicate over other shared communication 
mechanisms. However, this is outside the scope of Smart-

M3. 
4 This set of information may be thought as the ontology of 
the KP. It is only rarely defined formally, and is usually an 

implicit but at times useful concept. 

In the building automation case, information from the 
installed sensors and systems is shared for others by using 
Smart-M3, allowing also devices that do not implement the 
oBIX or other building automation protocols to access the 
information. 

In the smart meeting room case, Smart-M3 is used to 
coordinate access to the resources of a meeting room, such as 
a projector for presentations. 

 

 
Figure 4: The relation of information, KPs and smart 
space application  

 
The home sensor network case is remarkable in that all 

the hardware used is commercially available. The demo 
shows input from several sensors on multiple devices, such 
as Apple IPhone, Nokia N810 and laptop.  

The health care case uses information from temperature 
and humidity sensor and patient’s heart rate monitor to 
determine if the external conditions may be hazardous for the 
patient. 

Furthermore, a demonstration showing a combination of 
the home sensor network and healthcare demos where the 
information from the sensors used in home sensor network 
demo was used in the healthcare system, illustrating the ease 
of creating mash-up applications, has been  created. 

IV. THE SMART SPACE ACCESS PROTOCOL 
The Smart Space Access Protocol (SSAP) is the protocol that 
the KPs use to access a SIB. It has seven operations as listed 
in Table 1: SSAP operations. The operations are abstract, 
that is, they are defined in terms of their parameters and the 
actions that SIB and KP should take. The operations may be 
encoded in different ways, for example in XML or JSON. 

The protocol is session-based, assuming that the KP 
wanting to join the smart space will first have to join the 
smart space with the join operation. The KP will provide its 
credentials in the join message, and the SIB receiving the 
message will examine the credentials and decide whether the 
KP can join. After joining, the KP can perform the other 
operations. 

The SSAP is the main integration point of the Smart-M3 
architecture. All implementations of SIBs and KPs should 
support all SSAP operations. This will guarantee 
interoperability across different implementations.  

In addition to the currently specified and implemented 
operations, there is work ongoing to add further operations. 
In particular, a conditional update operation is seen as a 
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useful addition, as it would provide the means to implement 
ontological concurrency control mechanisms for information 
in M3 spaces. 
 

Table 1: SSAP operations 
Operation name Description of operation 
Join Joins a KP to a named M3 space if the 

credentials match what is required. 
Leave Leaves a named M3 space. No more 

operations may be performed after a 
leave until a join. 

Insert Atomically inserts a graph into SIB. 
Remove Atomically removes a graph from SIB. 
Update Atomically updates a graph in SIB. This 

is an atomic combination of Delete and 
Insert operations, where Delete is 
performed first. 

Query Queries for information in the SIB using 
one of the supported query mechanisms. 

Subscribe Sets up a subscription (persistent query) 
in SIB. The KP is notified when the 
subscription results change. 

Unsubscribe Cancel a subscription. 

V. THE SEMANTIC INFORMATION BROKER 
The Semantic Information Broker (SIB) is the 

component where the semantic information provided by KPs 
is stored. Ideally, any SIB should be accessible from many 
SOA systems, enabling a truly cross-domain information 
exchange and the resulting possibilities for interoperability. 

The SIB consists of five layers as shown in Figure 5: SIB 
internal architecture.: 

1. Transport layer 
2. Operation handling layer 
3. Graph operations layer 
4. Triple operations layer 
5. Persistent storage layer 

The transport layer consists of one or more transport 
processes providing the SIB service to different service 
architectures and networks. The transport processes are 
connected to the operation handling layer by DBus, making 
it possible to add or remove transports at run-time.  

The request handling layer handles the SSAP operations, 
with each operation running autonomously in its own thread. 
While the heavy use of threads causes some overhead, the 
resulting clarity of the program code was deemed more 
important.  

The graph operations layer handles the insertion, removal 
and querying of graphs from the RDF store as requested by 
the request handling layer. The layer runs in a single thread 
which schedules and executes the requests from the threads 
handling the SSAP operations. The communication between 
the SSAP operations threads is handled by using 
asynchronous queues.  

The triple operations layer is currently implemented by 
using Piglet RDF store. Piglet contains query facilities for 
SPARQL select queries, Wilbur query language (WQL) [8] 
queries and triple pattern queries, as well as operations for 

inserting and removing triples from the RDF store. The 
persistent store used by Piglet is SQLite. 

 

 
Figure 5: SIB internal architecture. 
 
The triple operations layer is not tied to any specific RDF 

store, and any RDF store supporting the basic operations of 
read, write and delete may be substituted in the place of 
Piglet. However, changing the RDF store will require 
changing the code in the graph operations layer to adapt to 
the concrete interface provided by the new RDF store. 

The SIB in the basic configuration provides reasoning 
capability for certain rdfs and owl properties, such as 
rdf:type, rdfs:subClassOf and owl:sameAs, in the WQL 
query engine. For example, when querying about the type of 
an instance, you get as a response the immediate type and all 
supertypes. 

However, we plan to include a plugin interface for 
custom reasoners that can be attached to the SIB in order to 
perform reasoning according to domain-specific rules. The 
interface offered to these reasoners will resemble the SSAP 
interface offered to KPs, with possibly some extensions such 
as the possibility to lock the RDF store for short durations. 

The reasoners may be written in any suitable 
programming language, or they may use a rules engine, such 
as the smodels tool [6]. For example, the ssls tool [10] allows 
the user to use rules written for smodels to modify the 
content in the smart space5. 

                                                           
5 The ssls is a KP providing a command-line interface to the 
information in the smart space, and thus is outside the SIB. 
However, a similar setup using the plugin interface to the 

SIB is easily conceivable. 



VI. KNOWLEDGE PROCESSORS 
Knowledge processors are the active parts of a system 

using Smart-M3. They provide the information, may modify 
and query it and also take externally observable actions 
based on the information that they see in smart space. Figure 
6 presents an overview of a generic KP architecture. 

A KP is typically created by using one of the available 
KPIs or ontology APIs suitable for the platform that it is 
going to run. The KPI that different implementations provide 
for the developer can be at any abstraction level, though in 
practice the functions or method calls available in the KPI 
will closely resemble the SSAP operations. However, it 
should be noted that SSAP and KPI are different concepts 
and the SSAP is the integration point that different 
implementations are required to adhere to. 

 
Figure 6: Overall KP architecture 

A. Knowledge Processor Interface Implementations 
The Smart-M3 release contains implementations of KPIs 

for GLib/C, Qt/C++ and Python languages. In addition to the 
three KPIs published in Smart-M3 release, there are several 
other KPIs: an ANSI C KPI targeted towards resource 
constrained embedded devices, C# based KPI for .NET 
environment, and Java KPI. 

The GLib/C and Qt/C++ KPIs are integrated to GLib and 
Qt main loops, respectively. This integration allows the 
creation of GUI applications that support smart spaces. 

The python KPI is a standalone, pure python library. 
Python provides an environment for rapid development, and 
as such allows also KPs to be created rapidly. However, 
python is also a mature programming environment and as 
such its use is not restricted to prototype programs. 

Furthermore, python interpreters are available on a variety of 
platforms, and thus allow easy porting of Python KPs. 

B. Ontology API 
Ontology APIs allow a developer to program using 

ontology level concepts instead of working with SSAP and 
RDF. Thus, the existence of ontology APIs is critical in order 
to attract developers to create smart space applications. 

Ontology APIs may be created manually, especially for 
relatively static and small ontologies. However, for 
ontologies that change or are complex, automatic generation 
is a more suitable solution.  

Ontologies described using owl may be mapped to 
object-oriented (OO) class structures, even though the 
concept of type in description logic and class in OO world 
are not the same. An ontology API generator will thus first 
traverse the ontology description, possibly inferring some 
additional properties, and then create a class model of the 
ontology. From this class model, code can then be generated 
to map the concepts defined in the ontology to programming 
language operations which will then synchronize the 
information with a smart space. 

Currently, there is a generic ontology API backend 
available, and code generators targeting GLib/C, Python [9] 
and ANSI C KPIs [11] are available.  

VII. CONCLUSIONS 
The Smart-M3 is an interoperability platform operating 

on principles of space-based information exchange. We have 
defined an architecture consisting of knowledge processors 
and a semantic information broker. The semantic 
information broker stores and makes available information 
inserted to it by knowledge processors. The communication 
mechanism between knowledge processors and semantic 
information broker is called the smart space access protocol, 
or SSAP. The SSAP is the main integration point in the 
architecture, and any knowledge processor or semantic 
information processor implementing it can participate in the 
system. 

The knowledge processors co-operating in different 
scenarios are extremely loosely coupled in the Smart-M3 
world, though they may have dependencies outside the 
Smart-M3 platform. Thus, the appearance or disappearance 
of knowledge processors will have little effect on other 
knowledge processors. 

By defining the concepts of domains in domain-specific 
ontologies and standardizing these, we allow an indefinite set 
of interoperability use cases to be implemented. This 
removes the need for standardizing separate use cases and 
thus lowers the barrier of entry and allows also smaller 
companies to innovate. Naturally, as the ontologies are 
unlikely to remain static, this also calls for suitable processes 
for governing ontologies. 

The Smart-M3 platform implementation [9] is available 
in Sourceforge and it is licensed under BSD license, making 
the Smart-M3 easy to take into use also in projects where the 
participants do not want to share their code with others. 

The Smart-M3 is currently being used as the baseline for 
Sofia interoperability platform in Sofia/Artemis project [14] 



funded by European Commission. It is also being used for 
similar purpose in a DIEM project [15] funded by Finnish 
national authorities. In addition to these two publicly funded 
research projects, Smart-M3 is being used as a platform for 
smart application research in FRUCT [13] collaboration 
framework. 
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