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Abstract Information and communication technology is
undergoing rapid development, and many disruptive
technologies, such as cloud computing, Internet of Things,
big data, and artificial intelligence, have emerged. These
technologies are permeating the manufacturing industry
and enable the fusion of physical and virtual worlds
through cyber-physical systems (CPS), which mark the
advent of the fourth stage of industrial production (i.e.,
Industry 4.0). The widespread application of CPS in
manufacturing environments renders manufacturing sys-
tems increasingly smart. To advance research on the
implementation of Industry 4.0, this study examines smart
manufacturing systems for Industry 4.0. First, a conceptual
framework of smart manufacturing systems for Industry
4.0 is presented. Second, demonstrative scenarios that
pertain to smart design, smart machining, smart control,
smart monitoring, and smart scheduling, are presented.
Key technologies and their possible applications to
Industry 4.0 smart manufacturing systems are reviewed
based on these demonstrative scenarios. Finally, challenges
and future perspectives are identified and discussed.

Keywords Industry 4.0, smart manufacturing systems,
Internet of Things, cyber-physical systems, big data
analytics, framework

1 Introduction

Information and communication technology (ICT) is
currently undergoing rapid development. Many disruptive

technologies, such as cloud computing, Internet of Things
(IoT), big data analytics, and artificial intelligence, have
emerged. These technologies are permeating the manu-
facturing industry and make it smart and capable of
addressing current challenges, such as increasingly
customized requirements, improved quality, and reduced
time to market [1]. An increasing number of sensors are
being used in equipment (e.g., machine tools) to enable
these equipment to self-sense, self-act, and communicate
with one another [2]. Through these technologies, real-
time production data can be obtained and shared to
facilitate rapid and accurate decision making. The
connection of physical manufacturing equipment and
devices over the Internet together with big data analytics
in the digital world (e.g., the cloud) has resulted in the
emergence of a revolutionary means of production,
namely, cyber-physical production systems (CPPSs).
CPPSs are a materialization of the general concept cyber-
physical systems (CPS) in the manufacturing environment.
The interconnection and interoperability of CPS entities in
manufacturing shop floors together with analytics and
knowledge learning methodology provide an intelligent
decision support system [3]. The widespread application of
CPS (or CPPS) has ushered in the fourth stage of industrial
production, namely, Industry 4.0 [4].
Industry 4.0 has elicited much interest from the industry

and academe [5]. A recent literature survey identified the
basic concept, perspectives, key technologies, and indus-
trial applications of Industry 4.0 and examined its
challenges and future research trends [6,7]. However, no
work has established a systematic framework of smart
manufacturing systems for Industry 4.0 that can guide
academic research and industrial implementation. Moti-
vated by this situation, this study proposes a conceptual
framework for Industry 4.0 smart manufacturing systems.
The framework covers a wide range of topics, including
smart design, smart machining, smart monitoring, smart
control, smart scheduling, and industrial implementation.
A number of demonstrative scenarios are presented, and

Received March 27, 2017; accepted September 27, 2017

Pai ZHENG, Honghui WANG, Zhiqian SANG, Ray Y. ZHONG (✉),
Yongkui LIU, Chao LIU, Khamdi MUBAROK, Shiqiang YU, Xun XU
Department of Mechanical Engineering, University of Auckland,
Auckland, New Zealand
E-mail: r.zhong@auckland.ac.nz

Front. Mech. Eng. 2018, 13(2): 137–150
https://doi.org/10.1007/s11465-018-0499-5



current challenges and future research directions are
discussed.
Although extensive effort continues to be exerted to

make manufacturing systems smart, smart manufacturing
systems do not have a widely accepted definition. In
Industry 4.0, CPPSs can be regarded as smart manufactur-
ing systems. CPPSs comprise smart machines, ware-
housing systems, and production facilities that have been
developed digitally and feature end-to-end ICT-based
integration from inbound logistics to production, market-
ing, outbound logistics, and service [3]. Smart manufactur-
ing systems can generally be defined as fully integrated
and collaborative manufacturing systems that respond in
real time to meet the changing demands and conditions in
factories and supply networks and satisfy varying customer
needs [8]. Key enabling technologies for smart manufac-
turing systems include CPS, IoT, Internet of Services (IoS),
cloud-based solutions, artificial intelligence (AI), and big
data analytics.
The rest of this paper is structured as follows. Section 2

presents a framework for Industry 4.0 smart manufacturing
systems. Section 3 provides several demonstrative scenarios.
Section 4 discusses current challenges and future
perspectives, and Section 5 presents the conclusions.

2 Smart manufacturing systems for
Industry 4.0

The Industry 4.0 concept in the manufacturing sector
covers a wide range of applications from product design to
logistics. The role of mechatronics, a basic concept in
manufacturing system design, has been modified to suit
CPS [9]. Smart product design based on customized
requirements that target individualized products has been
proposed [10]. Predictive maintenance [11] and its
application in machine health prognosis are popular topics
in Industry 4.0-based CPS [12]. Machine Tools 4.0 as the
next generation of machine tools has been introduced in
machining sites [13]. Energy Management 4.0 has also
been proposed for decision-based energy data and has
transformed energy monitoring systems into autonomous
systems with self-optimized energy use [14]. Moreover,
the implication of Industry 4.0 technologies on logistic
systems has been investigated [15]. The entire range of
applications cannot be discussed in a single paper.
Therefore, this paper only presents design, monitoring,
machining, control, and scheduling applications.
Figure 1 presents a framework of Industry 4.0 smart

manufacturing systems. The horizontal axis shows typical

Fig. 1 Conceptual framework of Industry 4.0 smart manufacturing systems
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issues in Industry 4.0, including smart design, smart
machining, smart monitoring, smart control, smart sche-
duling, and industrial applications, which are the focus of
this work. The vertical axis shows issues in another
dimension of Industry 4.0 ranging from sensor and
actuator deployment to data collection, data analysis, and
decision making. In Industry 4.0, data gathering and
analysis are the main sources of the smartness of activities
shown on the horizontal axis.
� Smart design. Traditional design has been upgraded

and has become smart due to the rapid development of new
technologies, such as virtual reality (VR) and augmented
reality (AR). Hybrid prototyping using VR techniques has
been introduced to additive manufacturing. Design soft-
ware, such as computer-aided design (CAD) and compu-
ter-aided manufacturing (CAM), can now interact with
smart physical prototype systems in real time via 3D
printing integrated with CPS and AR [16]. Thus,
engineering changes and physical realizations could be
combined to achieve a smart design paradigm.
� Smart machining. In Industry 4.0, smart machining

can be achieved with the aid of smart robots and other
types of smart objects that can sense and interact with one
another in real time [17]. For example, CPS-enabled smart
machine tools can capture real-time data and transfer them
to a cloud-based central system so that machine tools and
their twined services can be synchronized to provide smart
manufacturing solutions. In addition, self-optimization
control systems provide in-process quality control and
eliminate the need for post-process quality inspection [18].
� Smart monitoring. Monitoring is an important aspect

in the operation, maintenance, and optimal scheduling of
Industry 4.0 manufacturing systems [19]. The widespread
deployment of various sensors has made smart monitoring
possible. For example, data on various manufacturing
objects, such as temperature, electricity consumption,
vibrations, and speed, can be obtained in real time. Smart
monitoring provides not only a graphical visualization of
these data but also alerts when abnormality occurs in
machines or tools [20,21]. CPS and IoT are key
technologies that enable smart monitoring in Industry 4.0
smart manufacturing systems.
� Smart control. In Industry 4.0, high-resolution,

adaptive production control (i.e., smart control) can be
achieved by developing cyber-physical production control
systems [22]. Smart control is mainly executed to manage
various smart machines or tools physically through a
cloud-enabled platform [23]. End users can switch off a
machine or robot via their smartphones [24]. Decisions can
then be timely reflected in frontline manufacturing sites,
such as robot-based assembly lines or smart machines [25].
� Smart scheduling. Smart scheduling mainly utilizes

advanced models and algorithms to draw information from
data captured by sensors. Data-driven techniques and
advanced decision architecture can be used to perform
smart scheduling. For example, distributed smart models

that utilize a hierarchical interactive architecture can be
used for reliable real-time scheduling and execution [26].
Production behavior and procedures can then be carried
out automatically and effectively because of the well-
established structures and services. With the aid of data
input mechanisms, the output resolutions are fed back to
the parties involved in different ways [27].
� Industrial applications. Industrial applications that

target different industry implementations of various
solutions are the ultimate goal of Industry 4.0 and may
revolutionize manufacturing systems. The solutions pro-
vided by Industry 4.0 are sufficiently flexible to support
customized configuration and development according to
the uniqueness and specific requirements of several
industries, such as the food industry that includes a large
number of perishable products. Thus, dynamic manufac-
turing networks are provided opportunities to manage their
supply and business modes [28]. With the support of
configurable facilities from layers of smart design and
manufacturing and smart decision making, applications
can achieve a holistic perspective by considering practical
concerns, such as production efficiency, logistics
availability, time constraints, and multiple criteria [29].
Several of the key research topics within this framework

are summarized as follows.
� Smart design and manufacturing. Research at this level

encompasses smart design, smart prototyping, smart
controllers, and smart sensors [30,31]. Real-time control
and monitoring support the realization of smart manufac-
turing [32]. Supporting technologies include IoT, STEP-
NC, 3D printing, industrial robotics, and wireless com-
munication [33].
� Smart decision-making. Smart decision making is at

the center of Industry 4.0. The ultimate goal of deploying
widespread sensors is to achieve smart decision making
through comprehensive data collection. The realization of
smart decision making requires real-time information
sharing and collaboration [34]. Big data and its analytics
play an important role in smart decision-making tasks,
such as data-driven modeling and data-enabled predictive
maintenance [35]. Many technologies, including CPS, big
data analytics, cloud computing, modeling, and simulation,
contribute to the realization of smart decision making [36–
38].
� Big data analytics. CPS and IoT-based manufacturing

systems involve the generation of vast amounts of data in
Industry 4.0 [39], and big data analytics is crucial for the
design and operations of manufacturing systems [41]. For
example, by using the big data analytics approach, a
holistic framework for data-driven risk assessment for
industrial manufacturing systems has been presented based
on real-time data [41]. Such a topic has been widely
reported to support production optimization and manufac-
turing CPS visualization [42–44].
� Industrial implementations. Industrial applications are

the ultimate aim of Industry 4.0. Almost all industries,
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including manufacturing, agriculture, information and
media, service, logistics, and transportation, can benefit
from the new industrial revolution. Many new opportu-
nities will be available for industrial parties [45].
Companies may focus on their core business values or
challenges, which could be upgraded or addressed with
Industry 4.0-enabled solutions.

3 Demonstrative scenarios

3.1 Smart design: User experience (UX)-based personalized
smart wearable device

ISO 9241-210 defines UX as “a person’s perceptions and
responses resulting from the use and/or anticipated use of a
product, system, or service” [46]. In the Industry 4.0
environment, the two typical emerging tendencies in the
product development stage are 1) customers become
actively involved in the product design process to co-
create personalized products with improved UX and
satisfaction, which is known as the manufacturing
paradigm of mass personalization [47] and 2) products
themselves become smart and able to communicate with
other things in their lifecycle as defined in the IoT [48].
Both aspects aim to improve UX during the product
development stage. However, only a few studies have
discussed the establishment of such a smart design for
personalization. To bridge these gaps, this scenario
provides a systematic means to develop a series of

personalized wearable products by considering the afore-
mentioned factors.
The conceptual framework of the proposed co-creation

model is shown in Fig. 2 (derived from Ref. [49]). It
consists of physical, cyber, and UX layers. The physical
layer stands for physical products (e.g., wrist band) and
services (e.g., application (app) subscription), the cyber
layer stands for web-based virtual co-design resources
(e.g., CAD models and product configuration systems),
and the UX layer stands for the cognitive and affective
behaviors of users (e.g., feedback and emotions) during
product development.
Smart design adopts state-of-the-art design methodolo-

gies (e.g., adaptable design [50] and innovative design
thinking [51]) to guide the user interactive conceptual
design process. A product configuration system with a
graphical user interface is also developed to enable the co-
creation process. To prototype the personalized parts, 3D
scanners are utilized to capture the specific features of a
user, and the geometric parameters are optimized in CAD
software for subsequent 3D printing. A smart sensor
platform (e.g., Raspberry Pi [52]) is implemented in the
prototyping product to test its smart functions (e.g., heart
rate and breathing frequency) with apps in smart mobile
devices. Sensor data are then mashed up into an IoT
platform for further data analytics and tracking of the status
of the product (e.g., location and usage time). Meanwhile,
UX is captured during product development and prototype
product testing stages. For the former, marketing strategies
(e.g., questionnaire and focus group) and digital equipment

Fig. 2 Conceptual framework of the proposed product development process
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(e.g., eye tracker and video camera) are utilized to reflect
the perceptions of users toward the co-design process. For
the latter, the experiences of users are recorded by digital
equipment (e.g., VR headset and eye tracker) and through
marketing strategies.
Smart design processes are pre-designed in a series of

human participation experiments that are conducted to 1)
determine the relationship between UX and user pre-
ference in the scope of common products (designed by the
designer), modularized products (co-design), and persona-
lized products (designed by the user); 2) discover which
method achieves improved UX in a certain context, i.e.,
product design visualization (e.g., VR and AR) or product
design rapid prototyping (e.g., 3D printing); 3) determine
the relationship between the smart attributes and UX of a
smart wearable product; 4) discover user behavior in the
co-design human-computer interaction process; and 5)
provide useful guidelines to engineer-to-order companies
for customer-centric product development optimization.

3.2 Smart machining: CPS-based smart machine tools

After smart design, CPS-enabled smart machine tools are
used to produce physical products. CPS are can bring
together virtual and physical worlds to create a truly
networked world in which intelligent objects communicate
and interact with one another [53]. In Industry 4.0,
production systems evolve into CPPS, which comprise
smart machines, warehousing systems, and production

facilities that have developed digitally and feature end-to-
end ICT-based integration [4].
Smart machine tools can be regarded as combinations of

different CPS (as shown in Fig. 3). Radio frequency
identification devices (RFID) tags are attached to critical
components, such as spindles, bearings, and cutting tools,
so that physical objects can be uniquely identified. Various
sensors (accelerometers, dynamometers, AE sensors, etc.),
cameras, and data acquisition devices are deployed in the
machine tools to collect real-time machining data on each
critical component and machining process.
Communication service deals with the integration,

communication, and management of real-time machining
data collected from smart machine tools. Although
different data communication technologies (Ethernet, RS
232, 4G network, Bluetooth, etc.) can be utilized to
transmit real-time data depending on different data
acquisition devices, the formats of various data originating
from different machine controllers and sensors pose
significant challenges to data integration and management.
Additionally, after gathering all the data, a digital twin for
each critical component needs to be modeled to compre-
hensively represent its physical attributes and real-time
status simultaneously. Standardized data communication
protocols and information modeling methods are used to
address these issues. MTConnect is an open, royalty-free
communication standard intended to enhance the data
acquisition capabilities of devices and applications and
move toward a plug-and-play environment to reduce the

Fig. 3 CPS-enabled smart machine tools
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cost of data integration [54]. MTConnect can translate data
collected from different devices into the XML data format,
which can be used by most software applications. ISO
10303, also known as STEP, is an ISO standard that
describes product data throughout the life cycle of a
product independent of any particular system. On the basis
of these standards, communication service creates digital
twins for the critical components and provides well-
formatted real-time data to various applications through the
Internet.
Smart visibility service is an application that takes

advantage of real-time data provided by the communica-
tion service. Given the availability of real-time data from
field-level devices on the Internet, the real-time status of
each critical component of smart machine tools can be
remotely visualized from mobile devices, such as tablets
and smartphones. Statistical reports on machine tool status
can be directly accessed by business management systems,
such as enterprise resource planning (ERP), thus enabling
seamless communication between field-level manufactur-
ing devices and high-level decision-making systems.
Detailed historical data would be available if each critical
component is saved in the cloud and locally by recording
the real-time data provided by the communication service.
Then, prognostics and health management (PHM) algo-
rithms can be applied to assess the health state of certain
components so that proactive maintenance can be achieved
and machine failure can be avoided. AR can visualize
machining processes. Combining AR technology with
real-time manufacturing data collected during machining
processes will enable intuitive and effective interactions
between users and smart machine tools.

3.3 Smart monitoring: Energy consumption monitoring

Energy-efficient production is a concern of many industrial
enterprises in Industry 4.0 manufacturing systems. A
machining workshop contains many machining equipment
(e.g., machine tools), as shown in Fig. 4. The X axis
denotes time (in h), and the Y axis denotes power
consumption (in kW). Currently, energy prices are soaring,
and environmental protection is a major concern of many
countries.
Each piece of machining equipment usually has a fixed

energy consumption characteristic. Several energy
demands, such as the power for starting a machine tool,
idle power, the power for starting the spindle, cutting
power, and the power of the machine function (tool
change, work piece handling), during machining opera-
tions are usually fixed. Some portions cannot be expressed
using formulae. For example, the power for starting the
spindle may have complex expressions, which increase the
difficulty of calculating the energy demand and subsequent
optimization. Furthermore, a workshop experiences power
fluctuations that result in difficulties in establishing an
energy consumption model. To achieve energy-efficient
production, the machining energy consumption must be
monitored in real time.
Owing to the widespread deployment of various sensors,

energy consumption data can be collected in Industry 4.0.
Machine learning methods can be applied to the collected
data to determine the energy demand characteristics. Deep
neural network (DNN) is a machine learning method that
focuses on the analysis of large datasets. It can be utilized
to extract the energy consumption characteristics or trends

Fig. 4 Energy-efficient manufacturing
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of manufacturing equipment on the basis of data obtained
from energy consumption monitoring.
Input and output determination is the first procedure in

DNN. The input includes machine tools, cutting tools,
materials of parts to be machined, parameters, machining
strategies, transporters, and auxiliaries. The output is the
energy consumption of each stage during machining
processes. Different cutting tools possess different para-
meter ranges (e.g., cutting velocity and feed rate). The
machine tool, cutting tool, and material jointly determine
the cutting energy consumption, which thus becomes a
variable energy demand. The relationship between the
combination and cutting of energy consumption can
therefore be established via DNN.

3.4 Smart control: Cloud-based numerical control

Smart control in Industry 4.0 manufacturing systems is
significant because a machine tool and its control system
have become highly sophisticated. For example, a current

computer numerical control (CNC) system can be used by
an operator, who in turn uses the human-machine interface
(HMI), switches, and buttons to manipulate the machine
and make it perform a machining job. Each control system
of the machine tool operates independently, thus creating
an “information isolated island” problem. In a cloud
manufacturing environment, a new and innovative form
called control system as a service (CSaaS) is provided.
Users of CSaaS are not limited to machine operators but
include machine supervisory vendors and even end users
of the product to address the emerging demands in new
business models.
A cloud-based smart control system is illustrated in Fig.

5. CNC control is used as an example to illustrate the key
concepts. All non-real-time tasks are executed in the cloud.
Machining jobs are scheduled and distributed among
connected machine tools in consideration of their
capability and availability, which are treated as local
manufacturing resources. A local operator can start
machining by logging a part program. The cloud can

Fig. 5 Cloud-based smart control system
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interpret the part program whether it is in G/M code or in
STEP-NC. If it is a STEP-NC part program, the cloud will
generate a tool path from the STEP-NC part program.
During the tool-path generation process, offline optimiza-
tion tasks, such as optimization of cutter selection and re-
sequencing of the working steps and cutting parameter, can
be performed with the help of a knowledge base or other
optimization services.
Interpolation is also executed in the cloud, so the

computational power of the cloud is fully used. If no
adaptive control is involved, then the generation of
setpoints by the interpolator is independent of the feedback
control of the machine tool. The local control system is
responsible for ensuring that the axes follow the setpoints
precisely.
In the local control system, the connection management

takes charge of managing the Internet connection between
the cloud and the local. Data monitoring is responsible for
observing the data received and coping with any
transmission errors. Proper setpoints are fed to drives and
transformed into a pulse command, which is finally
transmitted through the fieldbus and executed by the
motors. The feedback from the encoder is used by the
machine monitoring module. By combining the informa-
tion from other sensors, the machine monitoring module
provides the status of the machining and machine tool.
Although HMI is provided by the cloud, in the local
control system, a simple HMI still displays basic

information for the operator to control the machine tool
in the case that the cloud service is unavailable.
The information from a machine tool, including current

axis positions, setup, and cutter status, is transmitted to the
cloud to be used when the tool paths are generated. The
progress of the machining tasks and the status of the
machine tool (e.g., operation status and warning informa-
tion) are transmitted to the cloud by the local control
system.

3.5 Smart scheduling: Machine scheduling in smart
factories

Smart machine scheduling can be achieved based on smart
machines, smart monitoring (e.g., energy consumption
monitoring), and smart control system from the cloud.
Machine scheduling is a classical problem that has been
studied for decades [55], and in Industry 4.0, a number of
new characteristics and requirements exist (Fig. 6).
Machines in Industry 4.0 are endowed with a certain
degree of intelligence and can communicate with one
another by deploying various sensors and wireless
communication devices (e.g., RFID). In this case,
machines are, to a large extent, transparent in the sense
that data of each part of a machine can be conveniently
collected in real time. Optimal machine scheduling can be
performed by extracting useful information (such as
operating status and energy consumption) from the

Fig. 6 Machine scheduling in Industry 4.0
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collected data. This situation presents many advantages
and eliminates several barriers in machine scheduling, such
as machine breakdown [56] and unavailability [57],
because machine breakdown or unavailability can be
foreseen in the Industry 4.0 manufacturing environment.
Another main difference between machine scheduling in
Industry 4.0 and traditional machine scheduling is that
products (or parts) are smart and can communicate with
machines, which brings new advantages and challenges.
In the Industry 4.0 manufacturing environment, each

machine is a CPS entity that can communicate with others
in physical and virtual worlds (Fig. 6). The essence of
machine scheduling in Industry 4.0 is the scheduling of
collaborative CPS [58]. The complexity of machine
scheduling in Industry 4.0 originates from the typical
characteristics of CPS, such as autonomous (e.g., self-
aware, self-predict, and self-compare), decentralized, and
real time [59].
As a result, machine scheduling in Industry 4.0 requires

efficient, dynamic, and decentralized scheduling methods
[60]. In fact, machine scheduling in Industry 4.0 can be
well supported by enhancing a machine into a CPS with
comprehensive perception. AI, such as multi-agent
systems, provides an effective instrument for machine
scheduling in an Industry 4.0 smart factory [61–63]. In
Industry 4.0 manufacturing systems, scheduling models
and algorithms are implemented in the cyber space of CPS
(e.g., cloud); they interact with physical machines and
cooperatively drive production.

3.6 Industrial implementation: Smart 3D scanning for
automated quality inspection

Material inspection and quality control in a smart

production environment are challenges in Industry 4.0.
An Industry 4.0 smart factory is established by merging the
physical world of shop floor equipment with the virtual
world of ICT. Under this circumstance, manufacturers
should be aware that producing a single product must
remain profitable. Therefore, revolutionary changes in
smart machines and other smart equipment on the shop
floor should be conveyed by smart quality control to ensure
the delivery of best-quality products to customers.
Customers also desire to have access to real-time quality
data to ensure that the final products satisfy their requests.
For this task, a novel technology that can speed up quality
inspection processes with high accuracy and backward
traceability is required [64].
A common technology to execute the quality inspection

of processing materials and measure the quality of final
products is the coordinate measuring machine (CMM).
However, current CMM technologies cannot provide fast
quality assessment for individual products nor measure
complex geometric parts of manufactured products.
Accordingly, technologies in metrology have changed in
the past few decades from stand-alone and fixed CMM
equipment to portable measuring devices. Advanced
optical machine vision technologies are also adopted to
perform inspection tasks by introducing 3D laser scanning
for quality inspection. These changes have not only
brought inspection right to the production line as close to
the part as possible, but have also made it automated with
high accuracy.
Figure 7 shows the principle of 3D scanning for

automated quality inspection. The process begins by
scanning an object and creating 3D files of points called
point clouds as raw input. Unreliable range measurements
(outliers) are removed through a filtering process. Then,

Fig. 7 Smart 3D scanning for automated quality inspection
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point clouds are analyzed and compared with those in the
initial design [65]. The results are visualized with different
colors to show the degree of quality of each segment of the
part. The data gathered from each process are stored in a
large data storage. By using big data analytic tools, control
charts, mathematical statistics knowledge, and intelligent
algorithms, the data are processed to provide valuable
information for manufacturers and customers. This system
is also connected to the Internet to provide real-time online
quality data on the processing parts or finished workpiece
for customer access.
Automated quality inspection using 3D scanning

provides accurate quality results, is fast and easy to
implement, reduces the time consumed by the inspection
process, and is suitable for all materials; moreover, the final
part/product can be compared with the initial design to
ensure fitting performance with other parts [66]. However,
this technology possesses drawbacks, such as high cost of
the device, limited point per second scanning volume, and
need for high-capability hardware for data processing.
Table 1 summarizes the advantages and disadvantages

of each individual project in the demonstrative cases.

4 Current challenges and future
perspectives

Most manufacturing systems use typical machinery to
accomplish various processes according to planned

production logics. Manual and paper-based working
mechanisms are commonly utilized to support these
processes [67]. Several challenges exist in the use of
these mechanisms. First, working efficiency is low because
all the operations, interactions, and executions on shop
floors are time consuming when large amounts of
manpower are used. For example, machine operators,
technical engineers, chief engineers, and shop floor
supervisors usually need to meet to discuss and establish
a solution when designs are reengineered. Such meetings
usually last for more than half a day because information or
data need to be shared and current situations need to be
analyzed to establish a suitable solution. Second, data
collection is mainly based on paper sheets or record cards.
Various workers have to write down critical data, such as
working pieces, quality data, and WIP level [21]. Workers
are usually busy with operating machines and reluctant to
spend time on data recording, which is not a value-adding
process [68]. Third, shop floor managers have to use data
to make manufacturing decisions, such as production
planning and scheduling. These decisions are prone to
become unreasonable and unpractical when they are based
on data from a large number of paper sheets or cards
because dealing with a large number of paper sheets and
cards is time consuming and tedious; moreover, the
information obtained is always not up to date. To keep
pace with the Industry 4.0 era, real-time data collection is
required for most manufacturing companies. IoT and CPS
can provide possible solutions to these issues. The future of

Table 1 Summary of demonstrative scenarios

Scenarios Advantages Disadvantages

UX-based personalized
smart wearable device

� Users are actively involved in the co-creation process
for personalization.
� User experience can be readily obtained/analyzed
in a real-time design context.
� Product change can be rapidly prototyped for
design innovation in a cyber-physical manner.

� The application scope of the model is limited to highly
modularized or discreet manufacturing systems
(e.g., automobile and bicycles), rather than integral or
continuous processes (e.g., chemical process and
natural gas).

CPS-based smart machine
tools

� Users can control the machine tool in real time
by using cloud-based services.
� Real-time status can be reflected in the user interface.

� System reliability is based on the stability of
communication networks.

� Information confidentiality is an issue on the part
of end users.

Energy consumption
monitoring

� Energy consumption can be tracked and visualized
in real time.
� Decision making/optimization can be based on
energy consumption.

� Smart sensors should be equipped to machines.
� Data transmission relies on multiple channels.

Cloud-based numerical
control

� Control of the machine is servicelized.
� Highly sophisticated algorisms can be applied.
� Service is flexible and can be updated and upgraded
easily.
� The process know-hows can be well protected.

� Concerns on cyber security and service availability
may exist.

Machine scheduling in
smart factories

� Machines are optimally scheduled based on real-time
information.
� Any disturbances can be tracked and traced in real time.

� Advanced decision-making models are required.
� Real-time data processing models are necessary.

Smart 3D scanning for
automated quality inspection

� Quality inspection can be automatically executed.
� Quality data can be visualized in real time for decision
making.

� Data storage and processing may be an issue if the
volume of real-time information is large.
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real-time data collection in manufacturing systems may be
carried out as follows.
� IoT-enabled data collection. Typical IoT technologies,

such as RFID and barcoding, can be embedded into
various manufacturing resources. In this manner, they are
converted into smart manufacturing objects (SMOs) that
can intelligently interact and communicate with one
another so that real-time production data can be captured
and collected in real time.
� Smart sensors. With the rapid development of cutting-

edge technologies, smart sensors can now integrate multi-
functional capabilities to collect real-time data on tem-
perature, force, pressure, and humidity. These sensors are
attached to various SMOs so that manufacturing operations
and production lines or working stations can be synchro-
nized with physical operational and information flows.
� CPS-based smart machines. In the future, machines

will be converted into smart objects by taking advantage of
CPS technology. Smart machines can send their working
status in real time to a central cloud-based “manager” that
can monitor their states through a visualization approach.
Currently, manufacturing companies are facing chal-

lenges in visualizing and displaying various manufacturing
services. Information visibility plays an important role in
precise decision making in Industry 4.0. Several challenges
exist when implementing manufacturing virtualization and
visualization. First, manufacturing objects should be
visualized in real time to ensure production quality and
safety. However, the closed-circuit television (CCTV)
system, which is the only option, cannot reflect the status
of a working machine. Manufacturing resources should be
virtualized into various services so that they can be shared
as a service. Virtualization approaches and sharing models
have been rarely reported and investigated. Finally, the
visibility of various manufacturing objects requires a new
data modeling approach that can combine heterogeneous
data into a standardized format. Afterward, such data can
be displayed for different end users who are concerned
about the different visibility of different equipment.
However, these research gaps have been rarely studied in
existing literature.
To fill these gaps, future research should emphasize the

following aspects.
� AR-enabled real-time visibility. Applying AR tech-

nology to manufacturing can result in real-time visibility of
working machines. With the data from smart machines, the
AR interface can reflect the status of a machine and its
processing behavior through a visualized model in real
time. AR-enabled real-time visibility allows end users to
visualize machine data that are projected onto a real
machining scene [69].
� Cyber virtualization modeling. Various physical

manufacturing resources are modeled by the cyber
virtualization approach so that their capability and status
can be reflected in a cloud platform, which is going to be
shared within an alliance. This modeling approach uses

data from smart machines and sensors to build a
standardized service that can be displayed and visualized
by other users who can benefit from the service.
Decision making in smart manufacturing systems for

Industry 4.0 requires information and knowledge, which
can be mined from large amounts of production data. In a
recent survey, 55% of the respondents felt that decision
making is not viewed at senior levels of their organizations
[70]. Faced with the big data from manufacturing sites,
several challenges should be addressed. First, decision
models need a long time to establish a solution when large
amounts of data are used. Various objectives are utilized
for different purposes, such as optimization of production
planning and scheduling [71]. However, precise data input
is lacking when decision making is carried out. Second,
decision making in Industry 4.0 always targets manufac-
turing resource sharing, which can make full use of
manufacturing equipment and services. A new manufac-
turing paradigm is thus needed.
Future decision making should focus on two directions.
� Decision-making models driven by big data analytics.

These models can excavate useful information and
knowledge from large amounts of production data to
support specific decision making. Advanced technologies
or algorithms, such as deep machine learning, can be
integrated into these models where big data analytics are
encapsulated as services [43]. Such services may be
deployed in a cloud platform so that they can be
downloaded easily by end users for daily decision making.
� Cloud manufacturing. With the support of cloud

technology and IoT, cloud manufacturing can transform
various manufacturing resources into services so that end
users can request services on demand in a convenient pay-
as-you-go manner [72]. Moreover, CPS integration into
cloud manufacturing enables remote monitoring and
execution of manufacturing operations. Thus, physical
machinery and virtualized services are implemented to
support manufacturing activities and decision making [37].
The networked manufacturing services allow for smart
decision making through a collaborative and intelligent full
sharing and circulation of manufacturing capabilities and
services.

5 Summary

Industry 4.0 holds the promise of increased flexibility,
mass customization, increased speed, improved quality,
and enhanced productivity in manufacturing and thus
enables companies to cope with various challenges, such
as increasingly individualized products, shortened lead
time to market, and high product quality. This paper
presents the conceptual framework of Industry 4.0 smart
manufacturing systems and showcases several key tech-
nologies and demonstrative scenarios. On the basis of the
demonstrative scenarios, related key technologies, such as
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Internet of Things, CPS, cloud manufacturing, and big data
analytics, are reviewed. Current challenges and future
perspectives are also highlighted to inspire researchers and
practitioners when they embark on Industry 4.0.
The significant contributions of this work are as follows.

First, a systematic framework for Industry 4.0 smart
manufacturing systems is proposed. The framework covers
many relevant topics, such as design, machining, monitor-
ing, control, and scheduling. It provides an important
reference for academicians and practitioners to rethink the
essence of Industry 4.0 from different perspectives.
Second, key perspectives are reviewed under the frame-
work by combining several studies carried out by the
authors. Future research directions in terms of data
collection, virtualization, and decision making are also
provided. This work is expected to provide the manufac-
turing industry insights into implementing Industry 4.0 in
the near future.
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