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Abstract: Machine Learning (ML) algorithms have been used as an alternative to conventional and
geostatistical methods in digital mapping of soil attributes. An advantage of ML algorithms is their
flexibility to use various layers of information as covariates. However, ML algorithms come in many
variations that can make their application by end users difficult. To fill this gap, a Smart-Map plugin,
which complements Geographic Information System QGIS Version 3, was developed using modern
artificial intelligence (AI) tools. To generate interpolated maps, Ordinary Kriging (OK) and the Support
Vector Machine (SVM) algorithm were implemented. The SVM model can use vector and raster layers
available in QGIS as covariates at the time of interpolation. Covariates in the SVM model were selected
based on spatial correlation measured by Moran’s Index (I’Moran). To evaluate the performance of
the Smart-Map plugin, a case study was conducted with data of soil attributes collected in an area of
75 ha, located in the central region of the state of Goiás, Brazil. Performance comparisons between OK
and SVM were performed for sampling grids with 38, 75, and 112 sampled points. R2 and RMSE were
used to evaluate the performance of the methods. SVM was found superior to OK in the prediction
of soil chemical attributes at the three sample densities tested and was therefore recommended for
prediction of soil attributes. In this case study, soil attributes with R2 values ranging from 0.05 to 0.83
and RMSE ranging from 0.07 to 12.01 were predicted by the methods tested.

Keywords: precision agriculture; geographic information systems (GIS); geoprocessing; artificial
intelligence; soil mapping

1. Introduction

Digital mapping of soil and plant attributes provides information allowing variable-
rate (VR) application of agricultural inputs [1]. However, the precision of the VR application
depends on precision of the maps that are obtained, typically through interpolation among
georeferenced samples. In an economically viable sampling system, a range of interpolation
methods can be used, including the geostatistical method of Ordinary Kriging (OK), which
is popular in digital soil mapping [2]. However, a disadvantage of OK is the need for large
numbers of sampling points for semi-variance modeling [3,4].

Recently, with the large volume of information generated in production fields, Ma-
chine Learning (ML) techniques have been used as an alternative to OK for digital mapping
of soil attributes [5–9]. ML algorithms attempt to discover and quantify patterns among
available data to make predictions. Several models that use ML algorithms for prediction
and mapping of soil attributes have been developed [7,10,11], among which are Random
Forest, Support Vector Machine (SVM), Cubist, K-Nearest Neighbors, and Artificial Neural Net-
works [10,12,13]. However, to implement ML models for digital mapping, it is necessary to
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master open-source programming languages such as Python (Python Software Foundation,
Wilmington, DE, USA) and R [14].

For the development of applications using ML, several layers of data must be available,
such as environmental and climatic variables, soil and plant sensor data, satellite imagery,
yield maps, and digital elevation models. These data can be in matrix or vector format, and
in various spatial resolutions, which can make the implementation of the ML interpolation
model challenging. As many of these features may have a greater or lesser importance in
modeling, it may be necessary to use feature selection and elimination techniques [13,15,16].

A computational tool that facilitates the use of ML techniques in digital mapping
without requiring programming knowledge can assist users of geographic information sys-
tems (GIS) software. QGIS [17] is open-source software featuring a user-friendly interface
and an active community of developers and users. Free computer programs are available
for Ordinary Kriging, such as Vesper [18], SGeMS [19], DAGApy [20], and KrigMe [21].
However, none of these are available as a QGIS plugin. Given the potential application of
ML and the need to integrate QGIS into a system for digital mapping of soil attributes, this
study aimed to develop a plugin called Smart-Map that is integrated with QGIS software
for digital mapping using OK and ML as interpolation methods.

2. Materials and Methods

Smart-Map was registered with the National Institute of Industrial Property (INPI,
Ministry of Economy, Brazil, BR 51 2021 000002-1). Its latest version can be found on
GitHub web site. Available online: https://github.com/gustavowillam/SmartMapPlugin
(accessed on 25 May 2022) or installed from the QGIS plugin repository. Available online:
https://plugins.qgis.org/plugins/Smart_Map (accessed on 25 May 2022). Python 3.7 was
used to develop the software, being compatible with macOS, Linux, and Windows oper-
ating systems. The graphical user interface (GUI) was designed using PyQt5 (Riverbank
Computer Limited, Dorchester, United Kingdom). The software is a plugin to QGIS version
3.10 or higher.

2.1. Smart-Map Implementation

To validate the OK and ML methodology used by Smart-Map, a case study was con-
ducted, where the accuracy of the interpolation of soil attributes was compared using OK
and ML for different sampling grids. For the OK interpolation method, the protocols and
equations described by [22] were adopted. The developed plugin allows the user to fit five
models of isotropic theoretical semivariograms: linear, linear with sill, exponential, spherical,
and Gaussian. The semivariogram model was chosen using a cross-validation method.

The Support Vector Machine (SVM) method is a machine learning algorithm, developed
in the 1990s and used for both regression and classification of datasets [23]. The SVM
method was chosen for interpolation because it can handle smaller and larger volumes
of data [24]. For most ML algorithms, it is necessary to fit hyperparameters that need
to be chosen by the user because they depend on the data type and variation. For the
SVM algorithm, hyperparameters such as C and gamma (γ) were optimized using a
systematic grid search method [25,26], enabling automated fitting. Hence, the C and
gamma hyperparameters were optimized based on the RMSE value found during cross-
validation. Kernel function is another important hyperparameter for SVM. For the plugin,
the Radial Basis Function (RBF) kernel was chosen because it is a non-linear function and
can be fitted to most of the data.

In addition to the generation of interpolation maps, Smart-Map can perform cluster
analyses using the fuzzy k-means method [27], yielding Management Zones (MZ) maps. To
define the ideal number of classes, Smart-Map calculates the FPI (Fuzzy Performance Index)
and NCE (Normalized Classification Entropy) indices, which are widely recommended
in the literature to define the appropriate number of MZs [28,29]. To execute the cluster
process and define the MZs, the fuzzy k-means algorithm of the Scikit-Fuzzy Python library

https://github.com/gustavowillam/SmartMapPlugin
https://plugins.qgis.org/plugins/Smart_Map
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was implemented [30]. The flowchart of the Smart-Map plugin is shown in Figure 1, whereas
Figure 2 shows the GUI for map interpolation using OK and SVM in Smart-Map.
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2.2. Case Study for Smart-Map Plugin Evaluation

A case study to evaluate Smart-Map was conducted in an area of 75 ha, located between
the municipalities of Anápolis and Goianápolis at latitude and longitude of approximately
−16.274839 and −48.593840, in the central region of the state of Goiás, Brazil (Figure 3).
This area is cultivated with soybean, has an average altitude of 1017 m, a flat relief with
a soil predominantly classified as Ferralsols, based on the World Reference Base for Soil
Resources [31]. Soil samples were collected using a regular grid with a sampling density of
two points per hectare, totaling 150 composite samples. The samples were georeferenced
with a topographic GNSS Promark 3 (Magellan Co., Santa Clara, CA, USA). Each composite
sample comprised 10 individual samples (0 to 0.20 m depth), collected within a 3 m
radius. Composite samples were homogenized, packed in plastic bags and identified
using a composite sample number. Laboratory analyses were performed to measure the
concentrations of macronutrients (P, K+, Ca2+ and Mg2+), organic matter, cation exchange
capacity at pH 7, and particle size. Data of apparent soil electrical conductivity (ECa)
were also collected on five dates (Eca_1 measured on 11/11/2010, Eca_2 measured on
11/23/2010, Eca_3 measured on 12/04/2010, Eca_4 measured on 12/13/2010 and Eca_5
measured on 01/26/2011) using a portable conductivity meter Landviser LandMapper®

ERM 02 (Landviser LLC, League City, TX, USA). This device measures the electrical
resistivity of the soil using four equally spaced electrodes [32]. The apparent electrical
conductivity of the soil is obtained by 1/resistivity. The data used in the case study,
were made available to the research community [33]. Descriptive statistics of the data are
presented in Table 1.
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Figure 3. Geographical location of the study area and distribution of sampling points in
Anápolis/Goianápolis, Goiás, Brazil.

Table 1. Descriptive statistics of soil attributes in the area of study.

Variable Unit Min Max Mean SD (17) Median CV(%) (18)

P (1) mg dm−3 1.70 21.60 6.84 3.96 5.85 57.88
K+ (2) mg dm−3 24.00 108.00 52.63 14.20 51.00 26.98

Ca2+ (3) cmolc dm−3 1.90 4.20 3.27 0.46 3.30 14.04
Mg2+ (4) cmolc dm−3 0.60 1.40 0.84 0.14 0.80 16.53
OM (5) dag kg−1 2.50 4.30 3.06 0.30 3.10 9.85
CEC (6) cmolc dm−3 4.20 9.90 5.95 0.86 5.90 14.41

Altitude (7) m 987 1025 1011.2 7.63 1012.1 0.75
Clay (8) g kg−1 26.00 44.00 33.11 3.37 33.00 10.17
Silt (9) g kg−1 6.00 20.00 10.60 2.94 10.00 27.78

Sand (10) g kg−1 45.00 65.00 56.28 4.41 56.50 7.84
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Table 1. Cont.

Variable Unit Min Max Mean SD (17) Median CV(%) (18)

Eca_1 (11) mS m−1 2.49 8.36 4.92 1.01 4.83 20.62
Eca_2 (12) mS m−1 2.95 10.00 5.95 1.22 5.99 20.56
Eca_3 (13) mS m−1 1.71 9.11 4.54 1.13 4.51 24.86
Eca_4 (14) mS m−1 1.84 7.32 3.98 0.88 3.94 22.09
Eca_5 (15) mS m−1 0.89 5.57 2.65 0.71 2.61 26.67

Eca_Avg (16) mS m−1 2.17 8.03 4.41 0.84 4.44 19.08
(1) P, Phosphorus; (2) K+, Potassium; (3) Ca2+, Calcium; (4) Mg2+, Magnesium; (5) OM, Organic Matter; (6) CEC,
cation exchange capacity at pH 7; (7) Altitude; (8) Clay; (9) Silt; (10) Sand; (11) Eca_1, Apparent Soil Electrical
conductivity measured on 11/11/2010; (12) Eca_2, Apparent Soil Electrical conductivity measured on 11/23/2010;
(13) Eca_3, Apparent Soil Electrical conductivity measured on 12/04/2010; (14) Eca_4, Apparent Soil Electrical
conductivity measured on 12/13/2010; (15) Eca_5, Apparent Soil Electrical conductivity measured on 01/26/2011;
(16) Eca_Avg, Mean Value of Apparent Soil Electrical conductivity of Eca_1, Eca_2, Eca_3, Eca_4, Eca_5; (17) SD,
Standard Deviation; (18) CV, Coefficient of Variation.

2.3. Methods of Interpolation and Spatial Correlation Analysis

In the case study, an interpolation grid of 10 m × 10 m was defined to perform
interpolation by OK and SVM. To interpolate each point of the grid using OK, the search
radius was defined equal to the range obtained by the theoretical semivariogram; the
maximum number of neighbors was defined as 16. For interpolation by OK, Smart-Map uses
the Python open-source PyKrige library [34]. The PyKrige library performs the interpolation
using the k-nearest neighbors method. The library was adapted to also accept the search
radius. Interpolation was performed using the k-nearest neighbors method or using a
neighborhood search radius, selected by the user.

For interpolation by SVM, a supervised learning model, available in the open-source
Scikit-Learn Python library, was implemented [35]. For modeling, it is necessary to construct
the X matrix and y vector. The X matrix is composed of columns with the features (covariates)
and rows, which are the soil samples. In the X matrix, the geographic coordinates x and y of
the point to be interpolated were added as features. In addition to geographic coordinates,
other features, including the feature of the variable itself, were added in the X matrix. In
this case, the feature is created based on the calculation of the Inverse Distance Weighting
(IDW) of the nearest neighbors to the point to be interpolated. The y vector was composed
of the observed (true) values of each soil attribute to be interpolated. In this case study,
the attributes P, K+, Ca2+, and Mg2+ were interpolated variables. Thus, the observed value
obtained for the point is part of the y vector and is not used for feature creation, rather
merely the IDW of neighbors of the point were considered. In addition, Smart-Map allows
the use of data from other layers in the QGIS database (vector or raster) as features.

In the case study, two methods of modeling by SVM were used, which were termed
as SVM1 and SVM2. For the SVM1 method, the geographic coordinates (x and y) and the
value of the variable itself, which was estimated using the IDW interpolation method, were
used as features. In SVM2, those features that were more correlated with the variable to
be interpolated were used as covariates, in addition to the geographic coordinates (x and
y) and the value of the variable itself, interpolated using IDW. The selection of covariates
was made based on the spatial correlation of Moran’s Index (I’Moran), one of the most
popular indices for evaluation of spatial correlation [36] of regionalized variables. The
univariate I’Moran was used to compare the degree of correlation of the variable itself in
different distance spaces (spatial autocorrelation). The univariate I’Moran measures the
autocorrelation of the variable to be interpolated. This index was used as an indicator of
the spatial dependence of each attribute [37]. A univariate I’Moran value equal to zero
means that the variable under study does not show spatial correlation. The closer the
value is to 1 or −1, the greater the autocorrelation, that is, the greater the spatial correlation
of the variable [6,38]. Univariate I’Moran was calculated according to Equation (1) [39].
The bivariate I’Moran was used to measure the spatial correlation between the available
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covariates such as CEC, OM, Altitude, Clay, Silt, Sand, and ECa, with the attribute that was
interpolated. Its value was calculated according to Equation (2) [40].

I =
n

∑n
i=1 ∑n

j=1 wij
.

∑n
i=1 ∑n

j=1 wij(xi − x).
(
xj − x

)
∑n

i=1(xi − x)2 (1)

Ix, y =
∑n

i=1

[(
∑n

j=1 wij
(

xj − x
))

.
(

∑n
j=1 wij

(
yj − y

))]√
∑n

i=1(xi − x)2.
√

∑n
i=1(yi − y)2

(2)

where: n is the number of observations in the area under study; xi, xj represent the observed
values of the soil attributes to be interpolated at the points i, j; yi, yj represent the observed
values of the selected covariate at the points i, j; x is the average of x; y is the average of
y; wij are the elements of the matrix of spatial weights with value 0 on the diagonal (wii = 0).

The optimal subset of covariates for the SVM2 method was selected considering the
bivariate I’Moran. Covariates that showed greater spatial correlation with the variable to
be interpolated were added to the SVM2 method. To verify the significance of I’Moran, the
pseudo p-value was obtained from 999 permutations between the points of the sampling
grid at 1% and 5% probability levels. For the calculation of I’Moran, Smart-map used the
PySAL open-source Python library [41].

2.4. Generation of Scenarios and Performance Criteria for Comparison between Interpolation Methods

To compare the performance of the OK method and the SVM models (SVM1 and
SVM2) at various sampling densities, the regular grid of 150 points in the area was reduced
to grids with lower densities (25%, 50%, and 75%). Three grids were obtained with 38, 75,
and 112 points, respectively. These points were used for semivariogram modeling in the
OK method and definition of the training set in the SVM model, whereas the remaining
points were used for verification of the accuracy of the prediction. Figure 4a shows the
original grid with 150 points and the reduced grids composed of modeling and testing data.
In the grid with 38 points (Figure 4b), 38 points were used for modeling and 112 points
for testing. In the grid with 75 points (Figure 4c), 75 points were used for modeling and
75 points were used for testing. In the grid with 112 points (Figure 4d), 112 points were
used for modeling and 38 points were used for testing.

From the reduction of the sampling grid, interpolated maps were generated using
the sets of training points for the OK method and the SVM model at the three densities of
sampling grids. In this case study, the attributes P, K+, Ca2+, and Mg2+ were interpolated.
For modeling, the SVM method requires the adjustment of two hyperparameters, C and
gamma. K-fold cross-validation was used to obtain optimal values of these hyperparameters.
Validation with 5-folds was used to optimize the model in the selection of the best hyper-
parameters using the training dataset. The leave-one-out cross-validation (LOOCV) [42]
method was used to measure the performance of the implemented methods. LOOCV con-
sists of using all data and leaving one data point out and has been widely used due to its
mathematical simplicity. The outside point is then interpolated by one of the interpolation
methods [43]. This strategy was applied to all samples in the set. As the actual values of
the set are known, the Coefficient of Determination (R2) and RMSE values of the LOOCV
were calculated. The R2 and the RMSE of predicted and observed data of LOOCV were
calculated for each model and for each interpolated attribute. The test sets were used to
calculate the R2 and RMSE of each map obtained by interpolation of P, K+, Ca2+ and Mg2+,
after modeling. For this, the interpolated values of P, K+, Ca2+ and Mg 2+ were extracted
from the same places where the test points were located. R2 and RMSE were calculated
using Equations (3) and (4), for P, K+, Ca2+, and Mg2+ for the various sampling grids.

R2 = 1 − ∑n
k=1(xk − x̂k)

2

∑n
k=1(xk − x)2 (3)
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RMSE =

√
1
n ∑n

k=1(xk − x̂k)
2 (4)

where: x̂k represents the estimated value of the soil attribute at the point k; x is the average
of the n sampled points of the soil attribute; xk is the observed value of the soil attribute at
the point k; and n is the number of points sampled.
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2.5. Definition and Selection of Features for the SVM Model

To define the features to be inserted in the SVM model, the user defines the Inverse
Distance Weighting (IDW) parameters such as the weighting value (p), the search radius,
and the number of neighbors (n) to consider for calculating the feature for the X matrix. In
the case study, a search radius equal to the maximum distance between the sampled points
was used, the number of neighbors was equal to 16 and a weight (p) equal to unity were
used as default values.

Figure 5a shows a selection of the 16 closest neighbors to the point where the user
wishes to estimate the attribute value using the IDW method of the selected attribute of
the QGIS layer (target_A). Figure 5b shows how the ML model for the SVM1 and SVM2
methods was constructed divided into features (X matrix) and variable to be interpolated
(y vector). Each row of the training data represents a sample of the grid. In the X matrix,
coordX and coordY are the x and y coordinates of the sampled point, respectively; idwA
represents the estimated value for the variable based on IDW using the 16 neighbors closest
to the sampled point of the attribute to be interpolated; idw_At1, idw_At2, idw_Atn represent
the estimated value based on IDW using the 16 neighbors closest to the sampled point of
the selected features. In the y vector, target_A represents the sampled values of the attribute
to be interpolated, which were P, K+, Ca2+, and Mg2+.
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Figure 5. Construction of the ML model. (a) Selection of the 16 closest neighbors to the point where
the user wishes to estimate the attribute value using the IDW method. (b) Definition of the ML model
(Train_Features) for the methods SVM1 and SVM2: features (X matrix) and target (y vector). (c) SVM
model trained for the methods SVM1 and SVM2. (d) Map interpolated from the test set.

For SVM1, the features consisted of the coordinates (coordX and coordY) of the point
and the IDW value of the variable (y) using the 16 neighbors closest to the sampled point,
within the defined search radius of the attribute to be estimated. The variable to be
interpolated (y) represents the observed soil attribute, for which the user wishes to predict
its values at unsampled locations. In this case study, the variables are P, K+, Ca2+ and Mg2+.
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In the second approach (SVM2), the features were the coordinates (coordX and coordY),
and the IDW of 12 covariates available in the study area: OM, CEC, Altitude, Clay, Silt,
Sand, ECa_1, ECa_2, ECa_3, ECa_4, ECa_5, and ECa_Avg. In this case, the features used
originated from the original grid with 150 points. This was done because the goal of using
the SVM is to take advantage of information that has been densely sampled in the area.
These data can be obtained by sensors or comprise quasi-static information.

The R2 accuracy metric of the LOOCV cross-validation was applied for each subset
of covariate added. The subset of covariates that had the best value of R2 was chosen to
define the SVM model to be used for the variable to be interpolated. This selection was
performed considering all features for grids with 38, 75, and 112 sampling points. The final
trained SVM model was obtained after performing the LOOCV of all points of the training
set (Figure 5c). With the trained model, the interpolation of soil variables (P, K+, Ca2+, and
Mg2+) was performed, thus obtaining the interpolated map for the attribute (Figure 5d).

3. Results and Discussion

In this section we discuss the results of the spatial correlation obtained through the
I’Moran method between the covariates used by the SVM1 and SVM2 methods and the
interpolated variables (P, K+, Ca2+, and Mg2+). In addition, a performance comparison
between the OK and SVM methods is discussed. The OK and SVM1 methods used only
the estimated value of the variable to be interpolated as an input feature for the model. The
SVM2 method used, in addition to the estimated value of the variable, the covariates with
the highest spatial correlation with the variable to be interpolated as input for the model.

3.1. Spatial Correlation and Selection of Covariates for the SVM Model

For spatial correlation analysis at the three densities of sampling grid, bivariate
I’Moran was used to measure the correlation between the contents of the macronutri-
ents P, K+, Ca2+, and Mg2+ and the covariates with highest temporal stability (CEC, OM,
Altitude, Clay, Silt, Sand, ECa_1, ECa_2, ECa_3, ECa_4, ECa_5, ECa_Avg). Figure 6 shows
the values of univariate I’Moran for the variables to be interpolated (P, K+, Ca2+, and Mg2+)
and bivariate I’Moran between the variables to be interpolated and the covariates with
greatest temporal stability for the sampling densities of 38, 75, and 112 points.

Figure 6 shows that apparent soil electrical conductivity (ECa) measured on five dates
showed a significant positive correlation with the attributes Mg2+ and Ca2+, with values
ranging from 0.12 (between Ca2+ and ECa_4, grid of 75 points) to 0.61 (between Mg2+ and
ECa_Avg, grid of 38 points). For the interpolation of these two soil attributes, ECa was
used as a covariate in the SVM2 method at the three densities of sampling grids (Figure 6).
In the grid of 38 sampling points (Figure 6a), the covariates ECa_1 for the attributes Mg2+

and Ca2+ and CEC for Ca2+ were used. In the grid with 75 points (Figure 6b), ECa_Avg was
used for the Mg2+ attribute and ECa_1 was used for the Ca2+ attribute. Finally, in the grid
with 112 sampling points (Figure 6c), the attributes OM and ECa_1 for Mg2+ and ECa_Avg
for Ca2+ were used as interpolation covariates.

ECa showed low correlations with the attributes P and K+, implying a lower potential
for use as covariates to interpolate P and K+. ECa_4 was used to interpolate only the P
attribute in the grid with 38 points, since the correlation was significant with I’Moran of
−0.18 (Figure 6a). For the same grid, CEC was used as a covariate for the K+ attribute. For
the grid with 75 points (Figure 6b), the covariates CEC and OM were used for the K+ attribute
and the covariate Altitude was used for the P attribute. According to Figure 6b, Altitude
presented the highest spatial correction of I’Moran with attribute P, 0.19 and p-value ≤ 0.05,
as well as attribute Sand. However, only Altitude was used because presented the best score
in LOOCV. For the grid with 112 points (Figure 6c), the K+ attribute used the covariates
CEC, OM, and Altitude, and the P attribute used Sand as covariate for interpolation.



Agronomy 2022, 12, 1350 11 of 20Agronomy 2022, 12, x FOR PEER REVIEW 13 of 23 
 

 

 

Figure 6. Univariate Global Moran’s Index for the soil attributes P, K+, Ca2+, and Mg2+ and bivariate 

Moran’s Index among soil attributes P, K+, Ca2+, and Mg2+ and covariates for the sampling grids of 

the training set with: (a) 38 points; (b) 75 points; (c) 112 points. *, ** indicating significance at 0.05 

and 0.01 levels, respectively. *** covariates were used by the SVM2 method to interpolate the soil 

attributes P, K+, Ca2+, and Mg2+. 

3.2. Comparison between OK and SVM Methods 

For the training set, at three different densities of sampling grids, the values of R2 

(Figure 7) show that the SVM2 method was superior for the four soil attributes analyzed 

(P, K+, Ca2+, and Mg2+), except for K+ in the grid with 75 points. The univariate I’Moran for 

the K+ attribute was 0.72 and significant at a 1% probability level in the grid with 75 points, 

as shown in Figure 6b. Values of R2 for the SVM2 method in the training set ranged from 

0.16 to 0.38. Compared to the SVM1 method, the SMV2 method obtained a higher R2 for 

all attributes analyzed in all point densities of the sampling grids. 

Figure 6. Univariate Global Moran’s Index for the soil attributes P, K+, Ca2+, and Mg2+ and bivariate
Moran’s Index among soil attributes P, K+, Ca2+, and Mg2+ and covariates for the sampling grids of
the training set with: (a) 38 points; (b) 75 points; (c) 112 points. *, ** indicating significance at 0.05
and 0.01 levels, respectively. *** covariates were used by the SVM2 method to interpolate the soil
attributes P, K+, Ca2+, and Mg2+.

3.2. Comparison between OK and SVM Methods

For the training set, at three different densities of sampling grids, the values of R2

(Figure 7) show that the SVM2 method was superior for the four soil attributes analyzed (P,
K+, Ca2+, and Mg2+), except for K+ in the grid with 75 points. The univariate I’Moran for
the K+ attribute was 0.72 and significant at a 1% probability level in the grid with 75 points,
as shown in Figure 6b. Values of R2 for the SVM2 method in the training set ranged from
0.16 to 0.38. Compared to the SVM1 method, the SMV2 method obtained a higher R2 for all
attributes analyzed in all point densities of the sampling grids.
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Figure 7. Coefficient of Determination (R2) calculated for the attributes P, K+, Ca2+, and Mg2+ among
three sampling grids for the training set.

OK showed the lowest coefficients of determination values for the attributes P, K+, and
Ca2+ in the grid with 38 points (Figure 7). The values of univariate I’Moran for P and K+

were low and not significant for the two soil attributes analyzed (Figure 6a). As mentioned
by [2,3], OK requires a minimum number of sampling points for good semivariogram
modeling. For the grid with 38 points, the SVM2 method performed better than the OK
method, with R2 values ranging from 0.19 to 0.38. For the P attribute, the three methods had
the lowest values of R2. These data corroborate Figure 6, in which the values of univariate
and bivariate I’Moran were low for the P attribute. In general, OK, SVM1, and SVM2
showed lower R2 values for the grid of 38 sampling points, compared to grids with higher
sampling density.

As in the training set, the values of R2 were also higher for the SVM2 method in the
test set (Figure 8). The lowest correlation coefficient for the SVM2 method was obtained
for the P attribute in the sampling grid with 38 points in the test set (R2 = 0.15). The
low performance of SVM2 for predicting the P attribute is related to the covariate added
to the grid with 112 points in the training set. The Sand covariate used by the SVM2
method had bivariate I’Moran of 0.14 with the P attribute (Figure 6c). This value was the
lowest used by a covariate added to the SVM2 method. Covariates that have low value of
bivariate I’Moran with the attribute to be interpolated may not contribute or contribute in
a non-significant way to a better performance of the SVM2 method. [16] claim that the low
correlation between predictor variables and the dependent variable (y) directly impacts the
performance of the ML model.

The RMSE values for the soil attributes P, K+, Ca2+, and Mg2+, for the OK, SVM1, and
SVM2 methods are shown in Tables 2 and 3 for the training and test sets, respectively. In
Table 2 the training sets with 38, 75, and 112 points were displayed, while in Table 3 their
respective test sets are 112, 75, and 38 points, in this order, thus totaling 150 sampled points
divided between training and testing. As expected, the RMSE values tended to be lower for
greater values of R2 for the training set (Figure 7 and Table 2) and for the test set (Figure 8



Agronomy 2022, 12, 1350 13 of 20

and Table 3). Similar results have been observed in other studies [5,15]. With lower RMSE
values (Table 2), it can be inferred that OK was superior to SVM1 in the prediction of P, as
the R2 was similar (R2 = 0.11 and 0.15 in the grids of 75 and 112 points, respectively) as
shown in Figure 7.
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Figure 8. Coefficient of Determination (R2) calculated for the attributes P, K+, Ca2+, and Mg2+ among
three sampling grids for the test set.

Table 2. RMSE values found for P, K+, Ca2+, and Mg2+ for the sampling grids with grid of 38, 75, and
112 sampling points for the training set.

Density 38 Samples 75 Samples 112 Samples

Variable * OK SVM1 SVM2 OK SVM1 SVM2 OK SVM1 SVM2
P 3.24 2.92 2.85 2.91 3.19 2.80 3.36 3.47 3.32

K+ 11.57 10.87 8.94 8.73 9.21 9.03 10.33 10.27 10.09
Ca2+ 0.46 0.42 0.40 0.40 0.40 0.38 0.40 0.40 0.39
Mg2+ 0.12 0.12 0.11 0.10 0.10 0.10 0.11 0.10 0.10

* P, K+ in (mg dm−3), and Ca2+, Mg2+ in (cmolc dm−3).

Table 3. RMSE values found for P, K+, Ca2+, and Mg2+ for sampling grids with density of 112, 75,
and 38 sampling points for the test set.

Density 112 Samples 75 Samples 38 Samples

Variable * OK SVM1 SVM2 OK SVM1 SVM2 OK SVM1 SVM2
P 3.40 3.36 3.22 3.59 3.04 2.74 2.75 1.94 2.79

K+ 9.74 10.05 9.70 12.01 11.77 11.41 9.04 9.46 8.14
Ca2+ 0.41 0.29 0.28 0.41 0.26 0.25 0.41 0.24 0.23
Mg2+ 0.11 0.11 0.07 0.12 0.10 0.10 0.15 0.14 0.10

* P, K+ in (mg dm−3), and Ca2+, Mg2+ in (cmolc dm−3).
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3.3. Maps of Soil Attributes

The maps of soil attributes were generated using the samples selected from the training
sets with 38, 75, and 112 sampling points, as shown in Figure 4. The set of 150 points was
also used to perform interpolation and obtain interpolated maps. The attributes P, K+, Ca2+,
and Mg2+ were interpolated using the methods OK, SVM1, and SVM2, obtaining maps
with four densities of points. To obtain the maps, a grid with 10 m × 10 m cells was used,
totaling 7388 interpolated points. Each interpolated attribute showed a different pattern of
spatial variability (Figures 9–12). This may be associated with the characteristics of mobility
of the attribute in soil, relief shape, soil formation and soil management over time.

The RMSE shown in Table 3 can be interpreted as the interpolation error for each map
obtained by interpolation in each density of the sampling grid and for each soil attribute.
This error was calculated based on the test set, because the values of the maps obtained
by interpolation of P, K+, Ca2+, and Mg2+ were extracted in the same places where the test
points were located, thus calculating the RMSE between the value predicted by the method
and the value observed in the test set.
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points (training): 38 (a.1–c.1), 75 (a.2–c.2), 112 (a.3–c.3), and 150 points (a.4–c.4).
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Figure 10. Maps obtained by interpolation of Potassium (K+): (a) OK, (b) SVM1, (c) SVM2; Set of
points (training): 38 (a.1–c.1), 75 (a.2–c.2), 112 points (a.3–c.3), and 150 points (a.4–c.4).

For the maps obtained by interpolation of the P attribute in the grid with 38 sam-
pling points of the training set (Figure 9(a.1–c.1)), the SVM2 method had the lowest error
(RMSE = 3.22 mg/dm3), considering the test set of 112 points, according to Table 3. For the
grid with a density of 75 sampling points in the training and test set (Figure 9(a.2–c.2)),
SVM2 also had the lowest RMSE (2.74 mg/dm3), followed by SVM1 and OK (Table 3). For
the grid with a density of 112 sampling points in the training set (Figure 9(a.3–c.3)) and 38
test points, the map obtained by interpolation through the SVM1 method showed the lowest
RMSE (1.94 mg/dm3), followed by OK. SVM2 had the highest error (RMSE = 2.79 mg/dm3).
For the map obtained by interpolation in the grid with 150 sampling points of the training
set, it was not possible to calculate the error, since no observed points were separated for
the test set. For this density, the highest P contents are distributed in the central part of the
map (Figure 9(a.4–c.4)).
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For the maps obtained by interpolation of the K+ attribute in grids with 38 (Figure 10(a.1–c.1)),
75 (Figure 10(a.2–c.2)), and 112 (Figure 10(a.3–c.3)) samples of the training set, the SVM2
method had the lowest error, followed by OK in sets with 38 and 112 points and by SVM1
in the set of 75 points (Table 3). For the map obtained by interpolation in the grid of
150 points, the highest concentrations of K+ are located in the east and west parts of the
map (Figure 10(a.4–c.4)).

The SVM2 method obtained the lowest interpolation error in the three densities of
sampling grids, followed by SVM1 and OK for the Ca2+ attribute, as shown in Table 3.
For the grid with density of 150 sampling points, Ca2+ had higher values in the north and
center parts of the study area (Figure 11(a.4–c.4)) for the three interpolation methods.
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Figure 11. Maps obtained by interpolation of Calcium (Ca2+): (a) OK, (b) SVM1, (c) SVM2; Set of
points (training): 38 (a.1–c.1), 75 (a.2–c.2), 112 points (a.3–c.3), and 150 points (a.4–c.4).
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Figure 12. Maps obtained by interpolation of Magnesium (Mg2+): (a) OK, (b) SVM1, (c) SVM2; Set of
points (training): 38 (a.1–c.1), 75 (a.2–c.2), 112 points (a.3–c.3), and 150 points (a.4–c.4).

The Mg2+ attribute, as observed for Ca2+ and K+, had the lowest error for maps
obtained by interpolation through the SVM2 method. In the grid of 75 sampling points
for the training and test set (Figure 12(a.2–c.2)), the SVM1 and SVM2 methods obtained
the same error (RMSE = 0.10 cmolc/dm3). As the R2 value of SVM2 (0.47) was higher than
the R2 in SVM1 (0.41) according to Figure 8, implying that the performance of SVM2 was
better than that of SVM1. The same occurred for the grid with 38 points of the training
set (Figure 12(a.1–c.1)) and the grid with 112 samples in the test set, as the error of the
OK and SVM1 methods was 0.11 cmolc/dm3. OK was superior because it had higher R2

values (Figure 8). For the grid with 150 sampling points, the map obtained by interpolation
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showed spatial behavior with the highest values concentrated in the northern part of the
area (Figure 12(a.4–c.4)).

3.4. Limitations and Future Developments

Smart-Map is a QGIS plugin, allowing generation of interpolated soil attribute maps.
A limitation of the plugin is that the maximum number of sampling points in the input
layer is limited to 1000; for grids exceeding this limit, the plugin resamples the data based
on the neighborhood of the sampled points. Another limitation is that only Ordinary
Kriging and Support Vector Machine methods are implemented. Although both methods
allow for generation of high-quality maps covering a wide range of applications, they do
not necessarily perform well in any conceivable application. In addition, to evaluate the
models, only RMSE and R2 metrics were used based on Leave-one-out cross-validation;
however, for certain applications there are more appropriate metrics.

Future extension of the plugin comprises implementation of Co-Kriging and other
Machine Learning models such as Cubist, XGBoost, and LightGBM. Techniques for selecting
features that are not based on spatial correlation such as Recursive Feature Elimination (RFE)
will be implemented as well. Finally, model evaluation metrics such as EAM (Mean Absolute
Error), RPD (Relative Difference Percentage) and cross-validation techniques such as K-fold
and Holdout will be implemented.

4. Conclusions

Techniques for digital mapping of soil attributes were implemented using Ordinary
Kriging (OK) and the Machine Learning (ML) Support Vector Machine (SVM) algorithm
coded in a Smart-Map plugin for QGIS. Machine Learning interpolation allowed data
from the QGIS database layers of raster- and vector-type to be used as covariates in the
interpolation. The maps generated by the plugin can be exported to QGIS in a shapefile
and/or raster format.

In a case study used to evaluate the performance of the Smart-Map plugin, interpolation
was compared using three methods being Ordinary Kriging (OK), a machine learning
Support Vector Machine method that uses the attribute itself interpolated by Inverse
Distance Weighting (IDW) as covariate (SVM1), and with the use of covariates (SVM2).
Conclusions are as follows:

(1) The SVM2 method was superior to other models in the prediction of soil chemical
attributes for the three densities of points in the sampling grids. The R2 values were
higher in 11 of the 12 combinations among the four soil attributes interpolated in three
densities of points of the sampling grids, considering the training set.

(2) Considering the RMSE of the test set, SVM2 had the lowest error for the prediction
of maps obtained by interpolation for the four soil attributes in the three sampling
densities, except for the P attribute in the SVM1 method with a grid of 38 points in
the test set.

(3) One difficulty encountered by ML algorithms for problems of mapping and prediction
of soil attributes is to handle the excessive number of covariates in the model. Spatial
correlation of I’Moran proved to be efficient for the selection of covariates of greater
importance in the model.

(4) In areas with low spatial correlation of soil attributes and few sampled points, ML
techniques are an alternative to the OK method, especially when covariates with a
higher number of points and a significant level of correlation with the variables to
be interpolated are available. The results in this study confirmed the feasibility and
applicability of ML techniques, especially the “Support Vector Machine” method, for
prediction and mapping of soil chemical attributes on a regional scale.

(5) The developed Smart-Map plugin is available for download on the GitHub website.
Available online: https://github.com/gustavowillam/SmartMapPlugin (accessed on
25 May 2022) and in the QGIS plugin repository Available online: https://plugins.
qgis.org/plugins/Smart_Map (accessed on 25 May 2022). With a user-friendly and

https://github.com/gustavowillam/SmartMapPlugin
https://plugins.qgis.org/plugins/Smart_Map
https://plugins.qgis.org/plugins/Smart_Map
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easy-to-use interface, Smart-Map has over 15,000 downloads according to the QGIS
plugin repository. Information on how to use and obtain the software can be found in
the “Supplementary Materials” section.

Supplementary Materials: The following supporting information can be downloaded at: GitHub
website (https://github.com/gustavowillam/SmartMapPlugin) and in the QGIS plugin repository
(https://plugins.qgis.org/plugins/Smart_Map).
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9. Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.M.; Nikolić, M.; Bajat, B. Random forest spatial interpolation. Remote Sens. 2020, 12,

1–29. [CrossRef]
10. Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81,

401–418. [CrossRef]
11. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 1–29.

[CrossRef] [PubMed]
12. Meier, M.; de Souza, E.; Francelino, M.R.; Fernandes Filho, E.I.; Schaefer, C.E.G.R. Digital soil mapping using machine learning

algorithms in a tropical mountainous area. Rev. Bras. de Ciência do Solo 2018, 42, 1–22. [CrossRef]
13. Parmley, K.A.; Higgins, R.H.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A.K. Machine learning approach for prescriptive

plant breeding. Sci. Rep. 2019, 9, 17132. [CrossRef] [PubMed]
14. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2020. Available online: http://www.r-project.org/ (accessed on 25 May 2022).
15. Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.R.; Filho, E.I.F. Modelling and mapping soil organic carbon

stocks in Brazil. Geoderma 2019, 340, 337–350. [CrossRef]
16. Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678.

[CrossRef]

https://github.com/gustavowillam/SmartMapPlugin
https://plugins.qgis.org/plugins/Smart_Map
http://doi.org/10.1016/j.ecolind.2019.02.026
http://doi.org/10.1016/j.geoderma.2019.02.019
http://doi.org/10.1111/j.1365-2389.1992.tb00128.x
http://doi.org/10.5935/1806-6690.20190061
http://doi.org/10.1016/j.geoderma.2014.08.009
http://doi.org/10.7717/peerj.5518
http://doi.org/10.1016/j.geoderma.2015.11.014
http://doi.org/10.3390/rs12101687
http://doi.org/10.1016/j.apm.2019.12.016
http://doi.org/10.3390/s18082674
http://www.ncbi.nlm.nih.gov/pubmed/30110960
http://doi.org/10.1590/18069657rbcs20170421
http://doi.org/10.1038/s41598-019-53451-4
http://www.ncbi.nlm.nih.gov/pubmed/31748577
http://www.r-project.org/
http://doi.org/10.1016/j.geoderma.2019.01.007
http://doi.org/10.1007/s11222-016-9646-1


Agronomy 2022, 12, 1350 20 of 20

17. QGIS Development Team QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online:
http://qgis.org (accessed on 25 May 2020).

18. Whelan, B.M.; McBratney, A.B.; Minasny, B. VESPER 1.5-spatial prediction software for precision agriculture. In Proceedings of the 6th
International Conference on Precision on Agriculture ASA/CSSA/SSSA, Madison, WI, USA, 14–17 July 2002; Volume 179, pp. 1–14.

19. Remy, N.; Boucher, A.; Wu, J. Applied Geostatistics with SGeMS: A User’s Guide; Cambridge University Press: Cambridge, UK, 2009.
[CrossRef]

20. Coelho, A.L.F.; Queiroz, D.M.; Valente, D.S.M.; Pinto, F.D.A.D.C. An open-source spatial analysis system for embedded systems.
Comput. Electron. Agric. 2018, 154, 289–295. [CrossRef]

21. Valente, D.S.M.; Queiroz, D.M.; Pinto, F.D.A.D.C.; Santos, N.T.; Santos, F.L. Definition of management zones in coffee production
fields based on apparent soil electrical conductivity. Sci. Agric. 2012, 69, 173–179. [CrossRef]

22. Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989.
23. Zhou, X.; Zhang, X.; Wang, B. Online support vector machine: A survey. Adv. Intell. Syst. Comput. 2016, 382, 269–278. [CrossRef]
24. Karamizadeh, S.; Abdullah, S.M.; Halimi, M.; Shayan, J.; Rajabi, M.J. Advantage and drawback of support vector machine

functionality. In Proceedings of the 2014 International Conference on Computer, Communications and Control Technology (I4CT),
Langkawi, Malaysia, 2–4 September 2014; pp. 63–65. [CrossRef]

25. Keskin, H.; Grunwald, S.; Harris, W.G. Digital mapping of soil carbon fractions with machine learning. Geoderma 2019, 339, 40–58.
[CrossRef]

26. Xu, S.; Zhao, Y.; Wang, M.; Shi, X. Comparison of multivariate methods for estimating selected soil properties from intact soil
cores of paddy fields by Vis–NIR spectroscopy. Geoderma 2018, 310, 29–43. [CrossRef]

27. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [CrossRef]
28. Albornoz, E.M.; Kemerer, A.C.; Galarza, R.; Mastaglia, N.; Melchiori, R.; Martínez, C.E. Development and evaluation of an

automatic software for management zone delineation. Precis. Agric. 2018, 19, 463–476. [CrossRef]
29. Chen, S.; Wang, S.; Shukla, M.K.; Wu, D.; Guo, X.; Li, D.; Du, T. Delineation of management zones and optimization of irrigation

scheduling to improve irrigation water productivity and revenue in a farmland of northwest China. Precis. Agric. 2019, 21,
655–677. [CrossRef]

30. Warner, J.; Sexauer, J.; Unnikrishnan, A. JDWarner/Scikit-Fuzzy: Scikit-Fuzzy, Version 0.4.2. Available online: https://scikit-
fuzzy.github.io/scikit-fuzzy/ (accessed on 18 July 2019).

31. WRB-IUSS World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils
and creating legends for soil maps. World Soil Resource. Report. 2015, 106, 1–191.

32. Calamita, G.; Brocca, L.; Perrone, A.; Piscitelli, S.; Lapenna, V.; Melone, F.; Moramarco, T. Electrical resistivity and TDR methods
for soil moisture estimation in Central Italy Test-Sites. J. Hydrol. 2012, 454–455, 101–112. [CrossRef]

33. Costa, M.M.; de Queiroz, D.M.; Pinto, F.D.A.D.C.; dos Reis, E.F.; Santos, N.T. Moisture content effect in the relationship between
apparent electrical conductivity and soil attributes. Acta Sci. Agron. 2014, 36, 395–401. [CrossRef]

34. Muphy, B.; Mullher, S.; Yurchark, R. GeoStat-Framework/PyKrige, Version v1.5.1. Available online: https://github.com/GeoStat-
Framework/PyKrige (accessed on 8 January 2020).

35. Pedregosa, F.; Varoquaux, G.; Granfort, A.; Michel, V.; Thirion, B. Scikit-Learn: Machine learning in python. J. Mach. Learn. Res.
2011, 12, 2825–2830. [CrossRef]

36. Huo, X.-N.; Li, H.; Sun, D.-F.; Zhou, L.-D.; Li, B.-G. Combining geostatistics with Moran’s i analysis for mapping soil heavy
metals in Beijing, China. Int. J. Environ. Res. Public Health 2012, 9, 995–1017. [CrossRef]

37. Pereira, G.W.; Valente, D.S.M.; de Queiroz, D.M.; Santos, N.T.; Fernandes-Filho, E.I. Soil mapping for precision agriculture using
support vector machines combined with inverse distance weighting. Precis. Agric. 2022, 23. [CrossRef]

38. Liu, Q.; Xie, W.J.; Xia, J.B. Using semivariogram and Moran’s i techniques to evaluate spatial distribution of soil micronutrients.
Commun. Soil Sci. Plant Anal. 2013, 44, 1182–1192. [CrossRef]

39. Legendre, P.; Fortin, M.-J. Spatial pattern and ecological analysis. Vegetatio 1989, 80, 107–138. [CrossRef]
40. Lee, S. Developing a bivariate spatial association measure: An integration of Pearson’s r and Moran’s i. Geogr. Syst. 2001, 3,

369–385. [CrossRef]
41. Rey, S.J.; Anselin, L. PySAL: A Python Library of Spatial Analytical Methods; Fischer, M., Getis, A., Eds.; Springer: Berlin/Heidelberg,

Germany, 2010.
42. Celisse, A.; Robin, S. Nonparametric density estimation by exact leave-p-out cross-validation. Comput. Stat. Data Anal. 2008, 52,

2350–2368. [CrossRef]
43. Cawley, G.C.; Talbot, N.L.C. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognit.

2003, 36, 2585–2592. [CrossRef]

http://qgis.org
http://doi.org/10.1017/cbo9781139150019
http://doi.org/10.1016/j.compag.2018.09.019
http://doi.org/10.1590/S0103-90162012000300001
http://doi.org/10.1007/978-3-662-47926-1_26
http://doi.org/10.1109/I4CT.2014.6914146
http://doi.org/10.1016/j.geoderma.2018.12.037
http://doi.org/10.1016/j.geoderma.2017.09.013
http://doi.org/10.1016/0098-3004(84)90020-7
http://doi.org/10.1007/s11119-017-9530-9
http://doi.org/10.1007/s11119-019-09688-0
https://scikit-fuzzy.github.io/scikit-fuzzy/
https://scikit-fuzzy.github.io/scikit-fuzzy/
http://doi.org/10.1016/j.jhydrol.2012.06.001
http://doi.org/10.4025/actasciagron.v36i4.18342
https://github.com/GeoStat-Framework/PyKrige
https://github.com/GeoStat-Framework/PyKrige
http://doi.org/10.1007/s13398-014-0173-7.2
http://doi.org/10.3390/ijerph9030995
http://doi.org/10.1007/s11119-022-09880-9
http://doi.org/10.1080/00103624.2012.755999
http://doi.org/10.1007/BF00048036
http://doi.org/10.1007/s101090100064
http://doi.org/10.1016/j.csda.2007.10.002
http://doi.org/10.1016/S0031-3203(03)00136-5

	Introduction 
	Materials and Methods 
	Smart-Map Implementation 
	Case Study for Smart-Map Plugin Evaluation 
	Methods of Interpolation and Spatial Correlation Analysis 
	Generation of Scenarios and Performance Criteria for Comparison between Interpolation Methods 
	Definition and Selection of Features for the SVM Model 

	Results and Discussion 
	Spatial Correlation and Selection of Covariates for the SVM Model 
	Comparison between OK and SVM Methods 
	Maps of Soil Attributes 
	Limitations and Future Developments 

	Conclusions 
	References

