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Abstract—The solutions offered to-date for end-user privacy in

smart meter measurements, a well-known challenge in the smart

grid, have been tied to specific technologies such as batteries or

assumptions on data usage without quantifying the loss of benefit

(utility) that results from any such approach. Using tools from in-

formation theory and a hidden Markov model for the measure-

ments, a new framework is presented that abstracts both the pri-

vacy and the utility requirements of smart meter data. This leads to

a novel privacy-utility tradeoff problemwithminimal assumptions

that is tractable. For a stationary Gaussian model of the electricity

load, it is shown that for a desired mean-square distortion (utility)

measure between the measured and revealed data, the optimal pri-

vacy-preserving solution: i) exploits the presence of high-power but

less private appliance spectra as implicit distortion noise, and ii)

filters out frequency components with lower power relative to a

distortion threshold; this approach encompasses many previously

proposed approaches to smart meter privacy.

Index Terms—Smart meter, privacy, utility, rate-distortion, in-

ference, leakage.

I. INTRODUCTION

O NE OF THE hallmarks of the smart grid is a vastly
expanded information collection and monitoring system

using smart meters and other new technologies. But the infor-
mation that is collected and harnessed to create a more efficient
grid may potentially be used for other purposes, thereby raising
the question of privacy, especially of the residential consumer
whose smart meter data is being collected [1], [2].
Privacy of smart meter data has become a popular topic of re-

search. A common proposed model of privacy loss is related to
the possibility of inferring appliance usage from load data with
the help of load signature libraries. Equivalently, a common pro-
posed solution is the use of energy storage devices (such as a
large rechargeable battery) to “flatten” these signatures [3], [4].
Proposals for privacy protection in smart meter data have also
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used aggregation along dimensions of space (using neighbor-
hood gateways, e.g., [5]) or precision (by noise addition, e.g.,
[6]). However, these approaches lack a formal model of privacy
and thus cannot answer some pertinent questions such as: i) is
detection of appliance usage patterns the only means of losing
privacy?; ii) how much privacy is lost in such methods and to
what extent do the proposed solutions staunch the loss?; and iii)
how much sensitive information can and should be left in the
data so that it is still useful? In other words, current approaches
to privacy only provide privacy assurances, but cannot provide
any guarantees.
We present a formal model for the smart meter time-series

data and metrics for utility and privacy of the data. Observing
that the meter data comprises the cumulative load consumed by
the appliances that are on in an observation time window, we
propose a hidden Markov model for the measurements where
the underlying appliance states (on or off) determine the load
measurements, which in turn are modeled as real valued corre-
lated Gaussian random variables.
We argue that the model of privacy should be abstract and

oblivious of the extraction technology since: i) a technology-
specific solution that works now may not provide the same pri-
vacy assurance in the future; and ii) time series meter data anal-
ysis is in its infancy and one can expect that in the future, data
from smart meters may be mined to infer personal information
in ways that are unknown to us presently [7]. To this end, we
choose mutual information as our privacy metric. By the same
token, it is likely that consumers may want to share data with
third parties in some measured manner to derive some bene-
fits (e.g., energy consumption optimization). Thus, it is essen-
tial to guarantee a measure of utility of the revealed meter data.
In line with the Gaussian model for measurements, we quantify
the utility of the distorted data by constraining the mean squared
error (distortion energy) between the original and revealed sig-
nals.
Our design goal is to provide a framework to accommodate

both legitimate objectives, sharing and hiding, in a fair manner
without completely sacrificing either. Such an overarching
framework that both quantifies privacy and provides a means
for measuring the tradeoff between sharing (utility) and hiding
(privacy) has not yet been presented. Our privacy focus is to
decouple the revealed/collected meter data as much as possible
from the personal actions of a consumer. This insight is based
on the observation that irregular (intermittent) activity such as
kettles or lights turned on manually are much more revealing
of personal actions than regular (continuous) activity such as
refrigerators or lights on timers. Consequently, our approach
to privacy preservation is to distort the data to minimize the
presence of intermittent activity in the data. We use the theory
of rate distortion to quantify the tradeoff between the utility
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(mean square distortion) and privacy (information leakage) for
our proposed model. We show that the privacy-utility tradeoffs
on the total load are achievable using an interference-aware
reverse waterfilling solution, which: i) exploits the presence
of high-power but less private appliance spectra as implicit
distortion noise, and ii) filters out frequency components with
lower power relative to a distortion threshold; this approach
encompasses many previously proposed approaches to smart
meter privacy.
The paper is organized as follows. In Section II, we outline

current approaches to smart meter privacy. In Section III, we de-
velop our model, metrics, and the privacy-utility tradeoff frame-
work. We illustrate our results in Section IV and conclude in
Section V.

II. RELATED WORK

The advantages and usefulness of smart meters in general is
examined in a number of papers; see for example [8] and the
references therein. [3] presents a pioneering view of privacy of
smart meter information: the authors identify the need for pri-
vacy in a home’s load signature as being an inference violation
(resulting from load signatures of home appliances) rather than
an identity violation (i.e., loss of anonymity). Accordingly, they
propose home electrical power routing using rechargeable bat-
teries and alternate power sources tomoderate the effects of load
signatures. They also propose three different privacy metrics:
relative entropy, clustering classification, and a correlation/re-
gression metric. However they do not propose any formal utility
metrics to quantify the utility-privacy tradeoff.
Reference [9] proposes additional protection through the

use of a trusted escrow service, along with randomized time
intervals between the setup of attributable and anonymous data
profiles at the smart meter. Reference [2] shows, somewhat
surprisingly, that even without a priori knowledge of house-
hold activities or prior training it is possible to extract complex
usage patterns from smart meter data such as residential occu-
pancy and social activities very accurately using off-the-shelf
statistical methods. References [2] and [5] propose privacy-en-
hancing designs using neighborhood-level aggregation and
cryptographic protocols to communicate with the energy sup-
plier without compromising the privacy of individual homes.
However, escrow services and neighborhood gateways support
only restricted query types and do not completely solve the
problem of trustworthiness. Reference [4] presents a formal
state transition diagram-based analysis of the privacy afforded
by the rechargeable battery model proposed in [3]. However,
[4] does not offer a comparable model of utility to compare the
risks of information leakage with the benefits of the information
transmitted.
In [6], the authors present a method of providing differential

privacy over aggregate queries modeling smart meter measure-
ments as time-series data from multiple sources containing tem-
poral correlations. While their approach has some similarity to
ours in terms of time-series data treatment, their method does
not seem generalizable to arbitrary query types. On the other
hand, [10] introduces the notion of partial information hiding
by introducing uncertainty about individual values in a time se-
ries by perturbing them. Our method represents a more general

approach to time series data perturbation that guarantees that the
perturbation cannot be eliminated by averaging.
Recently, the authors of [11] investigate the use of a battery

to achieve the effect of a “Non-intrusive Load Leveling Al-
gorithm” (NILL) to mask appliance features that are used by
non-intrusive appliance load monitoring (NALM) algorithms to
detect appliances turning on or off. Similar to [4], they model
battery discharge policy so that the unique features in the power
consumption graph used by NALM algorithms are removed.
While they determine the parameters for their system (size of
battery and battery policy) using sample measurements, they
do not offer an analytical method to determine the system pa-
rameters and their privacy guarantees are based on assumptions
about how NALM algorithms work. Our approach is to avoid
making assumptions on how sensitive information may be ex-
tracted from power consumption data along with an analytical
way to determine system parameters.

III. OUR CONTRIBUTIONS

The primary challenge in characterizing the privacy-utility
tradeoffs for smart meter data is creating the right abstrac-
tion—we need a principled approach that provides quantitative
measures of both the amount of information leaked as well as
the utility retained, does not rely on any assumptions of data
mining algorithms, and provides a basis for a negotiated level
of benefit for both consumer and supplier [12]. Reference [4]
provides the beginnings of such a model—the authors assume
that in every sampling time instant, the net load is either
0 or 1 power unit represented by the smart meter readings

which is a discrete-time sequence of binary
independent and identically distributed values. They model the
battery-based filter of [3] as a stochastic transfer function that
outputs a binary sequence that tells the electricity provider
whether the home is drawing power or not at any given moment.
The amount of information leaked by the transfer function is
defined to be the mutual information rate between the
random variables and . By modeling the battery charging
policy as a 2-state stochastic transition machine, they show
that there exist battery policies that result in less information
leakage than from the deterministic charging policy of [3].
Though [4] does not provide a general utility function to go
with the chosen privacy function and the modeling assump-
tions are extremely simplistic, it nevertheless provides a good
starting point for our framework.
In our model, we assume that the load measurements are sam-

pled (at an appropriate frequency) from a smart meter, that they
are real-valued, and can be correlated (to model the temporal
memory of both appliances and human usage patterns). Rather
than assume any specific transfer function, we assume an ab-
stract transfer function that maps the input load measurements
into an output sequence . As in [4], we assume a mutual

information rate as a metric for privacy leakage; however, we
allow for the fact that a large space of (unknown to us) infer-
ences can be made from the meter data—i.e., we model the in-
ferred data as a random variable correlated with the measure-
ment variable . Thus, the privacy leakage is the mutual infor-
mation between and . We also provide an abstract utility
function that measures the fidelity of the output sequence by
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limiting the Euclidean distance (mean square error) between
and . Using these abstractions and tools from the theory of rate
distortion we are able to meet all our requirements for a general
but tractable privacy-utility framework: the privacy and utility
requirements provide opposing constraints that expose a spec-
trum of choices for trading off privacy for utility and vice-versa.

A. Notation

Before proceeding, we summarize the notation used in
the sequel. Random variables (e.g., ) are denoted with
uppercase letters and their realizations (e.g., ) with the
corresponding lowercase letters. denotes an -length
vector while bold font denotes a matrix. denotes the
identity matrix. denotes an -variable real Gaussian
distribution with mean and covariance . denotes

denotes mutual information; denotes
differential entropy. Finally, in the sequel we use the term
reverse waterfilling solution to denote a mutual information
(e.g., rate or leakage) minimizing source coding solution
for Gaussian sources with memory [13, Ch. 4] (see also the
appendix).

B. Model

Wewrite , to denote the sampled load mea-
surements from a smart meter. In general, are complex valued
corresponding to the real and reactive measurements and are
typically vectors for multi-phase systems [14]. For simplicity
and ease of presentation, we model the meter measurements as
a sequence of real-valued scalars (for example, such a model
applies to two-phase 120 V appliances for which one of the two
phase components is zero).
At any time, the load measurements are determined by the ap-

pliances actively in use. In general, there is a finite time window
during which an appliance is used and the meter measurements
during that time are correlated with the specific appliance used.
Furthermore, the statistics of the load measurements change as
the appliances used change, i.e., the measurement data can be
viewed as being generated by a quasi-stationary source.
Let denote the total number of appliances at a residence;

since each appliance can be either on or off in any window of
time, we have possible appliance states. In general, the ap-
pliance state at any time is an instantiation of a random process
that is highly correlated with the personal habits of members
of a household. We denote this state process by such
that is the random state variable in
the th time instant, for all . Associated with this state, is the
meter measurement variable in the same time instant. For-
mally, we model the joint probability distribution of the states

and measurements over
time instants as

(1)

(2)

where denotes the collection of past states, (1) results
from the fact that conditioned on the state, the measurements are

Fig. 1. A hidden Markov model for the meter measurements.

independent of each other, i.e., forms a
Markov chain, and (2) follows from the fact that states are re-
lated in a causal and sequential manner, i.e., we have theMarkov
chain relationship, for all .While appli-
ance use is correlated with personal habits, the Markov model
for the states presented here is a tractable yet general enough
probabilistic approximation for the state sequence. The number
of measurements in a time window is a function of both the
sampling rate typically set to the power supply frequency and
the window size, typically around 15 min.
Remark 1: A home entirely supplied by a rechargeable bat-

tery in a time window can be viewed as having a state
in which no appliance, as viewed by the smart meter, is on.
A hidden Markov model (HMM) (see Fig. 1) such as in (1)

and (2) is typically characterized by three parameters: i) the ini-
tial state distribution; ii) a state transition matrix; and iii) a con-
ditional distribution, assumed to be Gaussian here, which cap-
tures the probability density function of a measurement con-
ditioned on a state . For a stationary HMM process, the state
transition matrix is the same at each time instant, and therefore,
the time durations of the different states are the same on av-
erage. While in general, the duration of usage of the different
appliance states may be different, for simplicity and tractability,
we assume the state is held and the underlying probability dis-
tribution is stationary in a block of measurements.
We now present an explicit probability model for the state

and the measurements. Our model is based on the following
two observations: i) a state remains unchanged for a contin-
uous period of time, assumed here to be ; and ii) in that time,
each appliance that is on in that state generates a sequence of
random (Gaussian distributed) measurements characteristic of
the appliance signature consumption pattern (see for e.g., [14],
[15]). The assumption of randomness models the variability in
appliance manufacturers and voltage fluctuations. It should be
noted that all appliances that can be powered on and off show
a corresponding bimodal behavior in their power consumption.
Our model assumes that when an appliance is in the on state,
its power consumption pattern is approximately Gaussian. The
Gaussian assumption has been borne out for typical appliances
in actual measurements by [16]. We clarify that the on state is
from the point of view of power consumption, which may not
be the same as the user’s perspective. For example, thermostat-
ically controlled appliances such as water heaters, refrigerators,
furnaces, and stoves may be on from the user’s perspective but
off from the perspective of their instantaneous power use. Fur-
thermore, some appliances such as television sets may be in
standby mode in which they may consume a small amount of
power, though usually much less than when they are in the on
state. For simplicity, we assume that appliances are either on or
off (i.e., standby is treated as off).We note later that an appliance
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Fig. 2. Meter measurements obtained as a noisy sum of two Gaussian pro-
cesses, corresponding to the intermittent and continous appliances, respectively
over a time window of length .

may also be considered in the off state if the power is supplied
by a battery.
In general, appliances can be classified as being either on al-

most all the time such as air conditioners, computers, and refrig-
erators, or on intermittently such as ovens, toasters, and kettles.
Without loss of generality, we consider a state in
which both a continual appliance and an intermittent appli-
ance are on. More generally, and could indicate col-
lections of continual and intermittent appliances; furthermore,
the analysis we present in the sequel generalizes in a straight-
forward manner to this case. Let and denote the
length Gaussian distributed time sequences for the states
and , respectively (see Fig. 2). While the transition between
states is given by a Markov model, for any state, since a se-
quence is unique (in autocorrelation and spectral characteristics)
for each appliance, we assume that and are in-
dependent of each other. Note, however, that the entries of each

are correlated due to memory effects. We assume
that the length is chosen such that the memory effects of each
state are contained within the sequence. We henceforth model
the memory via a length for state such that each
entry in a window of length is affected by adjacent en-
tries.
Writing the measurements in ( -length) vector notation, we

have

(3)

where and are
independent of each other and independent of the independent
and identically distributed (i.i.d.) Gaussian noise vector

, and the summation in (3) is a vector (entry-by-entry)
summation.
Remark 2: Since the entries of (resp. are

correlated with each other, in general, each entry of can
be written as a function of its past and future entries and a term
independent of them, such as, for example, an autoregression
model. For a more general analysis, however, we do not restrict
ourselves to any specific correlation model.
Thus, the covariance matrix of in (3) has entries

given by

(4)

(5)

and is a Toeplitz matrix with the autocorrelation entries

(6)

where , and is the
Kronecker delta function which is non-zero only for
and 0 otherwise. The circular -block model for the autocor-
relation allows us to use the discrete Fourier transform (DFT)
to decompose an -length correlated sequence into indepen-
dent Gaussian measurements subject to the same distortion and
leakage constraints, i.e., the Fourier basis is the eigen basis for
each of the state sequences. Denoting the DFT matrix by , we
have

(7a)

(7b)

(7c)

i.e., is a unitary transformation of and has entries
, referred to as the power spectral density of the

Gaussian process . Thus, the of has entries
, that are independent but not identically

distributed Gaussian random variables (r.v.’s) with variance
for the th entry.

For a unitary transform, the distance-based distortion andmu-
tual information based leakage constraints remain unchanged
[13, Ch. 4]. We will use this property in the sequel to determine
the minimal leakage fidelity-preserving mapping of the mea-
surement data. The aim of such a privacy-preserving technique
is to suppress the signatures of appliances used intermittently as
they significantly compromise the end-user privacy relative to
the continually running appliances [17].

C. Utility and Privacy Metrics

Since continuous amplitude sources cannot be transmitted
losslessly over finite capacity links, a sampled sequence of
load measurements is compressed before transmission. In
general, however, even if the sampledmeasurements were quan-
tized a priori, i.e., take values in a discrete alphabet, there may
be a need to perturb (distort) the data in some way to guarantee
a measure of privacy. However, such a perturbation also needs
to maintain a desired level of fidelity.
Intuitively, utility of the perturbed data is high if any function

computed on it yields results similar to those from the original
data; thus, the utility is highest when there is no perturbation and
goes to zero when the perturbed data is completely unrelated to
the original. Accordingly, our utility metric is an appropriately
chosen average “distance” distortion function between the orig-
inal and the perturbed data.
Remark 3: Using distortion between the original and the per-

turbed data as a measure of utility allows us to be agnostic
of the technological or processing constraints on the data; i.e.,
bounding the “distance” between the original and revealed data
is more general and independent of constraints on specific data
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processing functions which can be both dynamic and applica-
tion dependent.
Privacy, on the other hand, is maximized when the perturbed

data is completely independent of the original. The meter mea-
surements are a result of a specific choice of appliance states
which in turn are correlated with the personal habits of the users.
Our privacy metric measures the difficulty of inferring private
information leaked by the appliance state via the meter mea-
surements. More generally, any desired private information of
the data collector’s choice, defined as a sequence of r.v.’s

, that is correlated with the mea-
surement sequence can be inferred from the revealed data. The
random sequence for all along with the joint distribution

mathematically captures the space of all inferences that
can be made from the measurements. We quantify the resulting
privacy loss as a result of revealing perturbed data via the mu-
tual information between the two data sequences.
Remark 4: While the space of sequences can be poten-

tially large, in any time window, one can restrict the analysis
to a subset of inferences that are correlated with the appliance
state, and correspondingly, with the meter measurements for
that window. Since the appliance state determines the meter
measurements and also reveals private information of the con-
sumer, we have the following Markov chain: ,
i.e., the joint distribution of can be written as

(8)

Remark 5: Our model of privacy is between a single user
(household) and the electricity provider. It does not consider the
leakage possibilities of comparing the perturbed data from two
or more different users. On the other hand our model can be ex-
tended to address the availability of side-information at the data
collector such as income level of the user that may cause further
information leakage by incorporating the statistical knowledge
of the side information at the meter.

D. Privacy-Preserving Mapping

A smart meter can enable load consumption monitoring at
a fine-grained level such as over 15 min intervals [17, p.12];
this in turn determines the sampling rate and quantization levels
for the meter measurements. The resulting stream of continuous
valued discrete data has to be communicated over a finite rate,
such as a wireless, link. For efficient transmission, one can ex-
ploit the correlations in a window of measurements to compress
efficiently. The quality of compression is determined by the fi-
delity desired of the output, i.e., the utility of the revealed mea-
surements as discussed earlier.
A privacy-preserving mapping also needs to ensure that

a minimal amount of information can be inferred about the
personal habits of the consumer. We abstract the resulting
problem to one of mapping every meter data sequence to an
appropriate sequence that satisfies both the utility (fidelity) and
privacy (leakage) constraints. Formally, an code
involves an encoder and a decoder described below:
Encoding: In each time window, the meter collects

measurements prior to communication. Recall that the corre-
sponding state in this time window is then . The encoding

function is a mapping of the resulting source sequence

, for all ,
given by

(9)

where maps the sequence to an index
which represents a quantized sequence.
Decoding: The decoder (at the data collector) computes an

output sequence , for all
, using the decoding function

(10)

The encoder is chosen such that the input and output se-
quences achieve a desired utility given by an average distortion
constraint

(11)

and a constraint on the information leakage about the desired
sequence from the revealed sequence is quantified
via the leakage function

(12)

where denotes the expectation over the joint distribution
of and given by
where is a conditional pdf on given . Themean-
square error (MSE) distortion function chosen in (11) is typical
for Gaussian distributed real-valued data as a measure of the
fidelity of the perturbation (encoding). Some examples of the
inference sequence are the known signature sequences for
specific appliances which typically leak the most information
about the personal habits of a consumer. Thus, can include
the signature sequences for appliances such as kettles, toasters,
and appliances that come on at unexpected times or are unusual
in usage pattern.
Remark 6: The encoding scheme presented here is inspired

by the theory of rate-distortion in which the focus is on deter-
mining the minimal rate at which to compress a data source for
a desired fidelity (distortion) level. However, the aim of the en-
coding here is to guarantee a minimal level of leakage for a
desired fidelity (distortion) .We formalize this tradeoff below.

E. Utility-Privacy Tradeoff Region

Formally, the utility-privacy tradeoff region is defined as
follows.
Definition 7: The smart meter utility-privacy tradeoff region
is the set of all pairs such that, for every and

all sufficiently large there exists a coding scheme given by (9)
and (10) with parameters satisfying (11)
and (12).
In classical rate-distortion theory, the constraint is on the

number of encoded (quantized) sequences such that the rate
in bits per entry of the sequence is bounded as .
The aim then is to determine the infimum of all rates
that are achievable for a desired distortion . In this paper, we
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focus on a leakage constraint and not the rate constraint; i.e.,
for a desired we seek to minimize the average number of
bits-per-entry of the correlated sequence (that we wish to
hide) that are leaked from the revealed sequence ; while
minimizing is also desirable from a communication
standpoint, for reasons of tractability, in the following analysis,
we do not explicitly include the rate constraint. Formally, the
minimal leakage for a desired fidelity is defined as
follows.
Definition 8: The minimal leakage achievable for a de-

sired distortion for a source with memory subject to distortion
and leakage constraints in (11) and (12) is given by

(13)

The closure of the set of all achievable distortion-leakage
pairs is the distortion-leakage region such that the

minimal leakage (boundary) is for any .
Definition 9: The Markov relationship is

captured via the set of all distributions in (13) that minimize
.

Definition 10: If an additional constraint on minimizing the
encoding rate is included, the minimal achievable rate for a de-
sired distortion is given by

(14)

For , for all , i.e., for the case in which the actual
measurements need to be private,
where is the rate-distortion function for the source. In the
appendix, we show that for this case is achieved by a
reverse waterfilling solution.
In general, the distribution minimizing the leakage subject to

a distortion constraint depends on the joint distribution of the
state, measurement, and inference sequences. Modeling this re-
lationship is, in general, not straightforward or known a priori.
However, since the revealed measurements leak information
about the appliance state which in turn can lead to a signifi-
cant set of inferences, we focus directly on the problem of min-
imizing the leakage of specific states via the revealed data.

F. Privacy-Preserving Spectral Waterfilling

In general, the problem of suppressing specific appliance sig-
natures requires detection of the appliance states at the meter in
a given window of time to determine the appliances to suppress.
To avoid dependence on any specific appliance detection algo-
rithm, we assume the existence of an external algorithm that can
detect (with perfect accuracy) in a given window of time which
appliances changed state from off to on or vice versa. One can
broadly describe the signal in any such window as a noisy sum
of signals from intermittently (more revealing of personal de-
tails) and continuously (less revealing) used appliances, with
states and , respectively, as given by the model in (3). Thus,
we henceforth focus on the problem of suppressing the state
relative to the state and the measurement noise.
We consider the state and measurement model in (3) and de-

termine a lower bound on the leakage possible in each window

of measurements. Specifically, we seek to hide the intermit-
tently used appliances by choosing the inference sequence as

, and thus, our aim is to minimize the leakage

(15)

in a window of measurements. Recalling that the DFT is a uni-
tary transformation that preserves Euclidean distance and mu-
tual information, we have

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)

(16g)

where (16b) follows from the expansion of mutual informa-
tion; (16c) follows from the fact that for all are in-
dependent Gaussian r.v.’s; (16d) follows from the fact that con-
ditioning does not increase mutual information; (16e) follows
from the fact that for a fixed variance, Gaussian r.v.’s have the
maximal entropy ( denotes the entropy of a Gaussian r.v.),
i.e., choosing as independent Gaussian r.v.’s which implies
from (11), we have

(17)

where is a sequence of independent Gaussian r.v.’s
(intuitively viewed as quantization noise) independent
of ; (16f) follows from (3), (17), and by setting

such that ; and
finally, (16g) follows from the positivity of the mutual infor-
mation, i.e., .
The optimization in (16f) results in the following distortion
allocation solution across the frequencies:

(18)

where the first term in the minimum in (18) comes from the
requirement that in (16f), for non-negative leakage, the denom-
inator is upper bounded by the numerator and the second term
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is a result of the optimization in which is the Lagrangian vari-
able satisfying the distortion constraint in (11). One may view
as a water-level across the frequencies such that at each fre-

quency only that portion of the spectrum is revealed which is
strictly above .
The resulting minimal leakage in the limit of

large is given by

(19)

where denotes real valued frequencies; the corresponding dis-
tortion spectrum is given by

(20)

where

(21)

(22)

Note that the term inside the integral in (19) can be viewed as the
leakage at each frequency for a distortion . While (19) pro-
vides a lower bound on , the bound can be achieved by using
an independent encoding scheme at each frequency subject to
an average distortion constraint. In practice, the bound can be
approached using techniques such as sub-band coding as used
in common audio and image compression formats.
To better understand the resulting interference-aware reverse

waterfilling solution in (20) that achieves (19), we now describe
the solution in detail starting from the simplest case of

:
� Case 1: , for all , and such that

, i.e., the random sequence in a window of time is
a noiseless sequence resulting from having only the appli-
ance in the on state. For this case, since , we
wish to reveal subject to a fidelity constraint in (11)
and hide subject to a leakage constraint in (12). Let
denote the water-level for this case. From (18), the so-

lution for all is the classic reverse water-
filling level solution that minimizes the rate for a desired
distortion for Gaussian sources with memory. This is be-
cause now the expressions for both rate and leakage in (14)
and (13) coincide. The privacy-preserving rate-distortion
optimal scheme thus reveals only those frequency compo-
nents with power above the water-level . Furthermore, at
every frequency only the portion of the signal power that is
above the water level is preserved by the minimum-rate
sequence from which the source can be generated with an
average distortion .

� Case 2: , for all , such that ,
i.e., the random sequence in a window of time is a noisy
sequence resulting from having only the appliance in the
on state. Since measurement noise reduces the fidelity of
the appliance signature, we expect that the average leakage
will be less than that for Case 1. Let denote the water-
level for this case. The requirement in (18) that

implies that for a fixed distortion
for . Furthermore, since ,
in general, a smaller set of frequencies, relative to Case 1,
are preserved for which the signal power is above the noise
power since otherwise the noise suffices to hide the signal.
Finally, the average leakage in each preserved frequency
is , i.e., the presence of
noise can aid in hiding the appliance signature we wish to
not reveal.

� Case 3: The observations from Case 2 carry forth to this
case also since now can also be viewed as noise except
with non-identical variances across the frequencies. Thus,
only those frequencies are revealed for which

or . In the latter
case, the power of the noise and the continuous appliance
signal suffices to suppress the signal to be hidden and there-
fore, no additional distortion is needed. On the other hand,
in the former case, only the signal above the distortion level
of is preserved.

Remark 11: From (20), we see that at those frequencies in
which the power of the state to be suppressed is dominated by
the power of the noise and the state , the distortion required
is zero. While this suffices for minimizing the leakage, trans-
mitting the data at such frequencies over finite rate links may
require additional compression. More generally, this suggests
that the combined problem of rate and leakage minimization has
to be considered jointly.
Remark 12: While leakage-preserving distortion ensures pri-

vacy, the utility in terms of average load consumption is reduced
by the distortion level . However, the knowledge of the dis-
tortion level suffices to estimate the average load consumed at
the provider end without any loss of privacy.

IV. ILLUSTRATION

We now illustrate our results with the following examples.
Specifically, we model the continuous and intermittent appli-
ance load sequences in (3) as (time-limited) Gauss-Markov pro-
cesses with an auto-correlation function given by

(23)

where is the variance, is the correlation coefficient
which falls geometrically with increasing difference inmeasure-
ment indices , and is the memory of the th appliance
type, . The power spectral density (PSD) of this process
is given by

(24)

For the following discussion, we choose the parameters in
(23) as follows: ,
and . These parameters model the observation that
the continuously used appliance (state has a longer memory
and a larger correlation coefficient relative to the intermittently
used appliance (state ; furthermore, while the overall power
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Fig. 3. Signal PSDs, distortion spectrum, and water-level for .

Fig. 4. Signal PSDs, distortion spectrum, and water-level for .

consumption of state is higher than that of state , the bursty
usage pattern of state is incorporated via a larger value for
relative to . We choose two different values for the distortion
as 4 and 6.
In Figs. 3 and 4, we plot the PSDs , and

of the processes , and ,
respectively, for the parameters described above. Also plotted
is the water-level and the distortion spectrum . From
both figures, we see that the distortion spectrum is zero when
the PSD of the noisy continuous process dominates or the
water-level leading to zero and minimal leakage, respectively,
for the two cases. The water-level determines the distortion
level otherwise.
In Figs. 5 (for ) and 6 (for , we plot the time

series auto-correlation functions , and
for the processes , and ,

respectively. We note that the effect of the distortion is captured
in a reduction of the variance ( term) of the process
relative to the process by . Furthermore, while the slope
of the process is dominated by the auto-correlation of the
state as observed by comparing the curves for with

, the slope of matches that of . Thus, the
signal energy remaining in is dominantly due to the noisy
continuous state process.

Fig. 5. Time series autocorrelation for the original and distorted signals for
.

Fig. 6. Time series autocorrelation for the original and distorted signals for
.

V. DISCUSSION AND CONCLUDING REMARKS

Preserving privacy in a measured and flexible way is a para-
mount societal challenge for smart meter deployment. At the
same time, any privacy techniques that dramatically alter the
usefulness of smart meter data are not likely to be adopted. The
theoretical framework that we have developed here allows us to
quantify the utility-privacy tradeoff in smart meter data. Given
a series of smart meter measurements , we have revealed a
perturbation that allows us to guarantee a measure of both
privacy in and utility in . The privacy guarantee comes
from the bound on information leakage while the utility guar-
antee comes from the upper bound on the MSE between and
.
Our information leakage model of privacy does not depend

on any assumptions about the inference mechanism (i.e., the
data mining algorithms); instead it presents the least possible
(on average) guarantee of information leakage about , while
the utility is preserved in an application-agnostic manner.
Our framework is also agnostic about how the perturbation is
achieved; for example, it can be achieved using a filter such as
a battery or by adding noise or by some novel technique yet to
be discovered.
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Our model captures the dynamic nature of the appliance
states and the smooth continual nature of the measurements
via a hidden Markov model and correlated Gaussian measure-
ments, respectively. We have extended classical results from
rate distortion theory to obtain tight bounds on the amount of
privacy that can be achieved for a given level of utility and
vice-versa. We have shown that the critical parameter of choice
in the tradeoff is the water level , which in turn depends on
the distortion bound that is acceptable. In a practical context,
the choice of is dictated by the choice of the privacy-utility
tradeoff operating point which, in turn, has to be negotiated
between the energy provider and consumer. The amount of
distortion has to be set according to the desired level or model
of privacy, and may thus vary from one consumer to another.
Our distortion model can be viewed as a filter on the load

signal that suppresses those appliance (intermittent) signa-
tures that reveal the most private information by: i) filtering out
all frequencies that have power below a certain threshold (de-
termined directly by ), and ii) exploiting the presence of con-
tinually used appliances which reveal less private information
as a pre-existing distortion (noise) at frequencies in which their
spectral context is significant. This indirectly exploits the fact
that a common household environment has a combination of
appliances with various profiles that mask each other and thus
having a mixture of appliances is better for privacy in the sense
of masking human activity.
An obvious limitation of our approach, which focuses on pre-

venting the revealing of human activity by intermittent appli-
ances is that power consumption variability of non-intermittent
appliances may also reveal sensitive information. For example,
the energy used for water heating may reveal information about
changes in occupancy over long periods of time. For that we
need a filtering technique that works over long time windows as
well as short ones. An important goal of future work would be to
apply our model on measured data to validate whether our filter
eliminates or decreases the signatures of intermittent devices to
the desired degree.
Our privacy technique prioritizes the elimination of those

characteristics of the load signal that are more correlated with
human activity and therefore it is likely to be robust against fu-
ture data mining algorithms that may be brought to bear on smart
meter data. At the same time, our utility constraints guarantee
that most of the useful energy consumption information is re-
tained in the revealed load data. This holds out hope that we
can reveal significant energy consumption information while at
the same time protecting significant personal information in a
tunable tradeoff. Finding examples of operating points that cor-
respond to real-world trade-offs would be an interesting avenue
for further exploration. Another interesting avenue to explore
would be to apply and demonstrate the power of these concepts
in a practical context. Finally, one could also develop appli-
ance-agnostic privacy-guarantees based on detecting changes
in energy patterns that are characteristic of personal habits and
therefore require suppression via distortion. The framework pre-
sented here can be applied in a straightforward manner by re-
placing the inference sequence with a function of a burst or rel-
atively high-energy sequence detected in a specific window.

APPENDIX

Irrespective of a leakage constraint, communicating con-
tinuous valued meter data over a bandlimited (i.e., finite
capacity) channel requires compressing the measurements
prior to transmission to achieve a desired fidelity level at the
data collector. The minimum rate at which one can compress
the data subject to a distortion (fidelity measure) in (11)
is the rate-distortion function given by expression on
the right in (14). The problem of determining the rate-optimal
(minimal rate) encoding, i.e., determining the conditional
distribution for a colored Gaussian distributed source
(here, meter data) with a Toeplitz covariance matrix, simplifies
to finding the mapping in the spectral domain subject to a
distortion constraint across all frequencies in the spectrum
(from (7)) (see [13, Ch. 4]). The spectral function can
be obtained in a manner analogous to (16) for a given input
spectral distribution density . The resulting solution is
given by where is
chosen such that the distortion spectrum is
if and , otherwise. This solution is
referred to in the literature as the reverse waterfilling solution
to capture the fact that only the spectral energy above the
distortion defined spectral water-level is preserved at each
frequency. The water-level is a Lagrangian that captures the
distortion constraint in the spectral domain. Note that is

, or for cases 1, 2, and
3, respectively, considered in Section III-F.
Remark 13: The primary difference between the rate and

leakage minimizations is that in the case, the rate-optimal
compression solution does not distinguish between the different
signatures or noise. In contrast the interference-aware reverse
waterfilling solution that minimizes the leakage distorts only
those frequencies in which the energy (power) of the signal to
be suppressed is higher than both the water-level and the energy
of “interfering” appliances that may be present and are not sup-
pressed.
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Abstract—The solutions offered to-date for end-user privacy in
smart meter measurements, a well-known challenge in the smart
grid, have been tied to specific technologies such as batteries or
assumptions on data usage without quantifying the loss of benefit
(utility) that results from any such approach. Using tools from in-
formation theory and a hidden Markov model for the measure-
ments, a new framework is presented that abstracts both the pri-
vacy and the utility requirements of smart meter data. This leads to
a novel privacy-utility tradeoff problem with minimal assumptions
that is tractable. For a stationary Gaussian model of the electricity
load, it is shown that for a desired mean-square distortion (utility)
measure between the measured and revealed data, the optimal pri-
vacy-preserving solution: i) exploits the presence of high-power but
less private appliance spectra as implicit distortion noise, and ii)
filters out frequency components with lower power relative to a
distortion threshold; this approach encompasses many previously
proposed approaches to smart meter privacy.

Index Terms—Smart meter, privacy, utility, rate-distortion, in-
ference, leakage.

I. INTRODUCTION

O NE OF THE hallmarks of the smart grid is a vastly
expanded information collection and monitoring system

using smart meters and other new technologies. But the infor-
mation that is collected and harnessed to create a more efficient
grid may potentially be used for other purposes, thereby raising
the question of privacy, especially of the residential consumer
whose smart meter data is being collected [1], [2].

Privacy of smart meter data has become a popular topic of re-
search. A common proposed model of privacy loss is related to
the possibility of inferring appliance usage from load data with
the help of load signature libraries. Equivalently, a common pro-
posed solution is the use of energy storage devices (such as a
large rechargeable battery) to “flatten” these signatures [3], [4].
Proposals for privacy protection in smart meter data have also
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used aggregation along dimensions of space (using neighbor-
hood gateways, e.g., [5]) or precision (by noise addition, e.g.,
[6]). However, these approaches lack a formal model of privacy
and thus cannot answer some pertinent questions such as: i) is
detection of appliance usage patterns the only means of losing
privacy?; ii) how much privacy is lost in such methods and to
what extent do the proposed solutions staunch the loss?; and iii)
how much sensitive information can and should be left in the
data so that it is still useful? In other words, current approaches
to privacy only provide privacy assurances, but cannot provide
any guarantees.

We present a formal model for the smart meter time-series
data and metrics for utility and privacy of the data. Observing
that the meter data comprises the cumulative load consumed by
the appliances that are on in an observation time window, we
propose a hidden Markov model for the measurements where
the underlying appliance states (on or off) determine the load
measurements, which in turn are modeled as real valued corre-
lated Gaussian random variables.

We argue that the model of privacy should be abstract and
oblivious of the extraction technology since: i) a technology-
specific solution that works now may not provide the same pri-
vacy assurance in the future; and ii) time series meter data anal-
ysis is in its infancy and one can expect that in the future, data
from smart meters may be mined to infer personal information
in ways that are unknown to us presently [7]. To this end, we
choose mutual information as our privacy metric. By the same
token, it is likely that consumers may want to share data with
third parties in some measured manner to derive some bene-
fits (e.g., energy consumption optimization). Thus, it is essen-
tial to guarantee a measure of utility of the revealed meter data.
In line with the Gaussian model for measurements, we quantify
the utility of the distorted data by constraining the mean squared
error (distortion energy) between the original and revealed sig-
nals.

Our design goal is to provide a framework to accommodate
both legitimate objectives, sharing and hiding, in a fair manner
without completely sacrificing either. Such an overarching
framework that both quantifies privacy and provides a means
for measuring the tradeoff between sharing (utility) and hiding
(privacy) has not yet been presented. Our privacy focus is to
decouple the revealed/collected meter data as much as possible
from the personal actions of a consumer. This insight is based
on the observation that irregular (intermittent) activity such as
kettles or lights turned on manually are much more revealing
of personal actions than regular (continuous) activity such as
refrigerators or lights on timers. Consequently, our approach
to privacy preservation is to distort the data to minimize the
presence of intermittent activity in the data. We use the theory
of rate distortion to quantify the tradeoff between the utility

1949-3053/$31.00 © 2012 IEEE
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(mean square distortion) and privacy (information leakage) for
our proposed model. We show that the privacy-utility tradeoffs
on the total load are achievable using an interference-aware

reverse waterfilling solution, which: i) exploits the presence
of high-power but less private appliance spectra as implicit
distortion noise, and ii) filters out frequency components with
lower power relative to a distortion threshold; this approach
encompasses many previously proposed approaches to smart
meter privacy.

The paper is organized as follows. In Section II, we outline
current approaches to smart meter privacy. In Section III, we de-
velop our model, metrics, and the privacy-utility tradeoff frame-
work. We illustrate our results in Section IV and conclude in
Section V.

II. RELATED WORK

The advantages and usefulness of smart meters in general is
examined in a number of papers; see for example [8] and the
references therein. [3] presents a pioneering view of privacy of
smart meter information: the authors identify the need for pri-
vacy in a home’s load signature as being an inference violation
(resulting from load signatures of home appliances) rather than
an identity violation (i.e., loss of anonymity). Accordingly, they
propose home electrical power routing using rechargeable bat-
teries and alternate power sources to moderate the effects of load
signatures. They also propose three different privacy metrics:
relative entropy, clustering classification, and a correlation/re-
gression metric. However they do not propose any formal utility
metrics to quantify the utility-privacy tradeoff.

Reference [9] proposes additional protection through the
use of a trusted escrow service, along with randomized time
intervals between the setup of attributable and anonymous data
profiles at the smart meter. Reference [2] shows, somewhat
surprisingly, that even without a priori knowledge of house-
hold activities or prior training it is possible to extract complex
usage patterns from smart meter data such as residential occu-
pancy and social activities very accurately using off-the-shelf
statistical methods. References [2] and [5] propose privacy-en-
hancing designs using neighborhood-level aggregation and
cryptographic protocols to communicate with the energy sup-
plier without compromising the privacy of individual homes.
However, escrow services and neighborhood gateways support
only restricted query types and do not completely solve the
problem of trustworthiness. Reference [4] presents a formal
state transition diagram-based analysis of the privacy afforded
by the rechargeable battery model proposed in [3]. However,
[4] does not offer a comparable model of utility to compare the
risks of information leakage with the benefits of the information
transmitted.

In [6], the authors present a method of providing differential

privacy over aggregate queries modeling smart meter measure-
ments as time-series data from multiple sources containing tem-
poral correlations. While their approach has some similarity to
ours in terms of time-series data treatment, their method does
not seem generalizable to arbitrary query types. On the other
hand, [10] introduces the notion of partial information hiding
by introducing uncertainty about individual values in a time se-
ries by perturbing them. Our method represents a more general

approach to time series data perturbation that guarantees that the
perturbation cannot be eliminated by averaging.

Recently, the authors of [11] investigate the use of a battery
to achieve the effect of a “Non-intrusive Load Leveling Al-
gorithm” (NILL) to mask appliance features that are used by
non-intrusive appliance load monitoring (NALM) algorithms to
detect appliances turning on or off. Similar to [4], they model
battery discharge policy so that the unique features in the power
consumption graph used by NALM algorithms are removed.
While they determine the parameters for their system (size of
battery and battery policy) using sample measurements, they
do not offer an analytical method to determine the system pa-
rameters and their privacy guarantees are based on assumptions
about how NALM algorithms work. Our approach is to avoid
making assumptions on how sensitive information may be ex-
tracted from power consumption data along with an analytical
way to determine system parameters.

III. OUR CONTRIBUTIONS

The primary challenge in characterizing the privacy-utility
tradeoffs for smart meter data is creating the right abstrac-
tion—we need a principled approach that provides quantitative
measures of both the amount of information leaked as well as
the utility retained, does not rely on any assumptions of data
mining algorithms, and provides a basis for a negotiated level
of benefit for both consumer and supplier [12]. Reference [4]
provides the beginnings of such a model—the authors assume
that in every sampling time instant, the net load is either
0 or 1 power unit represented by the smart meter readings

which is a discrete-time sequence of binary
independent and identically distributed values. They model the
battery-based filter of [3] as a stochastic transfer function that
outputs a binary sequence that tells the electricity provider
whether the home is drawing power or not at any given moment.
The amount of information leaked by the transfer function is
defined to be the mutual information rate between the
random variables and . By modeling the battery charging
policy as a 2-state stochastic transition machine, they show
that there exist battery policies that result in less information
leakage than from the deterministic charging policy of [3].
Though [4] does not provide a general utility function to go
with the chosen privacy function and the modeling assump-
tions are extremely simplistic, it nevertheless provides a good
starting point for our framework.

In our model, we assume that the load measurements are sam-
pled (at an appropriate frequency) from a smart meter, that they
are real-valued, and can be correlated (to model the temporal
memory of both appliances and human usage patterns). Rather
than assume any specific transfer function, we assume an ab-
stract transfer function that maps the input load measurements

into an output sequence . As in [4], we assume a mutual
information rate as a metric for privacy leakage; however, we
allow for the fact that a large space of (unknown to us) infer-
ences can be made from the meter data—i.e., we model the in-
ferred data as a random variable correlated with the measure-
ment variable . Thus, the privacy leakage is the mutual infor-
mation between and . We also provide an abstract utility
function that measures the fidelity of the output sequence by
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limiting the Euclidean distance (mean square error) between
and . Using these abstractions and tools from the theory of rate
distortion we are able to meet all our requirements for a general
but tractable privacy-utility framework: the privacy and utility
requirements provide opposing constraints that expose a spec-
trum of choices for trading off privacy for utility and vice-versa.

A. Notation

Before proceeding, we summarize the notation used in
the sequel. Random variables (e.g., ) are denoted with
uppercase letters and their realizations (e.g., ) with the
corresponding lowercase letters. denotes an -length
vector while bold font denotes a matrix. denotes the
identity matrix. denotes an -variable real Gaussian
distribution with mean and covariance . denotes

denotes mutual information; denotes
differential entropy. Finally, in the sequel we use the term
reverse waterfilling solution to denote a mutual information
(e.g., rate or leakage) minimizing source coding solution
for Gaussian sources with memory [13, Ch. 4] (see also the
appendix).

B. Model

We write , to denote the sampled load mea-
surements from a smart meter. In general, are complex valued
corresponding to the real and reactive measurements and are
typically vectors for multi-phase systems [14]. For simplicity
and ease of presentation, we model the meter measurements as
a sequence of real-valued scalars (for example, such a model
applies to two-phase 120 V appliances for which one of the two
phase components is zero).

At any time, the load measurements are determined by the ap-
pliances actively in use. In general, there is a finite time window
during which an appliance is used and the meter measurements
during that time are correlated with the specific appliance used.
Furthermore, the statistics of the load measurements change as
the appliances used change, i.e., the measurement data can be
viewed as being generated by a quasi-stationary source.

Let denote the total number of appliances at a residence;
since each appliance can be either on or off in any window of
time, we have possible appliance states. In general, the ap-
pliance state at any time is an instantiation of a random process
that is highly correlated with the personal habits of members
of a household. We denote this state process by such
that is the random state variable in
the th time instant, for all . Associated with this state, is the
meter measurement variable in the same time instant. For-
mally, we model the joint probability distribution of the states

and measurements over
time instants as

(1)

(2)

where denotes the collection of past states, (1) results
from the fact that conditioned on the state, the measurements are

Fig. 1. A hidden Markov model for the meter measurements.

independent of each other, i.e., forms a
Markov chain, and (2) follows from the fact that states are re-
lated in a causal and sequential manner, i.e., we have the Markov
chain relationship, for all . While appli-
ance use is correlated with personal habits, the Markov model
for the states presented here is a tractable yet general enough
probabilistic approximation for the state sequence. The number
of measurements in a time window is a function of both the
sampling rate typically set to the power supply frequency and
the window size, typically around 15 min.

Remark 1: A home entirely supplied by a rechargeable bat-
tery in a time window can be viewed as having a state

in which no appliance, as viewed by the smart meter, is on.
A hidden Markov model (HMM) (see Fig. 1) such as in (1)

and (2) is typically characterized by three parameters: i) the ini-
tial state distribution; ii) a state transition matrix; and iii) a con-
ditional distribution, assumed to be Gaussian here, which cap-
tures the probability density function of a measurement con-
ditioned on a state . For a stationary HMM process, the state
transition matrix is the same at each time instant, and therefore,
the time durations of the different states are the same on av-
erage. While in general, the duration of usage of the different
appliance states may be different, for simplicity and tractability,
we assume the state is held and the underlying probability dis-
tribution is stationary in a block of measurements.

We now present an explicit probability model for the state
and the measurements. Our model is based on the following
two observations: i) a state remains unchanged for a contin-
uous period of time, assumed here to be ; and ii) in that time,
each appliance that is on in that state generates a sequence of
random (Gaussian distributed) measurements characteristic of
the appliance signature consumption pattern (see for e.g., [14],
[15]). The assumption of randomness models the variability in
appliance manufacturers and voltage fluctuations. It should be
noted that all appliances that can be powered on and off show
a corresponding bimodal behavior in their power consumption.
Our model assumes that when an appliance is in the on state,
its power consumption pattern is approximately Gaussian. The
Gaussian assumption has been borne out for typical appliances
in actual measurements by [16]. We clarify that the on state is
from the point of view of power consumption, which may not
be the same as the user’s perspective. For example, thermostat-
ically controlled appliances such as water heaters, refrigerators,
furnaces, and stoves may be on from the user’s perspective but
off from the perspective of their instantaneous power use. Fur-
thermore, some appliances such as television sets may be in
standby mode in which they may consume a small amount of
power, though usually much less than when they are in the on
state. For simplicity, we assume that appliances are either on or
off (i.e., standby is treated as off). We note later that an appliance
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Fig. 2. Meter measurements obtained as a noisy sum of two Gaussian pro-
cesses, corresponding to the intermittent and continous appliances, respectively
over a time window of length .

may also be considered in the off state if the power is supplied
by a battery.

In general, appliances can be classified as being either on al-
most all the time such as air conditioners, computers, and refrig-
erators, or on intermittently such as ovens, toasters, and kettles.
Without loss of generality, we consider a state in
which both a continual appliance and an intermittent appli-
ance are on. More generally, and could indicate col-
lections of continual and intermittent appliances; furthermore,
the analysis we present in the sequel generalizes in a straight-
forward manner to this case. Let and denote the
length Gaussian distributed time sequences for the states
and , respectively (see Fig. 2). While the transition between
states is given by a Markov model, for any state, since a se-
quence is unique (in autocorrelation and spectral characteristics)
for each appliance, we assume that and are in-
dependent of each other. Note, however, that the entries of each

are correlated due to memory effects. We assume
that the length is chosen such that the memory effects of each
state are contained within the sequence. We henceforth model
the memory via a length for state such that each
entry in a window of length is affected by adjacent en-
tries.

Writing the measurements in ( -length) vector notation, we
have

(3)

where and are
independent of each other and independent of the independent
and identically distributed (i.i.d.) Gaussian noise vector

, and the summation in (3) is a vector (entry-by-entry)
summation.

Remark 2: Since the entries of (resp. are
correlated with each other, in general, each entry of can
be written as a function of its past and future entries and a term
independent of them, such as, for example, an autoregression
model. For a more general analysis, however, we do not restrict
ourselves to any specific correlation model.

Thus, the covariance matrix of in (3) has entries
given by

(4)

(5)

and is a Toeplitz matrix with the autocorrelation entries

(6)

where , and is the
Kronecker delta function which is non-zero only for
and 0 otherwise. The circular -block model for the autocor-
relation allows us to use the discrete Fourier transform (DFT)
to decompose an -length correlated sequence into indepen-
dent Gaussian measurements subject to the same distortion and
leakage constraints, i.e., the Fourier basis is the eigen basis for
each of the state sequences. Denoting the DFT matrix by , we
have

(7a)

(7b)

(7c)

i.e., is a unitary transformation of and has entries
, referred to as the power spectral density of the

Gaussian process . Thus, the of has entries
, that are independent but not identically

distributed Gaussian random variables (r.v.’s) with variance
for the th entry.

For a unitary transform, the distance-based distortion and mu-
tual information based leakage constraints remain unchanged
[13, Ch. 4]. We will use this property in the sequel to determine
the minimal leakage fidelity-preserving mapping of the mea-
surement data. The aim of such a privacy-preserving technique
is to suppress the signatures of appliances used intermittently as
they significantly compromise the end-user privacy relative to
the continually running appliances [17].

C. Utility and Privacy Metrics

Since continuous amplitude sources cannot be transmitted
losslessly over finite capacity links, a sampled sequence of
load measurements is compressed before transmission. In
general, however, even if the sampled measurements were quan-
tized a priori, i.e., take values in a discrete alphabet, there may
be a need to perturb (distort) the data in some way to guarantee
a measure of privacy. However, such a perturbation also needs
to maintain a desired level of fidelity.

Intuitively, utility of the perturbed data is high if any function
computed on it yields results similar to those from the original
data; thus, the utility is highest when there is no perturbation and
goes to zero when the perturbed data is completely unrelated to
the original. Accordingly, our utility metric is an appropriately
chosen average “distance” distortion function between the orig-
inal and the perturbed data.

Remark 3: Using distortion between the original and the per-
turbed data as a measure of utility allows us to be agnostic
of the technological or processing constraints on the data; i.e.,
bounding the “distance” between the original and revealed data
is more general and independent of constraints on specific data
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processing functions which can be both dynamic and applica-
tion dependent.

Privacy, on the other hand, is maximized when the perturbed
data is completely independent of the original. The meter mea-
surements are a result of a specific choice of appliance states
which in turn are correlated with the personal habits of the users.
Our privacy metric measures the difficulty of inferring private
information leaked by the appliance state via the meter mea-
surements. More generally, any desired private information of
the data collector’s choice, defined as a sequence of r.v.’s

, that is correlated with the mea-
surement sequence can be inferred from the revealed data. The
random sequence for all along with the joint distribution

mathematically captures the space of all inferences that
can be made from the measurements. We quantify the resulting
privacy loss as a result of revealing perturbed data via the mu-

tual information between the two data sequences.
Remark 4: While the space of sequences can be poten-

tially large, in any time window, one can restrict the analysis
to a subset of inferences that are correlated with the appliance
state, and correspondingly, with the meter measurements for
that window. Since the appliance state determines the meter
measurements and also reveals private information of the con-
sumer, we have the following Markov chain: ,
i.e., the joint distribution of can be written as

(8)

Remark 5: Our model of privacy is between a single user
(household) and the electricity provider. It does not consider the
leakage possibilities of comparing the perturbed data from two
or more different users. On the other hand our model can be ex-
tended to address the availability of side-information at the data
collector such as income level of the user that may cause further
information leakage by incorporating the statistical knowledge
of the side information at the meter.

D. Privacy-Preserving Mapping

A smart meter can enable load consumption monitoring at
a fine-grained level such as over 15 min intervals [17, p.12];
this in turn determines the sampling rate and quantization levels
for the meter measurements. The resulting stream of continuous
valued discrete data has to be communicated over a finite rate,
such as a wireless, link. For efficient transmission, one can ex-
ploit the correlations in a window of measurements to compress
efficiently. The quality of compression is determined by the fi-
delity desired of the output, i.e., the utility of the revealed mea-
surements as discussed earlier.

A privacy-preserving mapping also needs to ensure that
a minimal amount of information can be inferred about the
personal habits of the consumer. We abstract the resulting
problem to one of mapping every meter data sequence to an
appropriate sequence that satisfies both the utility (fidelity) and
privacy (leakage) constraints. Formally, an code
involves an encoder and a decoder described below:

Encoding: In each time window, the meter collects
measurements prior to communication. Recall that the corre-
sponding state in this time window is then . The encoding

function is a mapping of the resulting source sequence

, for all ,
given by

(9)

where maps the sequence to an index
which represents a quantized sequence.

Decoding: The decoder (at the data collector) computes an
output sequence , for all

, using the decoding function

(10)

The encoder is chosen such that the input and output se-
quences achieve a desired utility given by an average distortion
constraint

(11)

and a constraint on the information leakage about the desired
sequence from the revealed sequence is quantified
via the leakage function

(12)

where denotes the expectation over the joint distribution
of and given by
where is a conditional pdf on given . The mean-
square error (MSE) distortion function chosen in (11) is typical
for Gaussian distributed real-valued data as a measure of the
fidelity of the perturbation (encoding). Some examples of the
inference sequence are the known signature sequences for
specific appliances which typically leak the most information
about the personal habits of a consumer. Thus, can include
the signature sequences for appliances such as kettles, toasters,
and appliances that come on at unexpected times or are unusual
in usage pattern.

Remark 6: The encoding scheme presented here is inspired
by the theory of rate-distortion in which the focus is on deter-
mining the minimal rate at which to compress a data source for
a desired fidelity (distortion) level. However, the aim of the en-
coding here is to guarantee a minimal level of leakage for a
desired fidelity (distortion) . We formalize this tradeoff below.

E. Utility-Privacy Tradeoff Region

Formally, the utility-privacy tradeoff region is defined as
follows.

Definition 7: The smart meter utility-privacy tradeoff region
is the set of all pairs such that, for every and

all sufficiently large there exists a coding scheme given by (9)
and (10) with parameters satisfying (11)
and (12).

In classical rate-distortion theory, the constraint is on the
number of encoded (quantized) sequences such that the rate
in bits per entry of the sequence is bounded as .
The aim then is to determine the infimum of all rates
that are achievable for a desired distortion . In this paper, we
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focus on a leakage constraint and not the rate constraint; i.e.,
for a desired we seek to minimize the average number of
bits-per-entry of the correlated sequence (that we wish to
hide) that are leaked from the revealed sequence ; while
minimizing is also desirable from a communication
standpoint, for reasons of tractability, in the following analysis,
we do not explicitly include the rate constraint. Formally, the
minimal leakage for a desired fidelity is defined as
follows.

Definition 8: The minimal leakage achievable for a de-
sired distortion for a source with memory subject to distortion
and leakage constraints in (11) and (12) is given by

(13)

The closure of the set of all achievable distortion-leakage
pairs is the distortion-leakage region such that the

minimal leakage (boundary) is for any .
Definition 9: The Markov relationship is

captured via the set of all distributions in (13) that minimize
.

Definition 10: If an additional constraint on minimizing the
encoding rate is included, the minimal achievable rate for a de-
sired distortion is given by

(14)

For , for all , i.e., for the case in which the actual
measurements need to be private,
where is the rate-distortion function for the source. In the
appendix, we show that for this case is achieved by a
reverse waterfilling solution.

In general, the distribution minimizing the leakage subject to
a distortion constraint depends on the joint distribution of the
state, measurement, and inference sequences. Modeling this re-
lationship is, in general, not straightforward or known a priori.
However, since the revealed measurements leak information
about the appliance state which in turn can lead to a signifi-
cant set of inferences, we focus directly on the problem of min-
imizing the leakage of specific states via the revealed data.

F. Privacy-Preserving Spectral Waterfilling

In general, the problem of suppressing specific appliance sig-
natures requires detection of the appliance states at the meter in
a given window of time to determine the appliances to suppress.
To avoid dependence on any specific appliance detection algo-
rithm, we assume the existence of an external algorithm that can
detect (with perfect accuracy) in a given window of time which
appliances changed state from off to on or vice versa. One can
broadly describe the signal in any such window as a noisy sum
of signals from intermittently (more revealing of personal de-
tails) and continuously (less revealing) used appliances, with
states and , respectively, as given by the model in (3). Thus,
we henceforth focus on the problem of suppressing the state
relative to the state and the measurement noise.

We consider the state and measurement model in (3) and de-
termine a lower bound on the leakage possible in each window

of measurements. Specifically, we seek to hide the intermit-
tently used appliances by choosing the inference sequence as

, and thus, our aim is to minimize the leakage

(15)

in a window of measurements. Recalling that the DFT is a uni-
tary transformation that preserves Euclidean distance and mu-
tual information, we have

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)

(16g)

where (16b) follows from the expansion of mutual informa-
tion; (16c) follows from the fact that for all are in-
dependent Gaussian r.v.’s; (16d) follows from the fact that con-
ditioning does not increase mutual information; (16e) follows
from the fact that for a fixed variance, Gaussian r.v.’s have the
maximal entropy ( denotes the entropy of a Gaussian r.v.),
i.e., choosing as independent Gaussian r.v.’s which implies
from (11), we have

(17)

where is a sequence of independent Gaussian r.v.’s
(intuitively viewed as quantization noise) independent
of ; (16f) follows from (3), (17), and by setting

such that ; and
finally, (16g) follows from the positivity of the mutual infor-
mation, i.e., .
The optimization in (16f) results in the following distortion
allocation solution across the frequencies:

(18)

where the first term in the minimum in (18) comes from the
requirement that in (16f), for non-negative leakage, the denom-
inator is upper bounded by the numerator and the second term



IE
E
E
 P

ro
o
f

P
ri
n
t 
V
e
rs

io
n

SANKAR et al.: SMART METER PRIVACY: A THEORETICAL FRAMEWORK 7

is a result of the optimization in which is the Lagrangian vari-
able satisfying the distortion constraint in (11). One may view

as a water-level across the frequencies such that at each fre-
quency only that portion of the spectrum is revealed which is
strictly above .

The resulting minimal leakage in the limit of
large is given by

(19)

where denotes real valued frequencies; the corresponding dis-
tortion spectrum is given by

(20)

where

(21)

(22)

Note that the term inside the integral in (19) can be viewed as the
leakage at each frequency for a distortion . While (19) pro-
vides a lower bound on , the bound can be achieved by using
an independent encoding scheme at each frequency subject to
an average distortion constraint. In practice, the bound can be
approached using techniques such as sub-band coding as used
in common audio and image compression formats.

To better understand the resulting interference-aware reverse
waterfilling solution in (20) that achieves (19), we now describe
the solution in detail starting from the simplest case of

:
• Case 1: , for all , and such that

, i.e., the random sequence in a window of time is
a noiseless sequence resulting from having only the appli-
ance in the on state. For this case, since , we
wish to reveal subject to a fidelity constraint in (11)
and hide subject to a leakage constraint in (12). Let

denote the water-level for this case. From (18), the so-
lution for all is the classic reverse water-
filling level solution that minimizes the rate for a desired
distortion for Gaussian sources with memory. This is be-
cause now the expressions for both rate and leakage in (14)
and (13) coincide. The privacy-preserving rate-distortion
optimal scheme thus reveals only those frequency compo-
nents with power above the water-level . Furthermore, at
every frequency only the portion of the signal power that is
above the water level is preserved by the minimum-rate
sequence from which the source can be generated with an
average distortion .

• Case 2: , for all , such that ,
i.e., the random sequence in a window of time is a noisy
sequence resulting from having only the appliance in the
on state. Since measurement noise reduces the fidelity of
the appliance signature, we expect that the average leakage
will be less than that for Case 1. Let denote the water-
level for this case. The requirement in (18) that

implies that for a fixed distortion
for . Furthermore, since ,
in general, a smaller set of frequencies, relative to Case 1,
are preserved for which the signal power is above the noise
power since otherwise the noise suffices to hide the signal.
Finally, the average leakage in each preserved frequency
is , i.e., the presence of
noise can aid in hiding the appliance signature we wish to
not reveal.

• Case 3: The observations from Case 2 carry forth to this
case also since now can also be viewed as noise except
with non-identical variances across the frequencies. Thus,
only those frequencies are revealed for which

or . In the latter
case, the power of the noise and the continuous appliance
signal suffices to suppress the signal to be hidden and there-
fore, no additional distortion is needed. On the other hand,
in the former case, only the signal above the distortion level
of is preserved.

Remark 11: From (20), we see that at those frequencies in
which the power of the state to be suppressed is dominated by
the power of the noise and the state , the distortion required
is zero. While this suffices for minimizing the leakage, trans-
mitting the data at such frequencies over finite rate links may
require additional compression. More generally, this suggests
that the combined problem of rate and leakage minimization has
to be considered jointly.

Remark 12: While leakage-preserving distortion ensures pri-
vacy, the utility in terms of average load consumption is reduced
by the distortion level . However, the knowledge of the dis-
tortion level suffices to estimate the average load consumed at
the provider end without any loss of privacy.

IV. ILLUSTRATION

We now illustrate our results with the following examples.
Specifically, we model the continuous and intermittent appli-
ance load sequences in (3) as (time-limited) Gauss-Markov pro-
cesses with an auto-correlation function given by

(23)

where is the variance, is the correlation coefficient
which falls geometrically with increasing difference in measure-
ment indices , and is the memory of the th appliance
type, . The power spectral density (PSD) of this process
is given by

(24)

For the following discussion, we choose the parameters in
(23) as follows: ,
and . These parameters model the observation that
the continuously used appliance (state has a longer memory
and a larger correlation coefficient relative to the intermittently
used appliance (state ; furthermore, while the overall power
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Fig. 3. Signal PSDs, distortion spectrum, and water-level for .

Fig. 4. Signal PSDs, distortion spectrum, and water-level for .

consumption of state is higher than that of state , the bursty
usage pattern of state is incorporated via a larger value for
relative to . We choose two different values for the distortion

as 4 and 6.
In Figs. 3 and 4, we plot the PSDs , and

of the processes , and ,
respectively, for the parameters described above. Also plotted
is the water-level and the distortion spectrum . From
both figures, we see that the distortion spectrum is zero when
the PSD of the noisy continuous process dominates or the
water-level leading to zero and minimal leakage, respectively,
for the two cases. The water-level determines the distortion
level otherwise.

In Figs. 5 (for ) and 6 (for , we plot the time
series auto-correlation functions , and

for the processes , and ,
respectively. We note that the effect of the distortion is captured
in a reduction of the variance ( term) of the process
relative to the process by . Furthermore, while the slope
of the process is dominated by the auto-correlation of the
state as observed by comparing the curves for with

, the slope of matches that of . Thus, the
signal energy remaining in is dominantly due to the noisy
continuous state process.

Fig. 5. Time series autocorrelation for the original and distorted signals for
.

Fig. 6. Time series autocorrelation for the original and distorted signals for
.

V. DISCUSSION AND CONCLUDING REMARKS

Preserving privacy in a measured and flexible way is a para-
mount societal challenge for smart meter deployment. At the
same time, any privacy techniques that dramatically alter the
usefulness of smart meter data are not likely to be adopted. The
theoretical framework that we have developed here allows us to
quantify the utility-privacy tradeoff in smart meter data. Given
a series of smart meter measurements , we have revealed a
perturbation that allows us to guarantee a measure of both
privacy in and utility in . The privacy guarantee comes
from the bound on information leakage while the utility guar-
antee comes from the upper bound on the MSE between and

.
Our information leakage model of privacy does not depend

on any assumptions about the inference mechanism (i.e., the
data mining algorithms); instead it presents the least possible
(on average) guarantee of information leakage about , while
the utility is preserved in an application-agnostic manner.
Our framework is also agnostic about how the perturbation is
achieved; for example, it can be achieved using a filter such as
a battery or by adding noise or by some novel technique yet to
be discovered.
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Our model captures the dynamic nature of the appliance
states and the smooth continual nature of the measurements
via a hidden Markov model and correlated Gaussian measure-
ments, respectively. We have extended classical results from
rate distortion theory to obtain tight bounds on the amount of
privacy that can be achieved for a given level of utility and
vice-versa. We have shown that the critical parameter of choice
in the tradeoff is the water level , which in turn depends on
the distortion bound that is acceptable. In a practical context,
the choice of is dictated by the choice of the privacy-utility
tradeoff operating point which, in turn, has to be negotiated
between the energy provider and consumer. The amount of
distortion has to be set according to the desired level or model
of privacy, and may thus vary from one consumer to another.

Our distortion model can be viewed as a filter on the load
signal that suppresses those appliance (intermittent) signa-
tures that reveal the most private information by: i) filtering out
all frequencies that have power below a certain threshold (de-
termined directly by ), and ii) exploiting the presence of con-
tinually used appliances which reveal less private information
as a pre-existing distortion (noise) at frequencies in which their
spectral context is significant. This indirectly exploits the fact
that a common household environment has a combination of
appliances with various profiles that mask each other and thus
having a mixture of appliances is better for privacy in the sense
of masking human activity.

An obvious limitation of our approach, which focuses on pre-
venting the revealing of human activity by intermittent appli-
ances is that power consumption variability of non-intermittent
appliances may also reveal sensitive information. For example,
the energy used for water heating may reveal information about
changes in occupancy over long periods of time. For that we
need a filtering technique that works over long time windows as
well as short ones. An important goal of future work would be to
apply our model on measured data to validate whether our filter
eliminates or decreases the signatures of intermittent devices to
the desired degree.

Our privacy technique prioritizes the elimination of those
characteristics of the load signal that are more correlated with
human activity and therefore it is likely to be robust against fu-
ture data mining algorithms that may be brought to bear on smart
meter data. At the same time, our utility constraints guarantee
that most of the useful energy consumption information is re-
tained in the revealed load data. This holds out hope that we
can reveal significant energy consumption information while at
the same time protecting significant personal information in a
tunable tradeoff. Finding examples of operating points that cor-
respond to real-world trade-offs would be an interesting avenue
for further exploration. Another interesting avenue to explore
would be to apply and demonstrate the power of these concepts
in a practical context. Finally, one could also develop appli-
ance-agnostic privacy-guarantees based on detecting changes
in energy patterns that are characteristic of personal habits and
therefore require suppression via distortion. The framework pre-
sented here can be applied in a straightforward manner by re-
placing the inference sequence with a function of a burst or rel-
atively high-energy sequence detected in a specific window.

APPENDIX

Irrespective of a leakage constraint, communicating con-
tinuous valued meter data over a bandlimited (i.e., finite
capacity) channel requires compressing the measurements
prior to transmission to achieve a desired fidelity level at the
data collector. The minimum rate at which one can compress
the data subject to a distortion (fidelity measure) in (11)
is the rate-distortion function given by expression on
the right in (14). The problem of determining the rate-optimal
(minimal rate) encoding, i.e., determining the conditional
distribution for a colored Gaussian distributed source
(here, meter data) with a Toeplitz covariance matrix, simplifies
to finding the mapping in the spectral domain subject to a
distortion constraint across all frequencies in the spectrum
(from (7)) (see [13, Ch. 4]). The spectral function can
be obtained in a manner analogous to (16) for a given input
spectral distribution density . The resulting solution is
given by where is
chosen such that the distortion spectrum is
if and , otherwise. This solution is
referred to in the literature as the reverse waterfilling solution
to capture the fact that only the spectral energy above the
distortion defined spectral water-level is preserved at each
frequency. The water-level is a Lagrangian that captures the
distortion constraint in the spectral domain. Note that is

, or for cases 1, 2, and
3, respectively, considered in Section III-F.

Remark 13: The primary difference between the rate and
leakage minimizations is that in the case, the rate-optimal
compression solution does not distinguish between the different
signatures or noise. In contrast the interference-aware reverse
waterfilling solution that minimizes the leakage distorts only
those frequencies in which the energy (power) of the signal to
be suppressed is higher than both the water-level and the energy
of “interfering” appliances that may be present and are not sup-
pressed.
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