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Abstract 

To design water distribution network infrastructure, water utilities formulate daily demand profiles and 

peaking factors. However, traditional methods of developing such profiles and peaking factors, 

necessary to carry out water distribution network modelling, are often founded on a number of 

assumptions on how top-down bulk water consumption is attributed to customer connections and 

outdated demand information that does not reflect present consumption trends; meaning infrastructure 

is often unnecessarily overdesigned. The recent advent of high resolution smart water meters allows for 

a new novel methodology for using the continuous ‘big data’ generated by these meter fleets to create 

evidence-based water demand curves suitable for use in network models. To demonstrate the 

application of the developed method, high resolution water consumption data from households fitted 

with smart water meters were collected from the South East Queensland and Hervey Bay regions in 

Australia. Average day (AD), peak day (PD) and mean day maximum month (MDMM) demand curves, 

often used in water supply network modelling, were developed from the herein created methodology 

using both individual end-use level and hourly demand patterns from the smart meters. The resulting 

modelled water demand patterns for AD, PD and MDMM had morning and evening peaks occurring 

earlier and lower main peaks (AD: 12%; PD: 20%; MDMM: 33%) than the currently used demand 

profiles of the regions’ water utility. The paper concludes with a discussion on the implications of 

widespread smart water metering systems for enhanced water distribution infrastructure planning and 

management as well as the benefits to customers.  

Keywords: diurnal patterns; smart meters; peaking factors; water demand profiles; water supply 

network modelling; water end use.  

1 Introduction 

1.1 Water distribution network modelling and infrastructure planning 

Water distribution network modelling is an essential component of water supply planning, as it allows 

water engineers and planners to understand how the water supply system operates, enabling them to 

make informed decisions regarding operation and planning to achieve the required standards of service. 

Water supply network design usually incorporates parameters such as water consumption values and 

flow rate, design peak factors, pressure requirements and physical pipe properties (e.g. material and 

size). While information on pressure requirements is readily available from local guidelines (e.g. 

DERM, 2010; SEQ Code, 2013) and pipe properties can be ascertained from the relevant hydraulic 

literature and local guidelines, estimating water demands accurately is more difficult due to highly 

variable influencing factors such as demographics and land use, climate, economic and social factors, 

technology, government intervention, and pricing (Beal and Stewart, 2013; Browne et al., 2013; Lee et 

al., 2010; Parker and Wilby, 2013)  

Water demand varies during the day, with demand generally lowest during the night and highest in the 

morning and early evening hours, resulting in double peaks concentrated over these two periods; the 

higher of which is termed a daily peak demand. This variation in daily water demand is also referred to 

as a diurnal demand curve. Over an annual analysis period, water utilities define certain peak demands 

to assist in infrastructure design. Peak hour (PH) demand exists in a peak day (PD), which is the 

maximum day demand over a 12-month period, and is utilised mainly in the design of pipe 

infrastructure. Additionally, in Queensland, Australia, the average of the highest moving average 30-

day water demand, the mean day at maximum month (MDMM), is utilised to reflect demand 

persistence in response to climatic condition (DERM, 2010). This average is used mainly in the sizing 



of pumps and reservoirs. Peaking factors are thus derived relative to average day (AD) demand; that is, 

average consumption over a 12-month period, to assist water utilities in designing water infrastructure. 

A review of peaking factors is presented in Table 1. 

Table 1 Range of peaking factors from various sources 

Source Location 
Population/ Res. 

Density 
PD:AD PH:AD MDMM:AD 

WSAA (2004) Australia 
> 10,000 

< 2,000 

1.5 

2.0 

2.0 

5.0 
N/A 

DERM (2010) Queensland, Australia 
> 5,000 

< 5,000 

1.5 – 2.7 

1.9 – 2.3 

3.6 – 4.0 

3.6 – 4.5 

1.4–1.5 

1.5–1.7 

SEQ Code 

(2013) 

Gold Coast, Australia 
Residential Single 

(detach) 
2.12 6.03 1.75 

Brisbane, Redland, Ipswich, 

Logan, Moreton Bay, Australia 
Low – High Density 2.0 3.5 – 4.0 1.5 

CSIR (2003) South Africa Low – High Density 1.5 3.6 – 4.0 N/A 

Ysusi (2000) United States Undefined 1.8 – 2.8 2.5 – 4.0 N/A 

MOE (2008)  Canada 
> 10,000 

< 10,000 

1.5 – 1.9 

2.0 – 2.75 

2.25 – 2.85 

3.0 – 4.13 
N/A 

Twort et al. 

(2000) 
UK Undefined 1.22 – 1.7 1.9 – 3.0 N/A 

 

Diurnal consumption patterns and their peak demands and periods provide useful information on system 

flow rates, enabling the configuration and calibration of network distribution models and for integrated 

urban water planning (Cole and Stewart, 2012). The ability to estimate and predict present and future 

consumption demand is a key component in a water supply system to ensure levels of service standards 

are not compromised. Short-term forecasts are most useful in the daily management and operation of a 

network, while long-term forecasts are more suited for future planning and design, as projected 

population growth typically results in an increased demand (Carragher et al., 2012; Parker and Wilby, 

2013). In current industry practice, two approaches are used in developing these forecasts, namely, top-

down modelling and bottom-up modelling. A brief description of the two modelling techniques is 

presented below, however, in brief, top-down modelling is often plagued with a number of assumptions 

on how demand is proportioned to different categories, with the latter approach often completed with 

poor resolution data coupled with statistical models. The herein formulated method overcomes these 

problems by utilising up-to-date high resolution smart meter datasets in order to disaggregate 

consumption into end use or micro-component categories for bottom-up diurnal demand patterns of 

indoor consumption, and hourly demand disaggregation to identify outdoor proportions of consumption 

over a range of seasons. This approach provides an evidence-based bottom-up model of daily diurnal 

demand, which differentiates itself from the current approach that is highly dependent on outdated 

secondary data to create end use demand estimates.  

1.1.1 Top-down modelling 

A top-down approach to water demand modelling allocates a demand multiplier pattern to demand 

nodes across a broad spatial scale, and assigns correction factors to account for total water demand for 

each of the nodes (Blokker et al., 2010a; Carragher et al., 2012). Traditional network modelling 

essentially requires the gathering of information, such as bulk meter data, water production, demand 

patterns from pumping stations and customer billing data, and a series of assumptions made to separate 

the information into the relevant demand components. Historically determined water demand patterns 

are also utilised and adjusted accordingly to reflect the change to recent consumption values and peak 

factors, with the assumption that base consumer usage patterns remain the same (GCW, 2009).  



The standard demand patterns are not able to represent water demands' stochastic nature (Todorovic et 

al., 2011) or the inverse relationship of peaking factors to connections/population size – peaking factors 

reduce with increasing connected households (Todorovic et al., 2011). Furthermore, water demand 

profiles are usually gathered after long intervals, such as every three to five years, and may be outdated 

and not relevant to current periods. Hence, such patterns are of little use in modelling small or detailed 

network models or for predicting future water demands (Todorovic et al., 2011).  

1.1.2 Bottom-up modelling 

A bottom-up demand modelling approach combines water demand patterns modelled for each 

household within a supply zone, and allocates individual demand patterns to each connection within the 

network to more accurately determine demand on a small spatial scale (Blokker et al., 2010a; Carragher 

et al., 2012). This essentially requires the collection of information on a smaller scale, normally at an 

individual household level, providing a finer level of detail of the gathered water consumption data. 

Furthermore, as the data is empirically gathered for each household, this eliminates the need to make 

assumptions required in the top-down approach.  

Recent studies have featured the development of diurnal water consumption patterns that do not use 

direct-demand measurements. This includes stochastic and probabilistic methods of demand modelling 

using statistical information of water appliances and residential users at varying levels of temporal and 

spatial variability (e.g., Blokker et al., 2010b; Duncan and Mitchell, 2008; Thyer et al., 2009). While 

these models present a good fit of simulated patterns to observed data, they are not supported fully by 

empirically gathered mode of demand generation, and require calibration and validation to predict 

future and instantaneous diurnal demand patterns. However, the absence of leakage estimation in such 

models, which can account for around 2% to 6% (Athuraliya et al., 2012; Beal and Stewart, 2011) of 

overall household consumption, makes calibration more difficult (Rathnayaka et al., 2011). 

Furthermore, the difficulty in managing the complex correlations between the various parameters, and 

the lack of data representing the relationships between individual end uses and the factors influencing 

their water consumption, limits the ability of these models to simulate end-use patterns at development, 

city and regional scales (Rathnayaka et al., 2011). 

1.2 Advent of smart water metering  

Advancements in metering and data communications technology have made it possible to record 

household water usage data through smart water meters. They can automatically and electronically 

capture, collect and communicate water usage readings in real time or close to real time (Boyle et al., 

2013; Cole and Stewart, 2012). This electronic data can be transferred by automated means (e.g. GSM, 

GPRS, CDMA, drive by) to servers for storage and the subsequent processing and analysis of data 

(Boyle et al., 2013). Smart water metering would be expected, as a minimum, to convey daily meter 

readings between the water utility and the water meter, and potentially to customers as well. Finer 

levels of data capture (in seconds, minutes or hourly) could also be programmed into the loggers to 

enable more detailed analysis to be carried out (e.g. Beal and Stewart, 2011; Britton et al., 2013; Mead, 

2008; Willis et al., 2011a). This is unlike traditional methods of periodical (accumulation) metering, 

where household water consumption is typically only manually read on a monthly or quarterly basis 

meaning that daily trends of consumption need to be estimated for planning purposes. Such automated 

technology would provide benefits for both water authorities and consumers in monitoring and 

controlling water consumption (Stewart et al., 2010) and enable alternative pricing mechanisms such as 

time-of-use or seasonal tariffs (Cole et al., 2012; Parker and Wilby, 2013). However, while the benefits 

of accurate just-in-time (JIT) network modelling have been mentioned in recent years, there are few 

examples in the literature demonstrating how smart meters can be used for this purpose. 



1.2.1 Smart meter enabled end-use studies 

End-use studies are important as they have direct implications on demand management programmes 

and installation of more efficient plumbing fixtures (Proenca and Ghisi, 2010). Smart water meters have 

been utilised in a number of residential end-use water consumption studies. In these studies, smart water 

meters were programmed to collect high-resolution data (e.g. 0.01-0.02 litres per pulse [L/pulse] range) 

at recording intervals of five or ten seconds (e.g. Beal and Stewart, 2011; Willis et al., 2011a; Mead, 

2008). This allowed the consumption data to be disaggregated into individual end-use categories (e.g. 

clothes washer, toilets, shower) using the end-use event recognition software, Trace Wizard®. 

(Aquacraft, 2010). Disaggregating water consumption to its end-use components is important, as this 

can help to accurately determine how frequently, and where, water is used by residents in their homes, 

allowing a more proactive approach to water demand management and planning (Carragher et al., 2012; 

Cole and Stewart, 2012). 

Typical household end-use studies report total and individual end-use consumption values (per capita 

and/or per household) as well as such details as diurnal consumption patterns, peak flows and the time 

of peaks (e.g. Beal and Stewart, 2011; Mead, 2008; Willis et al., 2011a). These studies provide a useful 

insight into the individual household appliance consumptions and average peak flows generated from a 

single household, for different areas, which form the basis of predicting future water demands. End-use 

studies capitalising on smart water meters are shown in Table 2.  

Table 2 Summary of smart water metered end-use studies 

Study Location No. of 

Homes 

Results in L/p/d  Reference 

South East Queensland 

Residential End Use 

Study: Final Report  

(reduced sample sizes due 

to Jan 2011 flooding and 

logger failure) 

South East 

Queensland, 

QLD, Australia 

252 

219 

110 

93 

83 

Winter 2010: Total 145.3, Indoor 138.4, Outdoor (OD) 7 

Summer 2010/11: Total 125.3, Indoor 100.5, OD 4.8 

Winter 2011: Total 144.9,  Indoor  138.2, OD 6.7 

Summer 2011/12: Total 137.6, Indoor 120, OD 17.6 

Autumn 2012: Total 144.4, Indoor 120.4, OD 24 

Beal and 

Stewart 

(2011) 

Melbourne Residential 

Water End Uses Winter 

2010/ Summer 2012 

Melbourne, 

VIC, Australia 

300 Winter 2010: Total 114, Indoor 110, OD 4 

Summer 2012: Total 147, Indoor 120, OD 27 

Redhead et al. 

(2013) 

Yarra Valley Future 

Water: Residential Water 

Use Study (Winter 2010/ 

Summer 2012) 

Yarra Valley, 

VIC, Australia 

100 Winter 2010: Total 109, Indoor 106, OD 3 

Summer 2012: Total 127.9, Indoor 108.1, OD 19.8  

Roberts et al. 

(2011), 

Athuraliya et 

al. (2012) 

Gold Coast Water Saver 

End Use Study 

Gold Coast, 

QLD, Australia 

151 

127 

 

134 

Winter 2008: Total 157, Indoor 138.4, OD 18.6 

Summer 08/09:  Single ret – Total 158.4, Indoor 145.7, 

OD 12.7; Dual ret – Total 143.5, Indoor 134.4, OD 13.1 

Summer 09/10: Single ret – Total 171.9, Indoor 150, OD 

21.9; Dual ret – Total 183.6, Indoor 136, OD 47.6 

Willis et al. 

(2009, 2011a) 

2010 – Perth Residential 

Water Study 2008 – 2009 

Perth, WA, 

Australia 

1,868 Total 290.4, Indoor 164.6, OD 126 Water 

Corporation 

(2010) 

2008 – Auckland Water 

Use Study (AWUS) Final 

Report 

Auckland, New 

Zealand 

51 Summer  2008: Total 188, Indoor 156.1, OD 31.9 

Winter 2008: Total 175, Indoor 164.5, OD 10.5 

Heinrich 

(2008) 

2007 – Water End-use and 

Efficiency Project – Final 

Report 

Kapiti Coast, 

New Zealand 

12 Winter 2006: Total 168.1, Indoor 154.2, OD 13.9 

Summer 2006/07: Total 203.9, Indoor 159.9, OD 44.5 

Heinrich 

(2007) 

2004 – Tampa Water 

Department Residential 

Water Conservation Study 

Tampa, Florida, 

USA 

26 Baseline: Indoor 292  

Post retrofit: Indoor 147 

Mayer et al. 

(2004) 



1999 – Residential End 

Use of Water 

Canada and 

USA 

1,188 Total 650, Indoor 268, OD 382 Mayer and 

DeOreo 

(1999) 

 

Along with end-use studies, high resolution smart water meters have been utilised to monitor rainwater 

tanks connected to individual households (Ferguson, 2011; Lucas et al., 2012; Umapathi et al., 2013), a 

high-rise commercial building (Cook et al., 2014) and a communal rainwater system (Cook et al., 

2013). These meters have also assisted in reporting potential water savings from using efficient 

household water appliances (Athuraliya et al., 2012; Beal and Stewart, 2011; Heinrich, 2007; Mayer et 

al., 2004; Willis et al., 2013) and comparing water demand of efficient and non-efficient homes 

(Carragher et al., 2012). Willis et al. (2010, 2011b) monitored showers fitted with an alarming visual 

display monitor (Willis et al., 2010) and investigated the relationship between environmental and water 

conservation attitude on end-use water consumptions (Willis et al., 2011b). Measuring householders’ 

perceived and actual water consumptions was also performed based on smart metering studies (Beal et 

al., 2013). On a coarser level (5 L/pulse at hourly intervals), smart water meters from the city of Hervey 

Bay were used to identify and manage households’ leaks (Britton et al., 2013), differentiate indoor and 

outdoor consumption to determine the drivers of peak demand (Cole and Stewart, 2012) and develop 

and model the impact of innovative time-of-use tariffs which imposed an hourly inclining block penalty 

targeting outdoor consumption (Cole et al., 2012). 

1.2.2 Smart meters for enhanced water service infrastructure planning 

Studies utilising smart water meters have shown that information collected from these meters allows a 

better understanding on temporal profiles of household water consumption, furthering their capability to 

be used as a water infrastructure and management tool. While smart metering itself does not directly 

reduce daily and peak demand, it has the potential to inform water businesses and their customers of 

different end-use consumption patterns and leakages. This information could help to reduce demand 

through almost real-time usage portals and leakage alert messages (Stewart et al., 2010; Britton et al., 

2013). Such information has a strong potential to reduce peak demand and defer trunk main upgrades 

when existing areas are experiencing extensive new in-fill developments. 

Current water infrastructure network modelling is based on a top-down model approach, which carries a 

number of assumptions and often uses out-of-date consumption data. Using smart meters extensively 

eliminates these assumptions by allowing the inclusion of empirical demand-induced diurnal patterns, 

which can be updated in a network model instantaneously, thereby ensuring a more robust and dynamic 

water supply network analysis. Although there are a number of models aimed at developing household 

water consumption patterns, these are not built empirically but are instead developed through stochastic 

methods using statistical information.  

2 Research objectives 

This study aims to provide empirical evidence to support the implementation of smart water meters as a 

feasible tool in improving current practices of demand forecasting and subsequent network modelling. 

Utilising a data-driven, bottom-up end use approach provides a superior set of diurnal demand patterns 

and peaking factors that can be used for network modelling and subsequent planning and operational 

purposes. The four key objectives of this study are to: 

• Demonstrate the use of smart water meters as a tool in developing AD, PD and MDMM water 

demand profiles using a bottom-up empirical approach. 



• Design a new method for developing AD, PD and MDMM water demand profiles using 

information gathered from smart water meters.  

• Implement the developed methodology to create bottom-up derived AD, PD and MDMM daily 

demand patterns and peak factors for the South East Queensland (SEQ) region. 

• Compare bottom-up derived daily diurnal demand patterns with those presently utilised by the 

region’s water utility. 

3 Methodology 

3.1 Novel method to develop demand patterns from smart water meter fleets 

A methodology has been developed and is presented for the benefit of water professionals around the 

world to replicate the novel procedure of developing demand curves for use in water supply network 

modelling. The developed method was not intended to encapsulate the stochastic nature of water 

demand in individual households, but instead was intended to demonstrate how current modelling 

practices can be significantly enhanced through the advent of smart metering technologies and the 

extensive datasets they can provide. Although smart water meters have the ability to provide direct-

demand values and patterns from individual households, water utilities usually use a set of parameters 

to forecast and generate demand patterns. Hence, the proposed methodology will use smart water meter 

data, in conjunction with utilities’ AD consumption values, as an innovative bottom-up approach to 

develop AD, PD and MDMM demand patterns. The overall methodology is described in the following 

steps and also depicted in Fig. 1 : 

1. Install high resolution smart water meters: Fit smart water meters to a representative number 

of homes in a water supply zone and create a remote data collection repository for storing and 

analysing collected data.  

2. Data collection and analysis to develop end-use demand patterns: Gather smart water meter 

data from the water supply zone for a representative period. Use event recognition software, 

such as Trace Wizard™, to disaggregate smart water meter consumption to its different end 

uses. Household water audits and water diaries can also be completed to validate the results of 

the analysis. Create AD demand patterns of each end use at regular intervals (e.g. hourly, half-

hourly) in relation to the relevant water supply code, on a per capita per hour (L/p/h) basis. 

Consumption profiles for each end use are to be developed separately. 

3. Normalise demand patterns for each end use: Normalise the consumption patterns for the 

different end uses by dividing the demand values at each time interval with their respective 

average hourly consumption volumes (i.e. each end-use’s AD consumption divided by 24 

hours) to obtain the water use distribution relative to hourly consumption at each time interval. 

4. Estimate indoor and outdoor water consumption splits: Estimate the indoor and outdoor 

water consumption splits from the smart water meter data or from previous end-use studies for 

the area/region, if insufficient data is recorded. Use this split to project and estimate the amount 

of indoor and outdoor water use on AD using AD consumption values provided by the utility. 

The splits in outdoor and indoor consumption may also be obtained from utility guidelines, if 

available. 

5. Update volumes for each indoor end-use: Obtain the percentage consumption contributions 

of each indoor end use relative to total indoor demand from analysis of the smart water meter 

data, or from other local end-use studies. Apply the indoor consumption from Step 4 to the 

indoor end-use distribution to obtain the updated AD water demand for each end use.  

6. Develop final AD pattern: Apply the updated volumes for each end use to their respective 

normalised demand patterns obtained from Step 3 to develop their individual AD consumption 



profiles. Combine the end-use patterns to obtain the final AD demand pattern for the area. After 

obtaining the final pattern, normalise it against the assigned AD consumption value to obtain 

the factorised diurnal pattern for the area.  

7. Develop peak demand curves: Obtain peak demand curves for PD and MDMM, following a 

similar procedure to the above steps, but with peak factors required to adjust indoor and 

outdoor peak demands. The key components of this step are as follows: 

i. Identify the occurrences of PD and MDMM for the smart water meter–fitted water 

supply zone. 

ii. Develop the normalised demand patterns for PD and MDMM for each end use.  

iii. Obtain the indoor and outdoor peak factors for PD and MDMM (i.e. Outdoor/ indoor 

peak demand divided by the corresponding outdoor/ indoor demand on AD).  

iv. Apply these factors on the utility’s indoor and outdoor split on AD (obtained in Step 4) 

to estimate the indoor and outdoor demands on PD and MDMM.  

v. Obtain the indoor end-use distribution with respect to total indoor consumption for PD 

and MDMM. Apply consumption from previous step to obtain the updated demands of 

each end use on PD and MDMM. 

vi. Apply updated demands for all end uses on their respective normalised patterns to 

develop individual end-use consumption profiles for PD and MDMM. 

vii. Combine the individual end-use consumption patterns to develop the overall PD and 

MDMM consumption profiles. 

The outlined methodology is relevant for areas with high resolution smart water meters, allowing for 

the separation of household water consumption data to the various end uses. For an area utilising lower 

resolution smart water meters e.g. 1 litre at hourly intervals, segregation of data into the relevant end 

uses is not possible. Instead, a threshold flow can be determined to split the indoor and outdoor 

consumption, as applied by Cole and Stewart (2012) to enable separation of these two particular uses. 

In this instance, the indoor pattern can be taken as one end use, instead of the accumulation of different 

end uses, and the above methodology adjusted accordingly to reflect this. The required water demand 

patterns can then be developed. 

For the purpose of this study, non-revenue water (NRW), which is the unbilled water prior to water 

supply reaching households (DERM, 2010; GCW, 2009), will not be considered, as the study focusses 

on direct household water consumption. 



 

 

Steps 

Step 3: Normalise demand 

patterns for each end use 

Step 4: Estimate indoor and 

outdoor consumption splits 

- Normalise demand patterns against 

average hourly consumption for each end 

use 

- Apply end use volumes into respective 

normalised demand curves (Step 3) to 

derive demand curves 

- Combine end use patterns for final AD 

pattern 

   

Tasks 

Step 1: Install smart water 

meters 

Step 5: Update volumes for 

each indoor end use 
 

Step 7:  Develop peak 

demand curves.  
(Similar to above steps with 

peak factors required to adjust 

indoor and outdoor values) 

- Obtain indoor consumption distribution 

from smart water meter data or other local 

end-use studies, relative to total indoor use 

- Update volumes for each indoor end use 

by applying indoor consumption (Step 4) 

on distribution 

- Obtain consumption data for a 

representative period 

- Disaggregate consumption data to various 

end uses 

- Create diurnal patterns for each end use 

- Obtain indoor/ outdoor splits  from utility 

guidelines or estimate from local end-use 

studies 

Step 6: Develop final AD 

demand pattern 

 

 

- Identify peak demand occurrences 

- Develop normalised peak demand 

patterns. 

- Obtain indoor and outdoor peak factors 

- Apply respective factors on indoor and 

outdoor splits (Step 4) to estimate  peak 

demands 

- Obtain indoor distribution and estimate 

volumes for each end use. 

- Develop peak demand curves with updated 

volumes  

 

Step 2: Data collection and 

analysis to develop end-use 

demand patterns 

 

 

Diurnal patterns for 

each end use 

Normalised demand 

patterns of each end use 

Final AD demand 

pattern 

Outputs 

Indoor and outdoor 

consumption splits 

 

Updated volumes of 

indoor end uses 

Peak (PD and MDMM) 

demand patterns 

- Procure smart water meters 

- Install smart water meters in representative 

water supply zone 

- Create data collection repository 

Online remote water 

consumption data 

repository 

 

Fig. 1 Schematic of the methodology 

4 Method application in the SEQ region 

4.1 Step 1: Install smart water meters 

The installation of smart water meters, able to collect water consumption data of at least a resolution of 

1 L every hour, is required to follow most of the steps of the methodology described above. Ideally, a 

representative sub-sample within the network is equipped with smart water meters that can capture 

consumption data at very high resolutions (e.g. 0.01 to 0.02 L/pulse) at regular intervals (e.g. 5-10 



seconds) to allow for the breakdown of water consumption data to its different end uses. Having large 

fleets of such very high resolution smart meters producing water end use datasets is presently not 

feasible due to the requirement for manual flow trace analysis, which is a resource intensive process. 

However, promising research by Nguyen et al. (2013a, 2013b and 2014) and Fontdecaba et al. (2013) to 

automate this process, makes this possible in the near future. Given that high resolution end use data 

was available for this study, it has been adopted here to demonstrate the full application of the 

developed methodology described in Fig. 1. 

4.2 Step 2: Data collection and analysis to develop end-use demand patterns 

4.2.1 Data collection and analysis 

The study sample for the current research was obtained from the South East Queensland Residential 

End Use Study (SEQREUS) (Beal and Stewart, 2011). Households from Brisbane, Sunshine Coast and 

Gold Coast were utilised in the sampling, due to their similar geographic (coastal) location and 

household consumption (Beal and Stewart, 2011). The data consists of a two week continuous smart 

water meter dataset recorded at a very fine resolution (0.014 L/pulse at 5 second intervals). The sample 

sizes are shown in Table 3. This fine level of recorded data has allowed the water consumption to be 

separated into the relevant end uses using the Trace Wizard™ software. 

Table 3 Household sample size and recorded periods 

Data Period of analysis 

No. of 

samples 

(households) 

No. of 

people 

Household 

occupancy 

Winter 2010 14/06/2010 to 27/06/2010 134 346 2.6 

Summer 2010-11 29/11/2010 to 12/12/2010 61 161 2.6 

Winter 2011 01/06/2011 to 15/06/2011 64 175 2.7 

Summer 2011-12 01/12/2011 to 14/12/2011 63 166 2.6 

Autumn 2012 18/03/2012 to 31/03/2012 53 146 2.8 

Spring 2012 01/09/2012 to 15/09/2012 44 132 3.0 

Summer 2012-13 22/11/2012 to 05/12/2012 64 178 2.7 

 

In addition to the SEQREUS sample, the Hervey Bay smart water meter fleet water consumption data, 

which measured 2,494 single dwelling homes between 1 July 2008 and 1 July 2009, was included in the 

study. Although Hervey Bay is not specifically within SEQ, it is a coastal location and is of relative 

close proximity to the region. It is anticipated that household water use within the area will not differ 

significantly to the main study region (SEQ). Accurate end-use breakdown for this data was not 

possible due to its coarse nature (5 L/pulse and at hourly intervals), although Cole and Stewart (2012) 

have defined a consumption rate at which indoor (<300 L/hr) and outdoor (>300 L/hr) use can be 

separated for the area.  

Demand patterns generated from the SEQREUS study were created at half-hourly intervals to allow for 

direct comparison with the standard time-step used by water utilities in the region for their network 

models. The hourly time-steps of the Hervey Bay data were converted into half-hourly time intervals by 

interpolating consumption values at every two intervals to allow for direct comparisons against the 

SEQREUS and utility demand patterns.  

The SEQREUS dataset does not contain a full continuous year’s water consumption information, which 

is required in developing AD, PD and MDMM consumption patterns. Undertaking flow trace analysis 

to separate annual smart water meter data into its end uses is a labour-intensive process. Furthermore, 

although the Hervey Bay fleet has the required period of data, the coarse nature of the records limits any 

separation into different end uses. Thus, the water consumption data for each sample period from the 



SEQREUS fleet were analysed individually and compared against one another to draw conclusions on 

the development of the final average consumption pattern for the SEQ region. Results were divided into 

two main categories for analysis: indoor use (shower, clothes washer, toilets, taps, dishwasher and bath) 

and outdoor use. The indoor use category also includes the leakage component.  

4.2.2 Summary of indoor consumption  

The total indoor consumption from the SEQREUS smart water fleet was found to be similar for all time 

periods, with consumption ranging from 118 litres per person per day (L/p/d) to 138 L/p/d, with well-

defined peaks in the morning (8 am to 9 am) and evening (6 pm to 7 pm). Indoor diurnal peaks were 

normally higher in the morning than in the evening, with average daily peaks ranging from 11.2 litres 

per person per hour (L/p/h) to 14.6 L/p/h, and from 8.3 L/p/h to 10.3 L/p/h, respectively. Morning 

indoor peak levels were mainly influenced by shower and clothes washer use, followed by taps and 

toilets. Evening indoor peaks were found to be mainly influenced by shower use (lower than the 

morning peak) and taps (similar to morning peaks), with less clothes washer and toilet use compared to 

in the morning. These findings are similar to those reported in other studies (Willis et al., 2011a; Beal 

and Stewart, 2011). 

• Showers: Shower consumption was fairly constant for most periods of analysis (41 L/p/d to 46 

L/p/d). Winter 2011 and Spring 2012 had the highest consumption of 51 L/p/d and 48 L/p/d 

respectively, and also accounted for the highest observed peaks of 7.5 L/p/h and 6.8 L/p/h 

respectively. Diurnal patterns for showers across the seven periods were similar, peaking 

between 6:30 am to 7:30 am, normally within the range of 4.8–5.2 L/p/h. An evening peak was 

also apparent at 6 pm, although this was not as high as the morning peak, ranging from 3.4 

L/p/h to 4.7 L/p/h. 

• Clothes washer: Clothes washer consumption showed a steady decline over the sample period, 

with consumption being highest in Winter 2010, at 32 L/p/d and peaking at 4.9 L/p/h. The 

decline was credited to a particularly effective intervention study, which informed the 

SEQREUS residents of their end-use consumption, resulting in decreased clothes washer use 

(Beal and Stewart, 2011). Diurnal patterns for the clothes washer followed a similar shape, with 

peaks ranging from 3.0 L/p/h to 4.6 L/p/h, normally at 9 am and 10 am, and tailing off as the 

day progressed. Consumption values ranged between 23 L/p/d and 30 L/p/d. 

• Toilets: Toilets were the most constant end use, with consumption normally between 22 L/p/d 

to 28 L/p/d and peaks ranging from 1.9 L/p/h to 2.4 L/p/h. The end-use pattern for toilets shows 

similar shapes for all periods, with a peak occurring at 8 am, followed by relatively constant 

consumption throughout the day, not exceeding 1.5 L/p/h. 

• Taps: Consumption values for taps decreased over the period of analysis, resulting in the wide 

range of 16 L/p/d to 28 L/p/d, although the diurnal patterns remained the same. There were two 

similar peaks over the analysis periods: in the morning between 8 am to 9 am, and another at 

about 7 pm in the evening. However, in line with the fall in consumption, over time, these 

peaks have also started decreasing (from 2.4 L/p/h to 1.4 L/p/h). 

• Dishwasher: Dishwasher use was one of the lowest consuming end uses, not exceeding 2 per 

cent of total indoor demand in all periods. The consumption ranges were also constant (2.0–2.5 

L/p/d), with the main peak occurring in the evening at 8 pm to 9 pm, and another small peak in 

the morning, both of which were fairly low (<0.3 L/p/h). 

• Bath: Along with dishwashers, bath use had one of the lowest consumptions (1.1–2.3 L/p/d), 

comprising not more than 2 per cent of indoor use. However, an above-average consumption 

was observed in Spring 2012 (5.0 L/p/d), with the highest peak of 1.9 L/p/h occurring at this 

time.  



• Post-meter leakage: Leakage was found to vary, with a high of 9 L/p/d during the initial set of 

readings (Winter 2010) followed by a drastic reduction to 2.8 L/p/d in the subsequent periods 

(Summer 2010, Winter 2011, Summer 2011). Following periods showed an increase in leakage 

(6 L/p/d–8 L/p/d), although not as high as initial observations. Leakage flow ranged between 

0.05 L/p/h and 0.5 L/p/h for all periods, with spikes in leaks apparent, but not exceeding 0.6 

L/p/h. 

4.2.3 Developing the average indoor consumption patterns for each end use 

Developing the average indoor end-use consumption patterns 

With consumption values differing for each end use over the different periods, the average pattern will 

be formulated for each end use using population averaged values from all periods; that is, total 

consumption over the seven periods divided by the total consuming population in the same period, to 

present a more representative average consumption pattern for the region. This will allow for more 

variance of consumption values of the different end uses to be considered, while still maintaining the 

shapes of their consumption patterns.  

Developing the average pattern for post-meter leakage 

The householder has little control over leakage unless measures are taken to identify and rectify the 

problem. This latter possibility was demonstrated by Beal and Stewart (2011), whose reported leakage 

intervention resulted in lower leakage (post Winter 2010 results); although the increase in leakages in 

later periods indicates an ongoing requirement for leakage identification and communication to reduce 

this wastage (Britton et al., 2013; Beal and Stewart, 2011).  

Leakage peaks show no apparent association with any one appliance, although there is a slight 

resemblance to household water use patterns, with leakage more obvious over the day and lower during 

the night. This indicates that, while there is a steady leakage flow over the day, higher leaks would 

occur during the use of other household water appliances. Beal and Stewart (2011) showed a weak 

correlation with toilets (R
2
=0.45) in diurnal pattern analysis, although other combinations are also 

possible, including post-meter pre-appliance leaks (plumbing between post-meter and before-appliance 

use), or leaking taps and showers.  

Due to the uncertainties involved in the estimation of leakages, the average leakage pattern is taken to 

be constant throughout the day. From the seven recorded periods in the SEQREUS data, an average 

leakage consumption of 5.93 L/p/d was obtained, corresponding to an equivalent hourly flow of 0.25 

L/p/h.  

Development and verification of average indoor diurnal patterns  

Combining the consumption patterns for the various indoor end uses presents the total indoor diurnal 

pattern in Fig. 2. The developed pattern displays a good match with the indoor consumption profiles of 

the various time periods, with the shapes and times of peaks matching well, although consumption 

values differ.  



 

Fig. 2 Diurnal patterns of total indoor uses for various periods  

Indoor consumption patterns from two other smart water meter studies (Cole and Stewart, 2012; 

Umapathi et al., 2013) carried out around SEQ with an approximate year’s worth of data were 

developed for comparison and verification against the obtained average. As the consumption values 

differed for the patterns, they were normalised against their total indoor demand to provide for a more 

direct comparison. The obtained average pattern matched well with the indoor consumption patterns 

from the other studies, as shown in Fig. 3. This demonstrates the similarities in indoor consumption 

trends within this particular region, although this may not be true elsewhere.  

 

Fig. 3 Comparison of indoor consumption (with leaks) against other studies 

4.2.4 Developing the outdoor consumption pattern 

Outdoor usage occurs mainly during the day and is variable throughout the end use read periods, 

making it difficult to analyse properly. The developed average pattern for SEQ is shown in Fig. 4. A 

visual observation of the outdoor consumption values over the seven periods indicated three distinct 

levels of usage (Fig 4):  

• Low-level (<10 L/p/d)—Winter 2010, Summer 2010, Winter 2011 

• Mid-level (10–35 L/p/d)—Summer 2011 and Autumn 2012 

• High-level (>35 L/p/d)—Spring 2012 and Summer 2012. 

Outdoor consumption patterns for each of these three groups were created to allow a more comparable 

analysis of these end-use patterns. In low outdoor consumption periods (<10 L/p/d), the pattern was 



spread relatively evenly over the day, with fairly constant consumption observed between 10 am to 5 

pm and no pronounced peak in the morning. General morning and evening total demand peaks were not 

affected, as outdoor consumption values were fairly low and only added 0.2 L/p/h–0.7 L/p/h of demand. 

The outdoor demand pattern in mid-level consumption periods (10–35 L/p/d) was similar to low 

consumption periods, with fairly constant demand between 7 am to 5 pm and an observed average peak 

of 1.5 L/p/h, which would have a minimal effect on the morning and evening peaks (Fig 4). The periods 

with high outdoor consumption had more variation in peak flows, with peaks occurring between 7 am 

and 8 am (3.7 L/p/h) and 5 pm and 6 pm (5 L/p/h), and usage at about 3 L/p/h between these periods 

(Fig 4).  

The stochastic nature of analysing indoor and outdoor consumptions within the Hervey Bay area and 

the coarse capture of consumption data resulted in outdoor consumption being present during the early 

morning hours. This is not representative of current conditions, as outdoor consumption normally 

occurs during the day and tails off after evening hours. Diurnal pattern results from other end-use 

studies (Athuraliya et al., 2012; Beal and Stewart, 2011) have also shown that there is minimal external 

use in the early hours of the day. Outdoor consumption profiles in Fig. 4 show the sporadic nature of 

outdoor use in the SEQREUS data, a low sampled area, with spikes occurring at time intervals where 

usage occurs. In contrast, the larger sample size and coarse nature of the Hervey Bay fleet data resulted 

in a smoother outdoor consumption curve. It is also noted that there is a simple and similar trend in all 

the curves, where lower outdoor water usage is noted in the morning than in the evening. For these 

reasons, the diurnal pattern for Hervey Bay will be incorporated for use in the average demand pattern, 

with early morning flow reduced to minimal flow, and afternoon flows increased to account for the 

higher flows observed in the SEQREUS data.  

 

Fig. 4 Outdoor water usage patterns of various levels of use in SEQ and Hervey Bay 

4.2.5 Developing the total average diurnal pattern for the SEQ region 

The diurnal patterns for individual indoor end use have been revealed to follow a similar pattern 

irrespective of the period for which they were recorded. Leakage, which had no apparent association 

with any one appliance, was taken to be constant throughout the day. Outdoor consumptions followed 

similar trends, regardless of the level of outdoor consumption, mainly peaking in the evenings. Average 

patterns for each end use were created and combined to develop the average diurnal pattern (see Fig. 5) 

for the SEQ region. This bottom-up approach enables a more robust development of demand patterns 

due to the application of individual empirically-based water end-use consumption data, presenting an 

improved outcome compared to the traditional top-down approach, which relies mainly on historical 

total AD demand curves updated to fit current demand values. 



 

Fig. 5 Developed diurnal pattern consumption using a bottom-up end use–based approach 

4.3 Step 3: Normalise demand patterns for each end-use 

End uses were normalised (factored) as explained in section 3.1 to set the foundations for creating 

diurnal patterns using the stipulated AD value provided by the water utility. The final averaged, 

normalised end-use patterns are shown in Fig. 6. 

Normalised diurnal pattern comparisons of each indoor end use, over the different periods and the final 

average pattern, showed similarities in their distribution factors and peaks, indicating the repetitiveness 

of householders’ use of water appliances (Fig. 6). This also served as further verification in using 

consumption patterns over the various periods to develop the average end use patterns, as consumption 

for each end use, although different in volume, will follow relatively similar rates of use throughout the 

day. 

 



   

    

                                

Fig. 6 Normalised end-use demand patterns for recorded SEQ data 



4.4 Step 4: Estimate indoor and outdoor consumption splits 

A utility assigned AD consumption of 220 L/p/d (SEQ Code, 2013) was used for this example to 

develop an AD pattern for an area (Gold Coast) within the SEQ region. Although the value is well 

above that reported in the SEQREUS and the Queensland Water Commission (QWC) of 145 L/p/d and 

154 L/p/d respectively (Beal and Stewart, 2011), as well as that developed in this study (174 L/p/d; see 

Fig. 5), it is a conservative and prudent approach for water supply planning (QWC, 2010). The cautious 

estimate takes into account the time frames for providing the water supply infrastructure and the levels 

of uncertainty; for example, consumer behavioural changes, population growth and potential impacts of 

climate change (QWC, 2010). 

Indoor and outdoor consumption splits of the total AD consumption are required, as they affect final 

diurnal patterns differently depending on their consumption volume. Ideally, the splits in the two 

consumption profiles are identified from the smart water meter data. However, as data was obtained in a 

period surrounding a drought (i.e. not restricted water use but still less inclination to use water 

outdoors), seasonal water use had not yet rebounded and it was unclear to what the long-term patterns 

for outdoor water use would be in the future. Furthermore, due to the restricted length of recorded 

SEQREUS data, the seasonal influences on water consumption were not fully captured. This is 

especially important as variations in the climate due to seasonal changes affect household consumption 

levels, with outdoor consumption more affected than indoor consumption (Cole and Stewart, 2012). 

Hence, the modelling approach incorporated the indoor and outdoor water splits from local utility 

design codes and analysis of local end-use studies, which captured greater fluctuations of the outdoor 

end-use. Within the SEQ region, the outdoor component sourced from the SEQ Water Strategy (QWC, 

2010) is approximately 60 L/p/d, leaving 160 L/p/d as the indoor consumption. 

An alternative method of obtaining the indoor and outdoor consumption split is through analysis of 

locally conducted end-use studies. Plotting the indoor and outdoor consumptions against total 

household consumption from results of various end-use studies exhibits a linear trend (Fig 7). The 

resulting equations can then be used to estimate the indoor and outdoor splits of total AD consumption. 

An example produced for this study is shown in Fig. 7 based on water consumption studies (Beal and 

Stewart, 2011; Cole and Stewart, 2012; Mead 2008; Umapathi et al., 2013, Willis et al., 2011a) 

undertaken in the SEQ region. 

 

Fig. 7 Indoor and outdoor consumption relationship to total consumption on AD within the SEQ region 

From the resulting equations presented in Fig 7, the indoor and outdoor components were estimated at 

163 L/p/d and 57 L/p/d respectively, for a total water use of 220 L/p/d. These equations are valid only if 

total water use is more than 120 L/p/d. The obtained outdoor estimate is a close representation of the 

value provided in the QWC (2010) report. For consistency, the QWC (2010) split was used to model the 

demand patterns within this study; that is, 60 L/p/d for outdoor and 160 L/p/d for indoor.  



4.5 Step 5: Update volumes for each indoor end use 

The outlined methodology requires the distributions for indoor end use, in percentage terms relative to 

total indoor consumption, to develop the estimated consumption patterns. In the current study, the 

distribution for each end use was obtained from the average consumption values developed for the 

study (See Fig. 5). The distributions are shown in Table 4. In the absence of high resolution smart water 

meter data, indoor end-use distributions from local end-use studies should be gathered where possible; 

an example of which is presented in Table 4 (from Beal and Stewart, 2011; Willis et al., 2011a). The 

distributions for each end use from these studies varied, but all were within a suitable range of 

acceptance. Choosing a value within this range and ensuring that the percentage indoor distribution is 

not exceeded; that is, is not more than 100%, will provide suitable consumption values for each indoor 

end use.  

Table 4 Indoor end-use distributions from local end-use studies and the distribution used within this study 

End-use 
Indoor end-use 

distribution ranges 

%age 

used in study 

Modelled demand 

values (L/p/d) 

Leak 1%–8% 4.4% 7.0 

Toilet 15%–24% 18.3% 29.3 

Clothes washer 20%–25% 22.1% 35.3 

Shower 30%–36% 35.4% 56.6 

Dishwasher 1%–2% 1.7% 2.8 

Tap 15%–23% 16.6% 26.6 

Bath 1%–2% 1.5% 2.4 

 Total indoor 100% 160.0 

4.6 Step 6: Develop final AD demand pattern 

Estimated daily consumption volumes for each indoor end use have been defined in Table 4. 

Converting these volumes into average hourly flow values and multiplying them by the factors at each 

time interval for their respective normalised end-use curves, created initially (see Fig. 6), will present a 

diurnal consumption curve for each indoor end use in terms of flow values. Similarly, the obtained 

outdoor consumption (60 L/p/d) can be applied to the normalised outdoor demand curve (See Fig. 6) to 

develop the AD outdoor consumption profile. The end-use consumption patterns can then be combined 

to provide a final AD consumption pattern. 

4.7 Step 7: Develop peak demand curves  

4.7.1 Analysis of PD and MDMM diurnal patterns 

Ideally, the high resolution SEQREUS data would be used to develop the PD and MDMM profiles 

using the outlined methodology. However, as a full year’s data was not available for the SEQREUS 

fleet, and due to the time-consuming process of segregating smart water meter data into the different 

end uses, the Hervey Bay fleet data was used in the analysis of the PD and MDMM parameters. The 

SEQREUS data is incorporated with the coarse-grained Hervey Bay data to finalise the PD and MDMM 

outdoor consumption profiles. Indoor and outdoor usage profiles were created separately. 

Indoor use 

Indoor consumption analysis of PD and MDMM for Hervey Bay showed that daily consumption 

volumes for the two parameters were 18% and 8% higher than AD demand, respectively (see Fig. 8), 

while indoor flows were on average 20% and 10% higher, respectively, at each time interval (see Fig. 

8). Hence, for a more conservative estimate of modelling indoor end-use profiles for these two 

parameters, each end use was increased by 20% for PD and 10% for MDMM. 



 

Fig. 8 Hervey Bay’s indoor PD and MDMM flow comparisons against indoor AD flow at each time interval (inset table shows 

volume comparison) 

Outdoor use 

Outdoor consumption for Hervey Bay showed MDMM peaks to be stronger than AD peaks and PD 

peaks to be stronger than MDMM peaks, with a range of variations in flow differences at each time 

interval (see Fig. 9). As such, the method used to model indoor consumption profiles was not utilised 

for outdoor flows.  

 

Fig. 9 Hervey Bay’s outdoor PD and MDMM flow comparisons against outdoor AD flow at each time interval (inset table 

shows volume comparison) 

The outdoor consumption patterns of Hervey Bay were similar to SEQ patterns; that is, lower 

consumption observed in the morning than in the evening. To model outdoor flow, the normalised AD 

pattern developed for SEQ (see Fig. 6h) was used and scaled up to fit the PD and MDMM parameters 

of Hervey Bay outdoor flows. This allowed for the shape of the outdoor peak demand curves in the 

study to be maintained and more realistic peak factors used. PD factor (PDF) and peak hour on peak 

day factor (PHPDF) were required to develop the PD profile curves. PDF is the ratio of PD 

consumption to AD consumption, while PHPDF is the ratio of peak hour consumption against the 

average hourly consumption on AD. Similarly, the MDMM factor (MDMMF) and peak hour on 

MDMM factors (PHMDMMF) were required for the development of the MDMM outdoor consumption 

profiles. 

The average outdoor profile was scaled with these factors by using the MS EXCEL™ Solver tool to 

develop the outdoor consumption profiles for PD and MDMM. The MS EXCEL™ Solver tool 



optimised the average consumption profile to create the required pattern by ensuring that peak factors 

are similar to obtained data. To develop the PD curve, the PDF and PHPDF used were 3.63 and 12.42, 

respectively. The MDMM profile was constructed using MDMMF at 2.5 and PHMDMMF at 7.32. Fig. 

10 presents the developed PD and MDMM curves, plotted alongside the respective Hervey Bay peak 

curves. Equation 1, which is utilised by the local utility (GCW 2009) to scale up AD factors to peak 

factors for each time interval, was used to model outdoor peak curves: 

cADFbADFaModF iii +⋅+⋅= 2      (1) 

where: ModFi is the modelled factor at time interval i, ADFi is the base average factor at time interval i, 

and a, b and c are the constants optimised by MS EXCEL™ Solver. The peak factors (PHPDF with 

PDF or PHMDMMF with MDMMF) are the limiting conditions used in MS EXCEL™ Solver. 

   

Fig. 10 (a) PD and (b) MDMM curves developed to match Hervey Bay peaks 

4.7.2 Final PD, AD and MDMM patterns 

The outdoor consumption flow profiles for PD and MDMM were developed by applying average 

hourly consumption for AD outdoor use to the profiles developed in Fig. 10. The outdoor and indoor 

end-use demand patterns were then combined to develop the PD and MDMM patterns (see Fig. 11, Fig. 

13 and Fig. 14). The total consumption on PD and MDMM can be obtained from Equation 2: 

( ) ( )outoutindind ADPFADPF MDMMor PD on nconsumptio Total ×+×=   (2) 

where: PFind is the peak factor for indoor consumption on PD or MDMM (peak factors are 1.2 and 1.1 

respectively, in this study), ADind = AD indoor consumption, PFout is the peak factor for outdoor 

consumption on PD or MDMM (peak factors are 3.63 and 2.5 respectively, in this study) and ADout = 

AD outdoor consumption. 



 

Fig. 11 Modelled AD, PD and MDMM demand flow patterns 

5 Final AD, PD and MDMM models and comparative assessment 

The proposed methodology has been applied to model the AD, PD and MDMM consumption patterns, 

which were then compared against modelled water utility patterns. A summary of peak values and 

factors from latest local guidelines (SEQ Code, 2013), Hervey Bay smart water meter fleet data 

(2008/09) and the modelled demand patterns are shown in Table 5. 

Table 5 AD, PD and MDMM consumption values and factors provided by local guidelines, obtained from Hervey Bay and 

modelled from the outlined methodology 

Network 

parameters 

Utility (SEQ Code, 2013) Hervey Bay (2008/09) Modelled results 

Demand 

(L/p/d) 

Demand 

(L/p/h) 

Factors Demand 

(L/p/d) 

Demand 

(L/p/h) 

Factors Demand 

(L/p/d) 

Demand 

(L/p/h) 

Factors 

AD 220.0 - - 190.6 - - 220.0 - - 

Peak at AD - 21.6 2.36 - 16.1 2.02 - 18.9 2.06 

PD 467.1 - 2.12 331.0 - 1.74 409.9 - 1.86 

PHPD - 55.3 6.03 - 33.6 4.23 - 44.5 4.85 

MDMM 385.9 - 1.75 266.3 - 1.40 326.0 - 1.48 

PHMDMM - 45.7 4.99 - 23.4 2.95 - 30.6 3.34 

5.1 AD demand pattern comparisons 

The AD pattern developed from the proposed method utilises the AD consumption volume outlined by 

the utility (220 L/p/d). The outcome is a modelled AD pattern different to the utility curve, with a shift 

in timings and a reduction of the two peaks (see Fig. 12).  

The main peak for the water utility’s diurnal pattern occurs in the evening (7:30 pm), while the 

modelled AD pattern produced a main peak in the morning (8 am). Furthermore, both modelled AD 

peaks occur earlier in the day, with the morning peak shifting 1.5 hours and evening peak by an hour. 

The utility pattern was derived from system monitoring conducted in 1999, and was subsequently 

modified to reflect the changing demand characteristics (GCW 2009). The change in demand patterns 

can be attributed to the changing lifestyles and behaviours of water consumers (Beal and Stewart, 2013; 

Browne et. al., 2013); for example, the shifts in demand peaks may be due to the prevalence of double 

income families (meaning that less water is used after 9 am; e.g. clothes washing by stay-at-home 

parent) or a move towards rising earlier in the day in the summer. 



The modelled AD pattern’s main peak is lower than the utility’s curve by 12%: 18.9 L/p/h compared 

with 21.6 L/p/h. Whereas peaks in indoor water activities occur constantly in the morning (see Fig. 2 

and Fig. 3), peaks in external water use normally occur in the evening (see Fig. 4 and Fig. 6h). This 

could suggest a change (reduction) in the consumption trend for outdoor end use, resulting in a ‘flatter’ 

outdoor demand curve than previously observed. This would explain the occurrence of the main peak in 

the evening during development of the base utility curve.  

 

Fig. 12 Modelled and utility AD demand patterns 

5.2 PD and MDMM demand pattern comparisons 

The PD and MDMM consumption curves (see Fig. 13 and Fig. 14) were modelled from the base AD 

demand curves, resulting in earlier morning and evening peaks compared to the water utility’s demand 

curve; similar to the results presented for the modelled AD consumption curve. The modelled PD and 

MDMM consumptions are lower than the water utility’s by 12% and 15% respectively. Peaks have 

been reduced by 20% for the modelled PD curve and 33% for the modelled MDMM curve compared to 

the respective utility patterns. This is in line with current consumption trends, whereby water demand 

generally has reduced over the years, with a reduction in peak demand also apparent from the Hervey 

Bay data and another study (Beal and Stewart, 2013).  

Outdoor use was revealed as the driver of total morning and evening peaks, accounting for 45% and 

70% on PD respectively, and 38% and 60%, respectively, for MDMM demands. Higher external usage, 

at 3.6 times and 2.5 times the AD outdoor demands in PD and MDMM respectively, resulted in the 

occurrence of main peaks in the evening, which is when most outdoor use occurs. The modelled 

outcome is supported by findings from other studies, which also report outdoor usage as the main driver 

of peak demands (Beal and Stewart, 2013; Cole and Stewart, 2012; Heinrich, 2007; Willis et al., 

2011a). 



 

Fig. 13 Modelled and utility PD demand patterns 

 

Fig. 14 Modelled and utility MDMM demand patterns 

5.2.1 Implications of reduced peak demand 

Information on peak demand patterns is required for the design of water infrastructure such as pumps, 

pipes and storage reservoirs. The latest PD and MDMM factors recorded from the Hervey Bay smart 

water meter fleet were lower than guidance from the water utility (see Table 5). This can be attributed 

to a reduction in overall household water consumption due to the water conservation measures that have 

been implemented, such as water efficient appliances and water restrictions (Beal and Stewart, 2013; 

Makki et al., 2013). As a result, the modelled PD and MDMM factors are also below those set by the 

water utility. Furthermore, the Queensland Development Code (QDC) Mandatory Part (MP) 4.1 

mandates all new developments to install water efficient devices and adopt a more conservative 

approach to water consumption (Beal and Stewart, 2013). This trend in lower peaking factors is likely 

to continue due to the higher penetration of water efficient technology as older dwellings are replaced 

with newer ones designed under this Code. Reductions in peak demand have the potential to defer or 

reduce upgrades of water distribution infrastructure and their subsequent involved costs (Beal and 



Stewart, 2013; Cole and Stewart, 2012; Carragher et al., 2012). Thus, as current demand-modelling 

techniques typically use historical data, superfluous infrastructure augmentation works could be 

occurring due to outdated modelling assumptions and not because they have reached their capacity. 

Smart water meters take into account these lower peak demands, which can be easily analysed through 

continuously recorded data. As such, and in line with updated modelling techniques, this allows for 

more accurate modelling of peak demand. Hence, estimation times of system upgrades would be more 

explicit, with the deferred financial savings used for other purposes by the water utility. 

6 Study implications 

6.1 Smart water meters’ limitations and capabilities 

The advent of smart water metering has enabled customer water demand to be captured continuously in 

second, minute or hourly intervals at higher data resolutions (0.01 L to 1 L), and for this data to be 

transmitted autonomously to a central database. End-use studies have shown that smart water meters 

capture both changes in water consumption trends and the latest households’ consumption patterns and 

demands. Assuming that the smart water meter fleet can deliver at least hourly consumption data, the 

captured stochastic and dynamic nature of water demand for each household (see Fig. 15) can be sent 

remotely and uploaded into a water supply model, allowing for a bottom-up JIT network modelling to 

be adopted. This would present a more accurate replication of the current status of water supply 

networks and assist service providers in their operations and maintenance schedules, while also more 

accurately being able to determine water being lost in NRW. Also, very high resolution flow data can 

be disaggregated into the different water end use categories as demonstrated in this study (see Fig. 6). 

Such a capability of smart water meters has the additional benefits of implementing a time-of-use-tariff 

(e.g. Cole et al., 2012), instantaneous detection of post-meter leakage (e.g. Britton et al., 2013) and the 

ability to inform consumer of where exactly their water is being consumed through a visualisation tool 

(e.g. Stewart et al., 2010).  

However, the high resolution data provided by newly installed fleets of smart water meters does not yet 

fully satisfy the design requirements for long-term water supply infrastructure planning. Until long-term 

smart meter datasets can be obtained, planners will need to adjust daily diurnal demand patterns and 

peaking factors based on estimated trends of future water use. Over time, it is envisaged that smart 

meter fleets will be able to improve such demand trend estimates and help to semi-automate this 

planning process. Furthermore, the rollout of high resolution smart meters in a city requires high, 

upfront capital cost (Boyle et al., 2013) and considerable work is still required for data collection and 

end-use classification; a time intensive manual process. This is set to change in the future with 

technology becoming mass produced and considerably less expensive. Moreover, promising research on 

automating end use classifications has resulted in devices being correctly identified at more than 70% of 

the time (Nguyen et al., 2013a, 2013b, 2014; Fontdecaba et al., 2013), with further research proposed to 

increase the accuracy of end-use analysis. 

6.2 Model limitations and capabilities 

With the known limitations of smart water meters, the proposed methodology provides an innovative 

updated method for modelling water demand using smart water meter data complimented with current 

modelling methods. Each end-use consumption profile has been defined and captured within the overall 

diurnal pattern, offering more flexibility in its usage as a demand forecasting tool in water network 

modelling. However, the obtained demand curves will only be valid for the area over which it was 

averaged, and not for a single home, where the daily demand patterns are sporadic and difficult to 

predict (Alcocer et al., 2004) as shown in Fig. 15, prohibiting its use in JIT network modelling. 



Additionally, the stochastic nature of the outdoor component, due to its discretionary nature and 

seasonal dependence, is not captured fully by the meters. As such, some uncertainty arises in the 

modelling of the outdoor component, although longer term data collected will further strengthen the 

validity of the modelled outdoor end use.  

 

Fig. 15 Stochastic nature of a single household’s water consumption pattern captured for a typical day 

Within the study, a utility assigned AD demand (220 L/p/d), which takes into account levels of 

uncertainty, has been used to present the outlined methodology. However, the proposed modelling 

technique also allows alternative household consumption values to be used and adjustments to be made 

for volumes of each end use to reflect different areas’ differing distribution in their end uses. For 

example, at the individual household level, potable demand may be obtained from bulk meters and 

through household audits, the approximate distributions of each end use, and hence their volumes, could 

be obtained. Alternatively, predictive models which estimate consumption values of end-uses, taking 

into account a household’s profile (e.g. household composition, water stock inventory, socio 

demography structure) (Makki et al., 2013), can be used and calibrated with household bulk metering to 

estimate the end-use consumption for each home. The estimated volumes of each end-use can then be 

applied to the area’s normalised diurnal curves, with the assumption that end-use patterns for each 

home are the same, to predict each household’s demand patterns. Also, it is generally acknowledged 

that higher household occupancy equates to lower per capita consumption (Polebitski et al., 2010; 

Redhead et al., 2013; Roberts et al., 2012) due to more efficient water use; for example through fully 

loaded clothes and dishwashers and from outdoor water savings which is divided amongst more 

individuals (Polebitski et al., 2010). Hence, varying the demands for individual end-uses would allow 

households of different occupancies to be modelled, resulting in lower modelled peaks for high 

occupancy households and vice versa for lower occupancy households. 

Current demand estimates and peaking factors for alternative water supplies in water planning guidance 

are fixed and do not allow for variations in their uses. The identification of the diurnal patterns for 

individual end uses can form the basis for modelling water demand for alternative water supplies, such 

as water recycling facilities and rainwater tanks and help to inform demand management strategies, 

including the use of water efficient appliances. This would allow for a more realistic representation of 

household consumption for alternative water supplies (Rathnayaka et al., 2011).  



Variations in water demand could be uploaded into nodes representing single households or a water 

supply zone, in a water supply network model that enables a more dynamic approach to network 

modelling. Hence, end use–based demand curves will allow utility planners to plan and more optimally 

design the water infrastructure, taking into account the end-use demand profiles and different usages of 

alternative water supplies within a water supply zone. In the future, through the installation of smart 

water meters over a citywide area, JIT modelling can be achieved, allowing water utility managers to 

predict and forecast the status of water infrastructure, as well as reaping other benefits from the 

technology. 

7 Conclusions 

The paper proposes a methodology utilising normalised average water end-use demand curves of a 

water supply zone as a foundation for developing various household demand patterns for use in network 

modelling. The methodology was applied in the SEQ region using the SEQREUS and Hervey Bay 

smart water meter data. Analysis of normalised indoor end-use consumption patterns of the SEQREUS 

smart water meter fleet demonstrated similarities in pattern shapes and peaks over the various periods, 

which was further verified by other local studies. Outdoor usage profiles showed a basic and similar 

trend, with consumption normally higher in the evening than in the morning.  

Modelled AD peaks occurred in the morning, in contrast to the water utility’s AD pattern, which had an 

evening peak, suggesting a greater influence of outdoor consumption for the base water utility’s curve. 

Furthermore, modelled peaks in PD and MDMM were lower by 20% and 33% respectively, as potable 

water demand has generally decreased over the years. The end-use breakdown of water consumption 

showed that outdoor water use was responsible for the main peaks in modelled PD and MDMM 

consumption, as supported by other end-use studies (Beal and Stewart, 2013; Cole and Stewart, 2012; 

Heinrich, 2007; Willis et al., 2011a).  

The study has also highlighted the importance of smart water meters as an efficient tool in the 

management, operation and planning of water infrastructure in the short to medium term, although 

approximate data is still useful for long term planning. Essentially, smart water meters require adequate 

penetration in a water supply zone to maximise their continuously gathered data. Recorded data from 

this technology can provide a foundation for developing demand curves, allowing for up-to-date 

household demand modelling and providing flexibility in modelling alternative water supplies. The 

widespread application of smart water meters is foreseeable in the future, as lower costs and quicker 

methods are developed for developing water end-use demand profiles to a high degree of accuracy. 

Through real-time modelling of latest trends in water consumption, the water supply network model can 

be optimised, resulting in the deferral or elimination of infrastructure augmentation and associated 

costs.  
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