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Abstract

Brain size relative to body size varies considerably among animals, but the ecological consequences of that variation remain
poorly understood. Plausibly, larger brains confer increased behavioural flexibility, and an ability to respond to novel
challenges. In keeping with that hypothesis, successful invasive species of birds and mammals that flourish after
translocation to a new area tend to have larger brains than do unsuccessful invaders. We found the same pattern in
ectothermic terrestrial vertebrates. Brain size relative to body size was larger in species of amphibians and reptiles reported
to be successful invaders, compared to species that failed to thrive after translocation to new sites. This pattern was found
in six of seven global biogeographic realms; the exception (where relatively larger brains did not facilitate invasion success)
was Australasia. Establishment success was also higher in amphibian and reptile families with larger relative brain sizes.
Future work could usefully explore whether invasion success is differentially associated with enlargement of specific parts of
the brain (as predicted by the functional role of the forebrain in promoting behavioural flexibility), or with a general size
increase (suggesting that invasion success is facilitated by enhanced perceptual and motor skills, as well as cognitive ability).
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Introduction

The relatively large and complex brain of vertebrates is one of

the most characteristic features of this lineage, and is linked to

many important features of vertebrate behaviour and ecology.

Sophisticated perceptual and cognitive abilities are central to the

success of many taxa, and may have imposed powerful selection

for increases in relative brain size [1–3]. At the same time,

however, brains are expensive: on a mass-specific basis, the

metabolic cost of brain function is among the highest of any organ

[4,5]. We thus might expect the benefits of increased intellect to be

balanced against metabolic costs, with relative brain size in any

given species reflecting that tradeoff [2]. How can we test

hypotheses about the functional advantages of larger brain size?

One way is to argue from design, under the assumption that

specific components of the brain have particular functions and that

an increase in size of that component will enhance organismal

performance in that function [6–8]. This method is difficult to

apply to overall brain size, however, because of complex

correlated shifts in brain structure as well as size [9,10]. An

alternative method, and the one we adopt in the present paper, is

to look for correlations between relative brain size and some aspect

of ecological functioning.

What kind of challenges should a larger brain help an organism

to solve? If cognition is important, a larger-brained individual

should be more adept at dealing with novel challenges. High rates

of anthropogenic translocation of species around the world

[11–13] provide an ideal opportunity to test this hypothesis; if a

large brain helps to deal with novel challenges, then larger brains

should be particularly useful for organisms that are suddenly

confronted with a novel set of biotic and abiotic challenges as a

result of translocation [3,10,14,15]. Translocated species face a

range of novel challenges, such as unfamiliar predators, pathogens,

and prey [16–18]. Some of those challenges place a premium on

an organism’s physiology (e.g., thermal tolerance, immune

function), but others can be overcome only by organisms that

can flexibly modify their behaviour in response to novel cues [19].

In keeping with this hypothesis, species of birds and mammals with

larger brain masses relative to body mass tend to have been more

successful at establishing viable populations in novel environments

[18,20]. The selective advantage to larger brain size might simply

involve more brain tissue (to transmit impulses to and from

integrative centres, such as the cerebral cortex: [21]) or an increase

in cognitive function (the brain size-environmental change (BS-

EC) theory, that larger brains increase behavioural flexibility:

[18,20]).

How general are these results? Amphibians and reptiles have

smaller forebrains than do birds and mammals, and are widely

believed not to have the same level of behavioural complexity

[3,22]. Plausibly, then, advantages of larger relative brain size may

be unique to birds and mammals. Alternatively, a larger brain size

might enhance colonizing ability in amphibians and reptiles in the

same way as it does in endothermic vertebrates, despite the

differences in brain structure between ectotherms and endotherms.
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A selective advantage to larger brain size in translocated

amphibians and reptiles might suggest that a relationship between

brain size and the ability to cope with novel conditions reflects

broader advantages of increased brain capacity, not just an

increase in forebrain (cognitive) function. To examine the

generality of the purported relationship between larger brain size

and capacity to thrive in a novel environment, we have analysed

data on anthropogenic introductions of amphibians and reptiles to

areas outside of their native geographic ranges. If a larger brain

facilitates dealing with new challenges, we predict that success in

establishing viable populations following translocation will be

higher in amphibians and reptiles with large brains relative to their

body sizes.

Results

Overall, patterns of establishment success in translocated

amphibians and reptiles support the prediction that species with

larger relative brain sizes will be more successful when confronted

with environmental change (figure 1). Our analyses of anthropo-

genic introductions revealed that the probability of successful

establishment in a novel environment increased with increasing

residual brain mass in six out of seven biogeographic realms.

However, the intercept and slope of the relationship between

residual brain mass and establishment probability varied accord-

ing to biogeographic realm (likelihood ratio test between models

with and without random slopes: D=8.0, P=0.018). After

accounting for taxonomic autocorrelations and propagule pres-

sure, effects of residual brain mass on establishment success were

positive in the Palearctic (per-realm intercept 6 slope =

20.95+0.28), the Nearctic (20.67+0.65), the Neotropics

(1.1+3.0), Indomalaysia (0.73+2.6), Oceania (20.15+1.36), and

the Afrotropics (1.3+3.3), but negative in Australasia (22.2–1.4).

However, 95% prediction intervals on these random intercepts

and slopes overlapped zero in Oceania, Indomalaysia, and the

Afrotropics (see Figure S1). In the latter two realms, this result was

likely due to low recorded numbers of unsuccessful introductions

(n = 1 and n= 2, respectively). Omission of these two realms did

not influence our finding that establishment success increases with

residual brain mass in all realms except Australasia (likelihood

ratio test between models with and without random slopes:

D=6.7, P=0.035). We also found no evidence to suggest that

effects of propagule pressure varied by realm (likelihood ratio test

between models with and without random slopes: D=3.6,

P=0.17).

Similar results were obtained for the effects of residual brain

mass on invasion success at the family level (figure 2). After

accounting for order membership, invasion potential increased

with increasing average residual brain mass per family (estimate 6

se = 1.260.29 in log-log space; n=16, P=0.0022).

Discussion

Among the species of amphibians and reptiles that have

undergone human translocations, those with larger relative brain

size have been more successful than smaller-brained species at

establishing populations in novel environments. This pattern is

relatively consistent in our data, being seen at the familial level, as

well as within six of seven biogeographic realms at the species

level. The same evolutionary trend is seen in birds and mammals

[18,20], suggesting that larger brain size enhances the ability to

deal with novel environmental challenges in all four major classes

of terrestrial vertebrates.

Why is a larger relative brain size associated with higher

colonization success following translocation? Although the consis-

tency of the correlation taxonomically and geographically suggests

a causal connection, the nature of any functional benefits

conferred by a larger brain remains unclear. In our analyses,

larger brains did not enhance establishment success of translocated

ectotherms in all environments. Translocated amphibians and

reptiles with smaller (rather than larger) brains were more

successful at establishing populations in Australasia. Environmen-

tal factors may select against larger brain size if a lack of resources

exacerbates the energetic costs of maintaining such an expensive

Figure 1. Mean (± SE) residual brain mass of amphibian and
reptile species that were successful (open circles) and unsuc-
cessful (dark squares) in establishing populations outside of
their native geographic ranges in seven different biogeo-
graphic realms. AA = Australasia, AT = Afrotropics, NT = Neotropics,
NA = Nearctic, PA = Palearctic, OC = Oceania, and IM = Indomalaysia.
Lack of standard errors in the AT and IM realms reflect low numbers of
unsuccessful introductions.
doi:10.1371/journal.pone.0018277.g001

Figure 2. Invasion potential of amphibian and reptile families
versus mean residual brain mass of each family. See Methods for
calculation of invasion potential.
doi:10.1371/journal.pone.0018277.g002
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organ. Low resource availability in Australasia may favour

phenotypic traits (such as small brain size) that reduce an animal’s

total energy requirements [23]. Evolutionary trends towards

reduced fecundity levels in rodents and in birds that have invaded

Australia over longer (evolutionary) time periods accord with this

hypothesis [24,25]. What functional advantages to larger brain

size in a novel environment might be strong enough to offset the

cost of maintaining a larger brain?

Previous studies on endothermic vertebrates have attributed the

relationship between brain size and establishment success to

cognitive abilities, in turn linked to the elaboration of forebrain

size and capacity in larger-brained mammals and birds [18,20].

Amphibians and reptiles do not have brain structures directly

analogous to the forebrain of birds and mammals, suggesting that

an increase in relative brain size is unlikely to confer the same

cognitive advantages as would a relatively large brain in a bird or a

mammal [3,9,10]. There may well be superior cognitive ability in

larger-brained amphibians and reptiles, but increases in non-

cognitive functions (involving sensory and motor functions, for

example) also may have facilitated the survival of vertebrates in

novel environments.

Our data do not enable us to discriminate between the

alternative explanations for the correlation between brain size

and invasion success. Invaders may prosper in novel environments

either because of enhanced cognitive skills (presumably related to

forebrain size) or to a wider suite of information-processing

abilities (related to several parts of the brain). Even if the actual

advantage was entirely driven by forebrain size, overall brain size

may be highly correlated with absolute forebrain size; and much of

the interspecific variation in cognitive ability thus may be driven

by variation in overall brain size not in relative importance of the

forebrain versus other components. Larger brain size also may

increase the level of neural connectivity between brain compart-

ments, thus enhancing the coordination of multiple functions (as in

visuomotor relays: [26]). Thus, data on the ecological correlates of

overall brain size cannot reveal which brain compartments are

functionally significant to animals in novel environments.

To tease apart the functional basis for a relationship between

brain size and survival in novel environments, we need to examine

how variation in specific brain features (overall size vs. size of

individual components vs. density of neural relays) maps onto

ecological parameters such as invasion success. For example, a

larger medial cortex may confer better memory in reptiles,

increasing spatial learning and the ability to locate critical

resources in unfamiliar surroundings [27]. Correlative studies of

brain size need to include known morphological predictors of

brain size as well as geographic and taxonomic variables to give a

robust and clear view of brain function and evolution [28].

To minimize confounding factors that are inevitable in any

interspecific comparison, research on this topic might usefully

focus on geographically wide-ranging species that extend across

environments posing a range of challenges to information-

processing. An extensive literature on reptiles and amphibians,

as well as other taxa, shows that a wide range of morphological,

physiological, behavioural and ecological traits can vary consid-

erably across a species’ distribution [29–31]. Such variation hints

that brain size and structure may vary also, providing an exciting

opportunity for future work to tease apart the ways in which the

characteristics of an animal’s brain influences that organism’s

ability to cope with the challenges posed by both ancestral and

novel environmental conditions. Given widespread predictions of

substantial changes in abiotic conditions over the range of most

species within the next several decades [32], an ability to cope

with novel challenges may well prove to be one of the most

significant predictors of species viability in the face of global

change.

Materials and Methods

We used data on the success or failure of amphibian and reptile

introductions collated by Kraus [13]. Introductions were consid-

ered successful if they resulted in the establishment of a viable

population according to the most recent literature citation [13].

Following the method used by Sol et al. [18,20], we classified

multiple introductions of a single species to an area as one

introduction event. Introduction locations consisted of countries,

islands, archipelagos, states, or provinces [33]. Data on brain and

body mass (n=149 species) were collected from various sources

[34–38]. Nearly half (n=72) of the species for which we obtained

brain-mass data have been introduced outside of their native

geographic ranges at least once, providing data on 561

introduction events for our analyses (Amphibia n=229, Reptilia

n=332). This ratio of species to introduction events (0.13) is

similar to that used in a previous test of differential success due to

relative brain size among mammals (0.15: [18]).

Larger species typically have larger brains (see Figure S2),

potentially confounding the influences of body and brain mass on

establishment success. To remove this allometric effect, we

calculated the residuals from a linear regression of taxonomic

order and log-body mass on log-brain mass (n=149 species,

R2=94%. P = ,0.0001). Some insular mammals have brain

masses smaller than those predicted using mainland allometric

data [39] but there are no data to test for such effects in

amphibians and reptiles. Taxonomic order was included as a

covariate to account for potential grade shifts between higher taxa

[20,40,41].

We tested whether residual brain mass correlated with the

probability of successful establishment using generalized linear

mixed effects models (logit link, binomial error distribution). In all

models, the dependent variable was whether or not an

introduction attempt had been successful. Because previous

research has shown that the total number of independent

introduction attempts (propagule pressure) to a given area is a

critical determinant of establishment probability [42,43], we

included propagule pressure for each location in all models

investigating the relationship between residual brain mass and

establishment success (see [13] and [43] for details). To account for

taxonomic biases among introduction events, we included species,

genus, family, and order as nested random effects. We also

included a random effect describing the biogeographic realm in

which introductions occurred to control for clustering of

introduction attempts within regions. Residual brain mass and

log-propagule pressure were entered into the model as fixed

effects. A minimum adequate model of establishment probability

was derived by conducting likelihood ratio tests between nested

models using a backward sequence of variable removal (a=0.05).

P-values produced by this model selection approach are often

conservative (i.e., higher than they should be: [44]).

In another set of analyses, we looked for patterns at the familial

level rather than treating each species as a separate entity. For

each family represented in our introduction database, we first

averaged residual brain mass of the species within that family

relative to the overall allometric relationship between brain mass

and body mass (based on all species for which we had brain-mass

data). We then looked for a relationship between this measure of

familial-level average residual brain mass and the invasion

potential of each family. To estimate familial-level invasion

potential, we extracted the family-level random effects coefficients

Ecological Consequences of Brain Size
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of a generalized linear mixed effects model where the success or

failure of each introduction attempt was the dependent variable,

propagule pressure was a fixed effect, and species, genus, family,

order, and biogeographic realm were random effects [18]. Finally,

after accounting for order membership, we investigated whether

familial-level invasion potential was correlated with the mean

residual brain mass of each family using a linear mixed effects

model. Only families that were represented by at least two species

in both the introduction and brain-mass databases were included

in this analysis (n=16 families). All statistical analyses were

conducted in R� 2.9.0 using the lme4 library (Bates and Maechler

2009; R Development Core Team 2009).

Supporting Information

Figure S1 95% prediction intervals on the conditional

modes of the random intercepts and slopes of the

relationship between residual brain mass and estab-

lishment probability in amphibian and reptile species.

(TIF)

Figure S2 Log brain mass versus log body mass for all

amphibian and reptile species used in this study. The

brain mass versus body mass trend inclusive of all biogeographic

realms is shown in the top left panel, followed by the trends for

each individual biogeographic realm.

(TIF)
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