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Smart Nanotextiles:
A Review of
Materials and
Applications

Shirley Coyle, Yanzhe Wu, King-Tong Lau,
Danilo De Rossi, Gordon Wallace, 

and Dermot Diamond

ing garments that maintain the wearer’s
body temperature.

Therefore, the fundamental compo-
nents within smart textiles are sensors,
actuators, and control units. The sensing
elements, data transmission, and process-
ing must be integrated into the textile
while retaining the usual tactile, flexible,
and comfort properties of clothing in
order for the smart textile to be practical.
Much work in the field of smart clothing
features conventional electronics overlaid
onto a textile substrate, and the problems
of connections, bulkiness, wearability, and
washability are well documented.3,4

A means of seamless integration is
required to develop true textile sensors.
This is why nanotechnology is key to the
smart textiles industry, enabling the incor-
poration of new functionalities at various
production stages—at the fiber-spinning
level, during yarn/fabric formation, or at
the finishing stage. This article describes
current materials developments for smart
nanotextiles and some of the many appli-
cations where these innovative textiles are
of great benefit.

Materials Research
The earliest textile developments

involved the use of natural materials such
as cotton, wool, and flax. More recently,
synthetic fibers were developed: Lycra®, a
segmented polyurethane-urea, has excep-
tional elastic properties, and Kevlar®,
poly-para-phenylene terephthalamide, has
ultrahigh-strength properties and is used
in bulletproof vests. Today, needs for per-
sonal mobility, healthcare, or rehabilitation
require that novel functions in sensing and
actuating be integrated into textiles. The
fundamental challenge in system-on-
textile design is that the drapability and
manufacturability of textiles and clothing
must remain largely unaffected. Materials
suitable for the development of smart
nanotextiles include inherently conducting
polymers (ICPs), carbon nanotubes
(CNTs), and a number of other materials in
the forms of nanoparticles or nanofibers.

Inherently Conducting Polymers
Discovered in 1977, inherently conduct-

ing polymers (ICPs) conduct electricity
and have the ability to sense and actuate.5

Actuators based on ICPs can generate
much higher stresses with a strain compa-
rable to natural skeletal muscle,6,7 and sen-
sors based on ICPs can change their
resistivity or generate an electrical signal
in response to external stimuli.8,9 ICP-
based intelligent polymer systems have
the ability to sense, process information,
and actuate. Chart 1 depicts chemical
structures of some commonly used ICPs.
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Abstract
The development of smart nanotextiles has the potential to revolutionize the

functionality of our clothing and the fabrics in our surroundings. Nanoscale manipulation

results in new functionalities for intelligent textiles, including self-cleaning, sensing,

actuating, and communicating. This is made possible by such developments as new

materials, fibers, and finishings; inherently conducting polymers; carbon nanotubes; and

antimicrobial nanocoatings. These additional functionalities have numerous applications,

encompassing healthcare, sports, military applications, and fashion. The wearer and the

surrounding environment may be monitored in an innocuous manner, giving continuous

updates of individual health status or environmental hazards. More generally, smart

textiles become a critical part of the emerging area of body sensor networks

incorporating sensing, actuation, control, and wireless data transmission. This article

reviews current research in nanotechnology application to textiles, from fiber

manipulation and development to end uses of smart nanotextiles.

Introduction
Technology is becoming increasingly

prominent in our daily lives, in many ways
alleviating and in other ways fueling the
demands of modern living. Huge opportu-
nities exist in the textile market to extend
the functionality and performance of tex-
tiles to meet these demands. The advent of
smart nanotextiles will revolutionize the
clothes we wear, the furnishings in our
homes, and the materials used in industry.
This coming revolution has heightened
the expectations of textile performance,
and there is a great demand for “smart fab-
rics” that are more perceptive of the sur-
rounding environment. Technical and
functional textiles may be enlisted in a
wealth of applications ranging from mili-
tary and security to personalized health-
care, hygiene, and entertainment.

Advancing the current functionalities of
textiles while maintaining the look and

feel of the fabric is where nanotechnology
is having a huge impact on the textile
industry. The market for textiles using
nanotechnologies is predicted to reach
$13.6 billion in 2007 and climb dramati-
cally to $115 billion by 2012.1

Textiles, being a pervasive and univer-
sal interface, are an ideal substrate for
integrating sensors to monitor the wearer
and the environment. Textiles offer a
versatile framework for incorporating
sensing, monitoring, and information
processing devices. Smart textiles can
sense and react to environmental condi-
tions or stimuli, for example, from
mechanical, thermal, chemical, electrical,
or magnetic sources.2 Some are termed
“passive smart textiles,” capable of sens-
ing environmental conditions, whereas
“active smart textiles” contain both actua-
tors and sensors, such as thermoregulat-
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Most ICPs are prepared via chemical or
electrochemical oxidation of the monomer
in solution or in the vapor phase,10 and
incorporation of a range of dopants is
possible, resulting in ICPs with varying
properties. Among the available ICPs,
polypyrrole (PPy) is attractive because it
has high mechanical strength, is rela-
tively stable in air, and is electroactive in
both organic and aqueous solutions.
Polyacetylene is unstable in air, limiting its
use. Polyaniline (PANi) is one of the most
widely studied ICPs, with relatively good
environmental stability and good electri-
cal conductivity. PANi has three possible
configurations: leucoemeraldine base
(fully reduced), emeraldine base (partly
oxidized), and pernigraniline base (fully
oxidized). When oxidized in aqueous
protonic acids, PANi increases its con-
ductivity by 9–10 orders of magnitude.
Polythiophene and its derivatives have
both p- and n-type electronic forms, which
have been researched to construct poly-
mer field-effect transistors for flexible
logic circuits.11 Moreover, extensive
research has also been devoted to its use
in polymer solar cells,12 where its many
advantages, such as low production costs,
flexibility, and light weight, make it suit-
able for integration into textile fibers.13

The unusual electrical conduction in
ICPs is achieved through a charged p-
conjugated system, which is a truly nano-
structured charge pathway via a long
molecular chain. This pathway is stabi-
lized by a negatively charged dopant
incorporated in close vicinity; that is, all
charged dopants, such as iodide, triiodide,
and perchlorate, are spatially removed
from the quasi-one-dimensional conduc-
tion pathway.14,15 The resistive backscat-
tering of electrons is reduced, and this

leads to a theoretical conductivity of up to
2 ¥ 107 S cm-1, which is much higher than
metal conductors.16 However, the com-
monly used bulk synthesis method
inevitably results in a shorter molecular
chain and introduces conjugation defects,
with interchain charge hopping reducing
the electrical conductivity of ICPs to less
than 1000 S cm-1.17

Textiles made from ICPs may be real-
ized by continuous wet spinning to pro-
duce ICP-based textile fibers, which can
be manufactured into yarns and a range
of fabric structures.18 The conductivity
changes in response to external deforma-
tion are exploited in the production of
textile-based mechanical sensors such as
the flexible strain gauge.19 Particularly,
PPy coated on nylon and Lycra by an
in situ chemical polymerization process
has been applied to biofeedback devices
for sports training and rehabilitation.20,21

The actuation property of ICPs results
from the volume change of ICPs
(Reaction 1). An applied positive potential
leads to the removal of electrons from the
polymer backbone and the incorporation
of dopant ions (A-) to maintain electrical
neutrality. The positive charges on the
polymer backbone provide coulombic
repulsion forces between polymer
chains. Together with the incorporation of
dopants, the overall volume can be varied,
and this process can be reversed in a
controlled fashion to produce usable
mechanical work.6 ICP-based mechanical
actuators can achieve average stresses ~10
to 20 times those generated from natural
muscle,22 realize strains (>20%) compara-
ble to natural muscle,23 and achieve fast
freestanding beam actuation with an oper-
ational frequency of up to 40 Hz.24

Recently, more than one million redox
cycles were reported using an ionic liquid
1-butyl-3-methylimidazolium tetrafluo-
roborate (BMI-BF4)/PANi fiber actuator
system, with a minimal decrease in actua-
tion strain.25

Films of ICP nanofibers have been used
as sensors to detect chemical vapors that
interact with ICPs and change their con-
ductivity. This application exploits the ben-
efit of high surface area resulting from the
small diameter of the nanofibers. Thin films
made of PANi/CSA nanofibers with diam-
eters between 30 and 50 nm (Figure 1) have
been used as a chemical sensor with supe-
rior performance to vapors of acid (HCl)
and base (NH3).

8

Moreover, by incorporating CNTs, the
electrical and mechanical properties of
ICPs can also be improved. For example,
a PANi–CNT composite fiber was pro-
duced recently26 using a wet spinning tech-
nique where the ultimate tensile strength
and elastic modulus of composite fiber
increased by 50% to 120% with an elec-
tronic conductivity of up to ~750 S cm-1.
The unique properties of high strength,
robustness, good conductivity, and pro-
nounced electroactivity of CNTs in the
nano domain make these composite fibers
potentially useful in electronic textile appli-
cations, such as the enhanced force genera-
tion when incorporated into fabric as an
actuator and the improved conduction
when used as the connection wire. Figure 2
shows the morphology of a PANi– SWNT
(single-wall nanotube) composite fiber.

Nanoparticles: Composite Fibers
and Finishings

Nanostructured composite fibers are
one area where nanotechnology is already
having a huge impact within the textile
industry. Composite fibers employ nano-
sized components such as nanoparticles,
graphite nanofibers, and CNTs to improve
physical properties such as conductivity
and antistatic behavior. Table I lists some
of the nano-sized species that are used to
improve the performance of textiles.27

These nanoparticles may be used to
develop composite fibers as nanoscale
fillers or through a foam-forming process
and may also be applied as finishings to

Chart 1. Chemical structures of
selected inherently conducting
polymers (ICPs) in the undoped form.

Reaction 1. Incorporation and exclusion of the dopant ions in electrochemical actuation of
inherently conducting polymers (ICPs), for which polypyrrole (PPy) doped with a mobile
anion is shown as an example. The incorporation of dopant ions results in an increase in
the total volume of polymer, while the exclusion of dopant ions results in a volume
decrease. A

–
represents anions incorporated into the PPy during synthesis, n is the number

of pyrrole units for each A
–

incorporated, and n ¥ m is the number of PPy repeat units that
determines the molecular weight of the polymer.
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the textile, for example, spray-coating
TiO2 for biological protective materials.

Applications
Sports

The sports industry has driven much
research within the textile industry to help
improve athletic performance, personal
comfort, and protection from the elements.
Synthetics that were once thought to be
inferior to natural fabrics now boast high-
performance characteristics. Numerous
products designed to improve the comfort
of the wearer are commercially available;
for instance, there are breathable water-
proof fabrics such as Gore-Tex® and
moisture-management textiles that wick
moisture away from the skin such as
Coolmax®. Gore-Tex® fabric uses a mem-

brane of expanded poly(tetrafluoroethyl-
ene) (PTFE) that has pores of less than 1 mm
in diameter, allowing water vapor to pene-
trate the material, but preventing the pas-
sage of liquid. To maintain the wearer’s
comfort, it is important that sweat is
allowed to evaporate, maintaining the
body’s natural thermoregulatory function.
High-performance moisture-wicking fab-
rics worn next to the skin transport perspi-
ration away from the body to the outside of
the garment where it can more quickly
evaporate. This is achieved using synthetic

microfibers that, unlike natural fibers, do
not absorb moisture, but rather pass it
through by a wicking effect that makes
them more comfortable to wear. It is even
possible to maintain constant body tem-
perature using phase-change technology
such as Outlast Adaptive Comfort®. Phase-
changing materials (PCMs) absorb, store,
and release heat as the material changes
phase from solid to liquid and back to
solid. A microencapsulation process is
used to capture small amounts of phase-
change material in a polymer shell so that
it is permanently enclosed and protected.
These microencapsulated PCMs, devel-
oped by Outlast Technologies Inc. and
called Thermocules®, can then be applied
as a finishing on fabrics or infused into
fibers during the manufacturing process.

Through the use of nanotextiles, clothes
are adapting to their wearers, meeting
their needs, and maintaining their com-
fort. The adidas_1 running shoe uses
sensors, a microprocessor, and a motor
to adjust its shock-absorbing characteris-
tics to the individual runner’s style,
pace, body weight, and running surface.28

Nike has also released a smart running
shoe containing a wireless sensor that
connects to an iPod with various playlists
to match the type of workout while
also tracking distance, time, pace, and
calories burned.29 Textiles are engineered
to improve performance; for example,
nanotech swimsuits for Olympic swim-
mers have been developed to reduce drag

Figure 1. (a) Transmission electron microscopy images of polyaniline/camphor sulfonic acid
(PANi/CSA) nanofibers cast from suspension after dialysis. Inset shows a twisted fiber.
(b) Scanning electron microscopy (SEM) secondary electron images of a thin film of
PANi/CSA deposited on glass from suspension. Inset shows a cross-sectional view of the
film on the glass substrate.8

Figure 2. Cross-sectional SEM image
of polyaniline–single-walled nanotube
composite fiber.

Table I: Properties and Applications of Nanoscale Materials Used to Improve

Textile Performance.

Nano-Filler Properties/Applications

Carbon nanofibers Increased tensile strength

High chemical resistance

Electrical conductivity

Carbon black nanoparticles Improved abrasion resistance and toughness

High chemical resistance

Electrical conductivity

Clay nanoparticles Electrical, heat, and chemical resistance

Block UV light

Flame retardant, anticorrosive

Metal oxide nanoparticles Photocatalytic ability

(TiO2, Al2O3, ZnO, MgO) Electrical conductivity

UV absorption

Photo-oxidizing capacity against chemical and 

biological species

Antimicrobial/self-sterilization

Carbon nanotubes 100¥ tensile strength of steel at one-sixth the weight

Electrical conductivity similar to copper

Good thermal conductivity



by using a biometric knitted construction
of nylon/elastane with v-shaped ridges
that emulate a shark’s skin.30 The latest
developments integrate sensing capabili-
ties to provide instantaneous awareness
of the physiological condition of the ath-
lete, thus providing valuable information
about the athlete’s physical abilities, train-
ing status, athletic potential, and
responses to various training regimens.
There is a great demand for wearable sen-
sors to be used in the field for kinematic
analysis, monitoring of vital signs, and
biochemical analysis.31

Strain sensors made from piezoelectric
materials may be used in biomechani-
cal analysis to provide wearable kines-
thetic interfaces able to detect posture,
improve movement performance, and
reduce injuries.32 The conductivity of
these textiles is affected by stress and
strain applied to the fabric, which can be
used to assess physiological movements
that impose strain or pressure on the
material. Garments integrating piezoresis-
tive ICPs and conductor-loaded rubbers
with strain-sensing capabilities offer con-
tinuous monitoring of body kinematics
and vital signs.21,33–35 The advantage of
this approach is that the tactile and flexible
properties of the textile are maintained,
providing truly wearable fabrics.

Such devices may be used to teach
athletes the correct way to perform move-
ment skills by providing real-time feed-
back about limb orientation. Examples of
such devices are shown in Figure 3. Figure
3a shows a carbon-loaded elastomer-
sensorized garment developed at the
University of Pisa. The piezoresistive sen-
sors are fabricated on a Lycra®/cotton tex-
tile by masked smearing of the conducting
mixture, which consists of a silicone
matrix filled with carbon black powder.
The same polymer/conductor composite
is also used as material for the connection
tracks between sensors and an acquisition
electronic unit, avoiding the stiffness of
conventional metal wires. Figure 3b
shows the Intelligent Knee Sleeve, devel-
oped through a collaboration between the
Intelligent Polymer Research Institute and
Biomedical Science at the University of
Wollongong and CSIRO Textile and Fiber
Technology. It is a biofeedback device
using PPy sensors that monitors the
wearer’s knee joint motion during jump-
ing and landing to reinforce the correct
landing technique.34 The PPy-coated
fabric acts as a strain gauge, with a
wide dynamic range, and is connected
to a microcontroller that emits an audio
tone when the knee bends beyond a
pre-set angle. The device was developed
for sports where jumping-related knee

injuries are common and may also be
used as a rehabilitation device following
injury.

In addition to their application as strain
gauges, conducting polymers have been
demonstrated to function as pressure

Smart Nanotextiles: A Review of Materials and Applications
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Figure 3. (a) Carbon-loaded elastomer-sensorized garment for kinesthetic monitoring
developed at the University of Pisa. (b) The Intelligent Knee Sleeve is a biofeedback device
using PPy sensors that monitors the wearer’s knee joint motion. (Courtesy of CSIRO Textile
and Fiber Technology.)



sensors by combining them with com-
pressible textiles. Polyurethane (PU) foam
coated with PPy sensors was developed
at Dublin City University. The sensor
remains soft, compressible, versatile, and,
in contrast to conventional coated textiles,
is sensitive to forces from all three dimen-
sions. The PPy-coated PU foam has been
used for developing a breathing monitor,
whereby the foam sample is incorporated
into a harness to wrap around the ribcage
area. The movement of the ribcage during
breathing exerts pressure on the conduct-
ing foam, causing an increase in conduc-
tivity of the material. It has also been
integrated into the armhole of a shirt to
detect joint movements of the upper
limbs, and smart insoles monitoring plan-
tar pressure have been demonstrated for
gait analysis applications.36,37

A new area of research that will have a
major impact for sports performance
involves integrating chemical sensors into
textiles. The aim of the European Union
(EU)–supported BIOTEX (bio-sensing tex-
tile for health management) project38 is to
perform real-time analysis of the various
constituents in sweat. Research in this area
is unfortunately lacking, because of the
overwhelming focus on blood-based diag-
nostics. The approach being taken is to
integrate electrochemical and optical sen-
sors within a textile substrate, enabling the
direct collection of sweat from a large body
surface area. The target analytes include
sodium, chloride, pH, sweat rate, and
sweat conductivity in addition to monitor-
ing cardiac and respiratory functions.38

This is of particular interest in sports appli-
cations where rehydration strategy plays a
critical role in the recovery process after
exercise. It is important not only to replace
volume losses due to sweat, but also elec-
trolytes. These factors are highly variable
among individuals, and current tech-
niques are impractical, involving sweat
patches that must be sent to a laboratory
for analysis. BIOTEX is developing a wear-
able system incorporating a fluid handling
platform based on moisture-wicking fab-
rics and nonwoven superabsorbent tex-
tiles. The sensing elements are integrated
within the fabric’s fluidic channels to mon-
itor the sweat composition. Control elec-
tronics and wireless data transmission
allow real-time analysis of the signal and
give feedback to the wearers regarding
their well-being, making individuals more
aware of their personal healthcare needs.

Healthcare
The interest in smart textiles for health-

care arises from the need to monitor
patients for extensive periods because of
rehabilitation or chronic illness. The prob-

lem with conventional clinical visits in
these cases is that they can only provide a
brief window on the physiology of the
patient;39 wearable devices offer the possi-
bility to monitor physiological signals
continuously in a realistic setting. This is
vital for the future of the healthcare sys-
tem, given the global aging population.
There is a need to shift the focus of health-
care expenditures from treatment to pre-
vention and wellness promotion.40

The EU has funded a number of inter-
related, specifically targeted research
projects in this area. The WEALTHY
(Wearable Health Care System) and
MyHeart projects involve wearable textile
interfaces integrating sensors, electrodes,
and connections realized with conductive
and piezoresistive yarns41,42 to tackle car-
diovascular diseases, which are the leading
cause of death in the Western world. The
WEALTHY system is made up of a sen-
sorized cotton/Lycra® shirt that integrates
carbon-loaded elastomer strain sensors
and fabric bioelectrodes, enabling the mon-
itoring of respiration, electrocardiogram
(ECG), electromyogram (EMG), body pos-
ture, and movement. Electrodes, to detect
ECG and EMG signals, are knitted using
stainless steel–based yarns, and a hydrogel
membrane is applied to improve contact
and match impedance with the skin. New
products coming onto the market for simi-
lar applications include the SmartShirt by
Sensatex™ and the Life Shirt® system by
VivoMetrics®, offering continuous ambula-
tory monitoring systems.

There is also potential for monitoring
emotional, sensory, and cognitive activi-
ties, as demonstrated by the MARSIAN
system (Modular Autonomous Recorder
System for the measurement of Auto-
nomic Nervous system). The system
includes a smart glove with sensors for
the detection of the activity of the auto-
nomic nervous system, which is respon-
sible for the body’s involuntary vital
functions. The glove contains noninvasive
sensors to measure physiological parame-
ters such as skin temperature, skin electri-
cal conductance, and skin potential.
A microsensor (0.45 mm) is integrated into
the glove to monitor skin temperature,
and electrodes measure the skin’s electri-
cal activity. The initial approach to elec-
trode integration was to embroider
commercially available silver/silver chlo-
ride electrodes into a hairnet glove, while
a recent prototype uses a 3D structure
made of Kapton® copper foil (150 mm
thick) with electrodes covered in silver.43

One of the more recent endeavors
within the EU roadmap is the ProeTEX
project (advanced e-textiles for firefighters
and civilian victims) to perform on-

body biochemical sensing within a textile.
While BIOTEX fabrics, as discussed pre-
viously, monitor the wearer’s health,44

ProeTEX fabrics monitor the surround-
ing environment to detect any potential
risks. The project plans to develop a full
system for firefighters and civil protection
workers plus a limited system for injured
civilians. The wearable sensing and trans-
mission systems will be able to monitor
health, activity, position, and environ-
ment, with information relayed both to
the individual and also to a central moni-
toring unit.

ICPs used for kinesthetic and physio-
logical monitoring, as discussed previ-
ously for assessing sports performance,
may also be used in the area of patient
rehabilitation.45 These electroactive poly-
mers, typically PANi and PPy, are used as
sensing devices and may also be config-
ured as actuators. For this purpose, they
are used as electrodes properly configured
within an electrochemical cell. By apply-
ing a potential, the ICP electrode changes
its dimension and works as a mechanical
actuator. Integration of such actuators
within textiles would enable fabrics to
have motor functions, opening a new field
of applications, particularly in the devel-
opment of artificial muscles. For example,
ICP actuators have been developed to
assist the insertion of cochlear implant
electrodes, in which a prototype actuator
made of a bilayer PPy actuator is able to
steer or bend the electrode in a control-
lable manner.46 Although the current actu-
ation force and mechanical energy density
of electroactive polymers are relatively
low, there is potential to develop rehabili-
tative aids and orthotic limbs.46,47

Textiles have acted as a second skin for
protection and appearance, whereas smart
textiles have the potential to emulate and
augment the sensory system of the skin by
sensing external stimuli such as proximity,
touch, pressure, temperature, and chemi-
cal/biological substances. Lumelsky et al.
describe a large-area, flexible array of skin-
like sensors with data processing capabili-
ties that can be used to cover the entire
surface of a machine, such as a robotic sys-
tem or even part of a human body.48 For
conditions such as diabetes mellitus,
where the patient loses sensation in the
limbs, or for bedridden patients, pressure-
sensitive fabrics may aid in assessment
and warning to reduce the occurrence of
pressure ulcers. PPy foam pressure sen-
sors have been demonstrated for this pur-
pose.9 With nanotechnologies, smart
textiles may provide a haptic interface, that
is, a touch-sensitive alternative to skin.

Novel functionalities in textiles are of
course not limited to personal apparel.

Smart Nanotextiles: A Review of Materials and Applications
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Home furnishings may be enlisted into
ubiquitous sensing within smart homes
for telemonitoring elderly, convalescent,
or isolated individuals.49,50 This aligns
with the “continuity of care” concept that
wearable technologies bring through
monitoring patients at home in comfort-
able surroundings.

Military/Security
There is a need for real-time infor-

mation technology to increase the protec-
tion and survivability of people working
in extreme environmental conditions
and hazardous situations. Performance
improvements and additional capabilities
would be of immense benefit to defense
forces and emergency response personnel.
The SmartShirt by Sensatex™ was initially
developed by the Georgia Tech Research
Corporation and for military applications.
The T-shirt functions like a computer by
means of optical and conductive fibers
integrated into the garment. The optical
fibers are used to detect bullet wounds,
pinpointing their exact location, and vari-
ous sensors are used to monitor the body’s
vital signs during combat conditions.51

The Institute for Soldier Nanotech-
nologies (ISN) is an interdepartmental
research center at the Massachusetts
Institute of Technology. The ISN’s research
mission is to use nanotechnology to dra-
matically improve soldier survival. The
intention is to secure a lighter, faster, more
agile force with a heightened awareness of
its environment and potential threats.
Wireless networking enables medics to
monitor the health status of the soldier.
The ultimate vision of the battlesuit of the
future is a bulletproof jumpsuit, no thicker
than ordinary spandex, that monitors
health, eases injuries, transmits data auto-
matically, and enables medics to conduct
remote triage of combat casualties to help
them respond more rapidly and safely.52

The chemical-sensing properties of con-
ductive polymers coated onto woven fab-
ric materials were investigated to detect
hazards that may endanger the health of
the wearer. Low-ppm detection limits
were demonstrated for toxic gases such as
ammonia and nitrogen dioxide as well as
the chemical warfare simulant dimethyl
methylphosphonate (DMMP).53 Fiber-
optic sensors with modified cladding
materials are suitable for detecting haz-
ards on the battlefield and may be easily
integrated into soldiers’ uniforms. The
original cladding material is replaced with
a chemical agent or environmentally sen-
sitive material on a small section of the
fiber. The modified cladding material may
be sensitive to different environmental
conditions, causing a change in the refrac-

tive index. This affects the propagation of
the transmitted light signal, which can be
measured using optical detection tech-
niques. El-Sherif et al. demonstrated this
using a thermochromic agent, segmented
polyurethane-diacetylene copolymer, and
a photochemical polymer, PANi, as
cladding agents.54

Fashion/Lifestyle
The development of high-tech advanced

textiles for specific applications, such as
extreme sports, eventually finds its
way to street fashion, where designers
are allowed the creativity of experiment-
ing with these new emerging materials.
Microfibers, for example, were initially
developed for space and military applica-
tions, and are now used in sportswear,
interior fabrics, and fashion.55

We have become exceedingly reliant on
technology; for instance, at any one time,
the typical person may be carrying an
MP3 player, a laptop computer, a mobile
phone, a computational wristwatch, and a
digital camera. The components of these
devices are being continually miniatur-
ized and, with methods such as thin-film
technology, the electronics are becoming
more flexible. Such advancements are
enabling the technology to integrate more
easily into our lives and onto our clothes.
Eleksen has developed fabric touch pads
integrated into jackets for more accessible

control of MP3 players. The initial applica-
tion was for snowboarding jackets to
provide ease of access to the control but-
tons. Eleksen has also developed a fabric
keyboard for personal digital assistants
(PDAs) that can be rolled out, easily
stored, and transported (Figure 4).
Another producer of electronic textiles,
Textronics, develops fabrics that can
warm, illuminate, conduct, and sense.
One of their recent developments is the
NuMetrex heart rate monitoring sports
bra, which incorporates conductive knit-
ted sensors that link wirelessly to a heart-
rate-monitoring watch.

Nanocoatings now offer advanced pro-
tection to improve hygiene and clean-
liness. To add antibacterial properties,
nano-sized silver, titanium dioxide, and
zinc oxide12 are used. Metallic ions and
metallic compounds display a certain
degree of sterilizing behavior. It is consid-
ered that part of the oxygen in the air or
water is turned into active oxygen by
means of catalysis with the metallic ion,
thereby dissolving the organic substance
to create this sterilizing effect. By using
nano-sized particles, the number of parti-
cles per unit area is increased, and thus,
antibacterial effects can be maximized.
Antimicrobial coatings are widely applied
to socks in order to prohibit the growth of
bacteria, but their uses also extend from
wound dressings to home furnishings,

Figure 4. Elektex fabric-based keyboard (30 ¥ 11 cm; weight, 65 g). (Courtesy of Eleksen.)
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carpets, and clothing.56 Another innova-
tion for such purposes is superhydropho-
bic self-cleaning surfaces. This was first
inspired by the natural cleanness of plant
leaves such as the lotus leaf. Water coming
in contact with a superhydrophobic sur-
face (contact angle, >150∞) forms nearly
spherical droplets. Contaminants, either
inorganic or organic, adhere to the water
droplets and are removed from the sur-
face when the water rolls off. Nano-Tex
has a range of products using such coat-
ings to resist spills, repel and release
stains, and resist static.57 These textile
enhancements become inherent to the fab-
ric, improving the performance and dura-
bility of everyday apparel and interior
furnishings.

Although technology may be hidden
through invisible coatings and advanced
fibers, it can also be used to dramatically
change the appearance of the textile,
giving new and dazzling effects. Luminex®

is a fabric with fiber-optic strands woven
into it, which are then illuminated using
light-emitting diodes (LEDs). Luminex®

has been incorporated into glowing
clothes, safety garments, handbags, furni-
ture, and even a wedding dress. Another
recent development is the Lumalive fabric
from Philips, featuring flexible arrays of
colored LEDs fully integrated within the
fabric (Figure 5). These light-emitting tex-
tiles can carry dynamic messages, graph-
ics, or multicolored images. Based on
concepts of color and light therapy, bright-
ness and the color appearance of light58

are thought to affect mood; these textiles
are designed to enhance the observer’s
mood and positively influence his or her
behavior.59

Conclusions
Developments in smart nanotextiles

may affect many aspects of our daily lives
and produce clothing that is contextually
aware. New materials integrating novel
technologies enable passive, noninvasive
sensing of wearers and their environs.
A major problem in wearable computing
at present is the interconnections, with
conventional silicon and metal compo-
nents being highly incompatible with the
soft textile substrate. By integrating tech-
nology at the nanoscale, the tactile and
mechanical properties of the textile may
be preserved, retaining the necessary
wearable and flexible characteristics that
we expect from our clothing. Smart tex-
tiles must be flexible enough to be worn
for long periods of time without causing
any discomfort in order to become a
viable and practical product.

Smart textiles have a large range of
applications, often starting as a highly

specialized application before becoming a
more generally available consumer prod-
uct. The topics covered here show that this
is an area of interdisciplinary research that
must involve materials research, sensor
technologies, engineering, wireless net-
working, and computer applications.
Creating a wearable garment integrates
textile and fashion design with input from
the end users, such as healthcare workers,
defense forces, and sports physicians.
Market trends suggest great opportunities
for nanotechnology within the textile mar-
ket; given the current pace of develop-
ment, smart nanotextiles will form a
ubiquitous part of our lifestyle. Our cloth-

ing is becoming contextually aware and is
learning to adjust to suit the individual
needs of the user.
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