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ABSTRACT The convergence of Artificial Intelligence (AI) can overcome the complexity of network
defects and support a sustainable and green system. AI has been used in the Cognitive Internet of Things
(CIoT), improving a large volume of data, minimizing energy consumption, managing traffic, and storing
data. However, improving smart packet transmission scheduling (TS) in CIoT is dependent on choosing an
optimum channel with a minimum estimated Packet Error Rate (PER), packet delays caused by channel
errors, and the subsequent retransmissions. Therefore, we propose a Generative Adversarial Network and
Deep Distribution Q Network (GAN-DDQN) to enhance smart packet TS by reducing the distance between
the estimated and target action-value particles. Furthermore, GAN-DDQN training based on reward clipping
is used to evaluate the value of each action for certain states to avoid large variations in the target action
value. The simulation results show that the proposed GAN-DDQN increases throughput and transmission
packet while reducing power consumption and Transmission Delay (TD) when compared to fuzzy Radial
Basis Function (fuzzy-RBF) and Distributional Q-Network (DQN). Furthermore, GAN-DDQN provides a
high rate of 38 Mbps, compared to actor-critic fuzzy-RBF’s rate of 30 Mbps and the DQN algorithm’s rate
of 19 Mbps.

INDEX TERMS Artificial intelligence, Cognitive Internet of Things, transmission delay, packet error rate.

I. INTRODUCTION
Recently, the Internet of Things (IoT) has emerged as a
promising vision. Beyond fifth-Generation (B5G) can be
intelligently interconnected to the growing usage of applica-
tion services such as mobile phones, video streaming, and
video conferencing in business and daily life. Application
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services enable people to access streaming applications any-
where and anytime while also providing big data in real-time.
Improving a wireless multimedia application (i.e., vehicles,
monitors, YouTube, Skype, and web browsing) is depen-
dent on the packet transmission schedule in Ultra-Reliable
Low Latency Communications (URLLC) [1]–[3]. In addi-
tion, URLLC is closely related to mission-critical IoT appli-
cations due to stringent constraints on the combined latency
and reliability [2].
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FIGURE 1. Designing of the decision-making of DNN in CIoT system.

In particular, controlling loss and enhancing packet Trans-
mission Scheduling (TS) in the Cognitive IoT (CIoT) system
are two significant challenges for URLLC systems. Many
studies have proposed spectrum schemes [4], [5] to guarantee
the quality of service requirements and provide a high trans-
mission data rate. Artificial Intelligence (AI) has been used in
CIoT to keep up with data volume while minimizing energy
consumption, traffic management, and data storage. A new
Q-learning-based TS is proposed to solve packet transmission
efficiency in CIoT systems [6]. The packet transmission effi-
ciency using a Deep- Learning (DL) agent can substantially
enhance its prediction if it becomes more intelligent for the
CIoT [6].

To provide better-performing TS in the Cognitive Inter-
net of Vehicles (CIoV) system, Deep-Reinforcement Learn-
ing (DRL) has difficulty achieving a large label of a real
dataset in real-time [7]. The Generative Adversarial Net-
works (GANs) are an emerging technique that generates new
virtual data similar to the existing data needed to achieve
packet TS, thus allowing the DRL agent to gain knowledge.
The Deep Distribution Q Network (DDQN)-based GAN pro-
posed to plan an intelligent agent [7]. The model-free actor-
critic for DRL is proposed to solve the problem of TS by
applying the learning problem for intelligent resource allo-
cation in CIoT systems and improving transmission packet
rate and power consumption [8]. In addition, the GAN-based
DDQN algorithm improves training stability in CIoT by effi-
cient transfer to estimate the value of every action for certain
states and the expectation of the action-value distribution. Our
entire procedure of using DRL for CIoT systems is dependent
on designing an intelligent agent Fig. 1.

A. MOTIVATION AND CONTRIBUTIONS
The current low packet transmission efficiency of IoT
faces a problem of the crowded spectrum because of the
rapidly increasing popularity of various wireless applications.
A major challenge in CIoT is packet transmission efficiency.
The unexpected growth in arrival rate to all Users (UEs)
necessitates unnecessary overhead and long retransmit in the
case of extreme events. Because URLLC applications are
sensitive to reliability and latency, short periods of unreli-
ability or latency can significantly impact UEs. Managing
spectrum decisions must enhance the dynamic channel nature
of Cognitive Radio Networks (CRNs), which provide a large
volume of data based on the estimated Packet Error Rate
(PER), channel status, throughput, and packet retransmission
delay.

Furthermore, to overcome the issue of underestimation
of action-value due to the effect of random noise in CIoT.
Therefore, we propose a GAN-based DDQN empowered by
the Software-Defined Network (SDN) controller in a highly
complex IoT environment for intelligent TS. The main con-
tributions of this work are as follows:
• We explore how to improve CIoT throughput by max-
imizing the quality of the transmitted packet rate and
reducing Transmission Delay (TD) based on channel
transmission, Signal-to-Noise Ratio (SNR), and PER
for choosing a good channel and reducing the spectrum
handoff in the multimedia applications.

• We propose a Radial Basis Function (RBF) learning
algorithm for reducing transmission power, which is
dependent on the current state of the decision policy
to obtain intelligent TS for every UE in CIoT systems.
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Furthermore, we use convergent actor-critic to provide a
reasonable decision for real-time learning at the output
layer of the fuzzy-RBF learning algorithm. The integra-
tion of the actor-critic fuzzy-RBF learning algorithm has
the capability of solving the TS problem for a large num-
ber of transmission packets under updating temporal-
difference error.

• We propose GAN- DDQN to enhance the action
improvement value for each action, resolve the DRL
long training process issue, and real-time processing of
the collected real data. The DDQN learning suffers from
the challenge that only a small part of the generator
output is included in calculating the loss function during
the training. The proposedGAN-DDQN can remove this
loss when the agent is deployed, reduce delay, improve
throughput, and perform TS. To stabilize GAN-DDQN
training, we propose a new reward-clipping process that
can prevent large variations in the target action value.

B. RELATED WORKS
Achieving an intelligent spectrum handoff decision in CRN
depend on the proposed transfer actor-critic learning selec-
tion that uses a comprehensive reward function that con-
siders a good knowledge of channel quality, packet error
rate, packet dropping rate, and throughput [9]. Energy man-
agement, resource allocation, and TS are the challenges
in the CIoT system, which require the design of a learn-
ing agent to develop decision-making ability [9]. To solve
the distributed resource allocation problem for IoT using
cognitive hierarchy devices, human-type devices exist in
CIoT systems and machine-type devices [10]. Moreover,
reducing power consumption and low-energy UEs such as
narrowband-IoT depend on scheduling data transmissions to
fulfill the URLLC requirements for cellular networks [11].
Therefore, improved CIoT systems for URLLC requirements
must provide data transmission, reducing average packet
latency, reliability, energy efficiency, and internet connectiv-
ity [12]–[15]. Furthermore, improving the packets scheduling
strategy for CIoT based on the proposed discrete permutation
particle swarm optimization for scheduling packets for every
time interval in [16] depends on minimizing the packets’
queuing delay and the number of dropped packets at each
packet time interval for CIoT. To support large-size traffic
and guaranteed traffic packets in Real-time for future smart
systems.

The authors in [17], [18] formulate the problem by choos-
ing the optimal CRN channel selection and applying deep-RL
for refiner GANs to provide sufficiently accurate traffic packs
in real-time. Based on previous studies [7]–[18], CIoT sys-
tems are still not smart enough to search for the optimal
policy. To make the system performance more intelligent to
search for the optimal policy, we propose an RBF to extract
the intelligence and improve the performance of TS based on
developing ’intelligent’ fuzzy controllers. Improving the suc-
cess of transmitted packets is dependent on minimizing the
contradiction between the evaluated and target action-value

distributions, which achieves the optimal resource alloca-
tion policy for GAN-powered DRL [19]. Good transmission
packet scheduling guarantees high End-to-End (E2E) reli-
ability based on the proposed experienced DRL for action
space reducer that reduces the size of the action space of
GAN [20]. Previous studies [13]–[20] often override the real-
time request for real-time traffic and the influence of delay
for retransmissions. Whereas real-time communications over
IEEE 802.11 are vital to meet the high efficient TS in the
CIoT system.

II. SYSTEM MODEL
In this section, we consider that the wireless IoT devices’
downlink is randomly distributed in a circular cell, and every
IoT device selectively adapts to the lower modulation levels:
Binary Phase-Shift Keying (BPSK), 4- Quadrature Ampli-
tude Modulation (QAM), 8-QAM, and 16-QAM. The GAN
scheduling is applied in the SDN-based radio access network
for dynamic CIoT and a noisy wireless bandwidth with down-
link transmissions in the radio access network.

A. CHANNEL STATE
We considered a CRN with nth independent channels; every
channel is allocated to UEs. The transmit packet arrival rate
in CIoT is modeled as a Poisson distribution process in IoT.
The SNR is independent and identically distributed between
different transmissions during the transmission packet. The
probability distribution function density of the received SNR
statistically can be written as:

P
(
ξk,n

)
=

1

ξ̄
exp

(
−
ξ

ξ̄

)
, (1)

where ξ represents the instantaneous SNR of the n th channel
at the receiver and ξ̄ represents the average received SNR.
Let ξk,n be the received SNR at the kth transmission after the
packets are combined at time slot , then ensuing SNR at
the kth transmission is an adopted system. The received SNR
defines the perfect channel state information at the receiver.
The status of n th channel involvements blocks Rayleigh fad-
ing with time slot , ξk,n presents a binary variable ε {0, 1}
[15], [21]. If fk (ξn) = 1, the channel is busy by one trans-
mission packet; else, the channel is idle.

B. POWER CONSUMPTION MODEL
Power consumption depends on the small-scale channel
gains. The several packets must wait for retransmission the
next time. Every device has two power consumption statuses
in each time slot ε {0, 1}. The transmit power Pj indicates
the transmitted data packets to every device. To reduce the
status power consumption under the queuing list to access this
channel and wait to be arranged to other channels to obtain
the low-power level for every device on the nth channel is
modeled as:

Pj =

{
PC + Ptxn if = 1 send packets
PC if = 0 sleep mode active,

(2)
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where PC is the circuit power and Ptxn is the transmission
power consumption on the nth channel in CIoT systems.

C. TRANSMIT PACKET RATE MODEL
In this subsection, we explain the SNR boundary value
of the Rayleigh fading channel based on the packet loss
rate [22]. In this paper, we choose the 28- QAM. When the
received SNR exceeds the minimum SNR. The minimum
SNR required to achieve the target Bit Error Rate (BER)
is derived as ξk,n = 1

bn
ln(an/BERk,n), n = 1, 2, ..Nt−H ,

as shown in [23]. In this equation, an and bn represent the
modulation and coding scheme levels, respectively. TheNt−H
represents the maximum number of transmissions in Hybrid
Automatic Repeat Request (HARQ). To avoid deep channel
fades, no payload bits will be sent, and the received SNR
ξ must be lower than ξ1, for all modulation and coding
scheme levels of SNR [ξn, ξn+1] [21]. The BER is estimated
based on the calculated SNR and modulation level BERk,n =
1− (1− 2(1−8

1
2 )Q(

√
3ξk,n/(8− 1))), where 8 represents

noise power and Q is the Q-function used to find the tail
distribution function of the normal criterion distribution. The
average PER in the HARQ mode for all SNR values equal
to ξk,n1, ξk,n2 · ··, ξk,nNt−H , including the number of packet
transmissions, which can be expressed as:

PPERHARQ =
∑N

n1

∑N

n2
. . .
∑N

nNt−H

∫ ξ1,n1+1

ξ1,n1

∫ ξ2,n2+1

ξ2,n2

. . .

. . .

∫ ξk,nNt−H+1

ξk,nNt−H

PPER1,2,...k,n1,n2,....,nNt−H

×
(
ξ1,n1, ξ2,n2 · · · , ξk,nNt−H

)
P
(
ξ1,n1

)
. . .

×P
(
ξk,nNt−H

)
d(ξk,nNt−H ) . . . ..

× (dξ2, n2) (dξ1, n1) , (3)

where P
(
ξ1,n1

)
. . .P

(
ξk,nNt−H

)
d
(
ξk,nNt−H

)
represents

the probability of an error occurring in the channel state
after the kth transmission reaches the maximum number
Nt−H . The PER can be related to the BER value on the nth
channel through PPERk,n = 1 − (1 − BERk,n)L

packet
n , where

Lpacketn is the packet size transmitted successfully on the n th
channel. When a packet is retransmitted, the receiver tries
to recover errors by combining them efficiently. To confirm
packets established from previous transmissions, PPERk,n with a
combined retransmitted packet can be calculated to perform
the BER for the retransmitted packet as:

BERk,n =

1− (1− PPERn )
1/
Lpacketn

andn2
dn


2/dn

, (4)

where andn represents the total number of errors proceeding
with the permitted distance of the complication code dn at the
kth transmission attempt. The estimated BER for the retrans-
mitted packet is calculated by PER, whereas the BER of
the retransmitted packet is not independent of the previously
transmitted packet, as shown in (4). The successful transmit

packet rate of the kth packet transmission on the n th channel
can be expressed as:

k,n = 1− PPERk,n =
(
1− BERk,n

)Lpacketn

= 1− (1− 2
(
1−8

1
2

)
Q

(√
3ξk,n
8− 1

)
)L

packet
n .

(5)

D. TRANSMISSION DELAY MODEL
CRN may suffer from TD problems; to meet the high band-
width of real-time transmission, there is a need to reduce the
average TD in wireless CRN, which consists of two kinds
of delay [24]: handoff and retransmission [25]. Retransmis-
sion is used to improve reliability and meet performance
targets with low power consumption. Moreover, the system
mainly focuses on packet delays caused by channel errors and
subsequent retransmissions. The delay can be estimated by
assuming that one packet must be transmitted Nt−H times
at the Medium Access Control (MAC) layer. The packet
retransmission delay should be calculated as Ttx (Nt−H ) =

(Tmac+Tdata)(Nt−H +1), where Tmac and Tdata represent the
treating time of handshake in MAC transmission delay and
the time required to transmit the data packet [26]. The average
delay can be determined based on nth channel allocation and
the effect of retransmissions, as shown as:

τret =

Nt−H∑
i=1

(
PPERk,n

)i−1 (
1− PPERk,n

)
Ttx (i− 1) ,

=

∑Nt−H

i=1

(
PPERk,n

)i−1 (
1− PPERk,n

)
× (Tmac + Tdata) (i− 1) . (6)

The number of the retransmission times and the PER are
used to determine the maximum retransmission delay τmaxret ,
as shown in (6). The packet TD is minimized by computing
the maximum handoff time of one packet by analyzing the
processing time for both loosen and sending packets in the
nth channel allocation. According to TD’s real-time traffic
analysis [24], the handoff TDs can be written as (7), shown
at the bottom of the next page, where τw and τp represent the
processing time of the handover process. The average TD of
a single packet can be computed by adding the average delay
for retransmitting and the handoff TD as:

τdelay = τret + τhand . (8)

High data throughput is estimated based on the average TD
required to provide a packet and the impact of the maximum
number of real-time retransmissions.

E. THROUGHPUT
Each packet has the same coding rate indicated by γ . The total
transmission throughput η (in a bit) and throughput in bits
per symbol of the kth packet transmitted using the 228k -QAM
level is γ×8k×Z,whereZ represents the number of symbols
per kth packet, and8k represent the modulation scheme used.
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Therefore, the successfully transmitted total throughput forK
packets can be written as:

ηk =
∑K

k=1
γ ×8k × Z. (9)

Improving throughput depends on choosing a high modu-
lation level to transmit more bits per symbol and an adaptive
modulation scheme.

F. QOS FOR IMPROVE SMART PACKET
TRANSMISSION SCHEDULING
Maximize Mean Opinion Score (MOS), and the handoff
scheme can maximize the quality of the transmitted data
while minimizing TD by improving the Quality of Experi-
ence (QoE) when considering the PER, packet length, chan-
nel transmission, and SNR. The MOS is a metric used to
access the multimedia UEs perception of the highest qual-
ity [27]. The performance of the TS depends on the maximum
expected MOS for spectrum handoff, which is achieved by
choosing an available channel with the minimum estimated
PER and identifying the transmit packet rate that corresponds
to a QoE-driven spectrum handoff, which is expressed as:

MOSk,n =
β1 − β2 avg + β3ηnor

1+ β4Pnor + β5τdelay
, (10)

where the variables avg, ηnor , Pnor , and τdelay represent
the transmit packet rate, the normalized total throughput,
normalized low-power consumption level for each device,
and average TD, respectively. The variables β1, β2, β3, β4,
β5 can be obtained by a linear deterioration analysis [28].
From (10), the performance of TS depends on when the
CIoT networks periodically generate data packets and trans-
mit the average packets rate in the CIoT networks avg =∑K

k
∑N

n αk,n k,n/ (KN ), where αk,n ∈ {0, 1} represent
whether the kth packet is transmitted on the nth channel,
in which case K = 1; otherwise, K = 0. Moreover,
by improving the MOSk,n, the maximum normalized sys-
tem throughput can be written as ηnor = ηk

/
ηidl , where

ηidl represents the ideal throughput. To reduce the level
of power consumption, it can be expressed as Pnor =∑K

k
∑N

n αk,nPk,n
/
PMax (KN ), where PMax represents the

maximum consumed power threshold.
The average delay for retransmittingmechanism is affected

when the time delay continues to grow, the QoE decay of
on-demand throughput is more, and this can be expressed
as τnor = τdelay

/
τTot , where τTot represents the total TD

threshold.

III. PROBLEM FORMULATION
The goal is to maximize MOS by ensuring the performance
of TS based on evolutionary conditions. The DNN is used to

obtain an optimal policy, which can be achieved by apply-
ing DRL. This agent reacts to its environment as a Markov
Decision Process (MDP) (S,A,R,P), where S stands for the
state space, A contains each a potential actions space set, R
is the immediate reward function S × A → R, and P is a
transition probability function S×A×S→ [0, 1]. In addition,
π is denoted as the decision policy that performs a state to
the action π : S→ A. The DRL agent exposes t = ∈ S,
where t is an episode, and the agent selects an action at =
a ∈ A( t ). According to policy π, the agent interacts with an
environment through actions. Then, the environment changes
into a new state t+1 =

∧
∈ S with transition probability

P ∧ (a) and offers the agent a feedback reward, indicated as
t( , a). is the reward of action on a state and is defined as

the predictedMOS ofmultimedia transmission. The objective
of the DRL agent is to maximize the discounted cumulative
reward, which can be written as:

Vπ ( ) = Eπ
{∑∞

t=0
9 t

t ( t , π ( t)) | 0 =

}
, (11)

where 9 ∈ (0, 1) represents a discount factor and Eπ is
the expected return. From (11), we can determine the state
function that follows a policy denoted by Vπ ( ), which can
be rewritten as:

Vπ ( ) = R ( , π ( ))+9
∑

∧∈S
P ∧π ( )Vπ

(
∧
)
.

(12)

The value of the reward is denoted as R ( , π ( )) =

E { ( , π ( ))}. Because evaluating the policy π for reward
function R ( , π ( )) and transition probability P ∧ in (12)
is difficult. We used the Bellman equation to get the optimal
policy. R ( , π ( )) represents the reward of action on a state
and is also described as the predicted MOS of multimedia
transmission. In Q-learning, the policy is established by per-
forming the state-action pairs and can be written as:

Qπ ( , a) = R ( , π ( ))+9
∑

∧∈S
P ∧ (a)Vπ

(
∧
)
.

(13)

The predictable discounted cumulative reward begins with
taking action a under the policy π . Consequently, the

optimal policy π∗ of the value function, indicated by V∗ as
shown in (12), can be mathematically written as:

V∗ ( ) = Vπ
∗

( ) = max
π

Vπ ( )

= max
a∈A( )

(R ( , π ( ))

+9
∑

∧∈S
P ∧π (a)V∗

(
∧
))
. (14)

Let Q-learning of the value function Q∗ ( , a) =

Qπ
∗

( , a) = max
π

Qπ ( , a) be the optimal action under the

τhand =
(
PPERk,n

)2Nt−H
[(

PPERk,n

)4Nt−H
× τmaxret +

{
1−

(
PPERk,n

)4Nt−H
}
×
(
τmaxret + τw

)]
+

{
1−

(
PPERk,n

)2Nt−H
}[(

PPERk,n

)4Nt−H
×
(
τmaxret + τp

)
+

(
1−

(
PPERk,n

)4Nt−H
)
×
(
τmaxret + τw + τp

)]
(7)
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optimal policyπ∗. The reward of action on a state is defined
as the predicted MOS of multimedia transmission.

V∗ ( ) = max
π

Vπ ( )

= max
a∈A( )

(MOS ( , π ( ))

+9
∑

∧∈S
P ∧π (a)V∗

(
∧
))
.

The optimal policy yielding the highest value of the optimal
value function for all sets of actions and states as V∗ ( ) =
max
a∈A( )

(Q∗ ( , a)). Moreover, it can be written in terms of

the optimal policy as π∗ ( ) = arg max
a∈A( )

(Q∗ ( , a)). The

optimal Bellman equation can be written as:

Q∗ ( , a) = R ( , a)

+9
∑

∧∈S
P ∧ (a)

× max
a∧∈A( ∧)

(Q∗
(
∧, a∧

)
), (15)

The DRL concept of a learning experience is combined
with the reward principle to solve this problem. The DRL
concept can be discussed below to maximize the total dis-
count reward function.

• Agent: The vision of having an intelligent network run-
ning can be achieved by considering the quality of learn-
ing based on using information from previous successful
experiences to create intelligence in the SDN control
panel.

• System State: The current situation of the agent is
defined as =

{
SCh, Spl, Scq, Stl, Smos

}
, where SCh

represents the status of the channel (idle or busy), Spl
indicates the priority level that assigns to each of the
channels, Scq shows the quality of the channel (SNR),
Stl represents the traffic load of the chosen channel and
SMOS represents the performance of the TS in the CIoT
system in terms of minimizing TD.

• Action Space: It is necessary to adjust all policy and to
determine its improvement a =

{
Apo,Asm,Aam,Abp

}
,

where Apo represents the power consumption control
(active or sleep), Asm denotes the spectrum manage-
ment access, which should avoid unnecessary waiting
time or handoff, Aam shows the transmissionmodulation
selection, andAbp represents the bandwidth allocation in
every packet.

• Reward: It is designed based on traffic scheduling poli-
cies that take URLLC service requests into account.
The reward function is used to improve training with
probability ratio clipping of MOS, η, avg, τdelay, and
Pavg. Therefore, we offer a new mechanism for URLLC
scheduling, called the actor-critic, based on a fuzzy-
RBF algorithm, which can schedule and avoid large
computations in the learning process.

IV. FUZZY-RBF ALGORITHM BASED ACTOR-CRITIC
LEARNING FOR URLLC SCHEDULING
The goal of DRL is to address the problem of intelli-
gent TS and reduce power transmission levels based on
the current state of the decision policy. To solve the TS
problem under massive transmission packets, we propose a
fuzzy-RBF learning algorithm to converge both the action
of the actor and the state-action of the critic. Fuzzy-RBF
can adjust its stochastic learning policies in CIoT systems
under a great dimensional system state. To increase the
sum discounted reward and enhance a transmission sched-
ule, depending on calculated Bellman optimality [28] as
J (π) =

∫
9 tP ( |a,π )

∫
A πφQ

πφ ( , a) d da, where πφ
relative to the regular, predictable reward per time step under
the policy. The fuzzy-RBF consists of three types of layers.
In this environment, the state space represents the input of
the actor and critic. The output of fuzzy-RBF depends on the
estimation of the actor and critic function. The connection
weight vector in both the actor and critic learning frameworks
is based on estimating software expansion potential, which
requires the determination of the hidden layer of the fuzzy-
RBF. The UE-specified system state is denoted as t ={
S1,t , .., SN ,t

}T
∈ r at the time step t for the input layer.

Every neuron in the input layer represents the input state vari-
able S ,t . After that, each node of the hidden layer signifies
the front part of a fuzzy rule, and the output of hidden layers
using the Gaussian kernel function is given as:

Oji ( t)

=

 e

−
(
j − ji( j)

)T (
j − ji( t )

)
2σ 2

ji


, if

∣∣ j − ji( t )
∣∣<σji,

0, otherwise,
(16)

where j represents the pattern of Gaussian kernel function
in the j th hidden layer node, ji( t ) represents the weight
vector of the Gaussian kernel function, and σ is the variance
controlling the sensitivity of the Gaussian to off-center input.
The associations of the hidden layer with output are then
learned by squared error minimization as:

ϕi ( t) =
∏

j=1
Oji ( t)

= exp

(
−

∑
j=1

(
j − ji

(
j
))2

2σ 2
ji

)
, i = 1, 2, .., .

On the other hand, the i th hidden layer nodes, the normalized
fitness of the fuzzy of every rule [29], provides the following
necessary condition as i ( t) = ϕi ( t)

/∑
l=1 ϕl ( t). This

i th node in the hidden layer is capable to achieve it quickly
and simultaneously without iterative learning. The fuzzy-
RBF learning algorithm for actor and critic is composed in
the output layer, representing the actor outputs for the action
function as Al ( t) =

∑
i=1 ji i ( t) and value function
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X ( t) =
∑

i=1 xi i ( t), where the ji is the weight vector
between i th hidden layer nodes and j th is the output node
of the actor-network, and xi represents the weight vector
between ith hidden layer nodes and j th output node of the
critic network. Due to the exploration utilization of ‘‘Gaus-
sian interference’’, the output action Ai ( t) cannot be used
directly. So, to achieve the actual action function i ( t),
it is necessary to detect and remove the learning progress of
inactive hidden layer based on calculating the error between
the estimated value and real values in terms of the temporal-
difference method as:

t = R ( t)+9Xx
(
∧
t
)
− Xx ( t) . (17)

The update temporal-difference error depends on the corre-
spondingweight vector xi between i th hidden layer nodes and
j th output nodes. To handle a delayed reward, the eligibility
trace mechanism in DRL, which connects a weight vector xi
depends on developing the learning process and propagate
the temporal-difference error [30]. The fuzzy-RBF learning
updates the weight vector xi and the eligibility trace xt at the
time stept; can be written as:

t =
∑t−1

j
(9λ)t−j µxiXj ( t) , (18a)

xi (t + 1) = xi (t)+ αc t t , (18b)

where αc represent the learning rate for the weights vector of
the critic network and λ ∈ [0, 1] represents a decay parameter
for the eligibility trace mechanism. While the actor part is at
the end of time step t , the policy can be improved by using
the update temporal-difference error as:

Al
(
∧
t
)
= Al ( t)+ αa t , (19)

where αa represents a positive parameter of the actor-
network. Therefore, improving the policy based on the updat-
ing temporal-difference error without requiring the system’s
prior knowledge provides a better approximation for the
actor’s action and the current action in the critic part, as shown
in (18) and (19).

Sudden increases in arrival rate for all UEs can result
in unnecessary costs and long retransmit in extreme cases.
At the same time, the DRL needs a transient time to learn
the status training data. Though, in the URLLC scenarios
for retransmitting data, this transient time will be critical to
the execution of the system. From (section IV) The deep-RL
algorithm must be able to address more action space in real-
time. To solve this problem, a deep distributional RL based
on GAN- scheduling was proposed to reduce the size of the
action space without limiting it, as shown in (section V).

V. DEEP DISTRIBUTIONAL RL BASED ON GAN-
SCHEDULING FRAMEWORK
The proposed GAN -scheduling creates a virtual environment
for training DRL agents and operates in highly reliable sys-
tems. The agent attempts to obtain the optimal TS based on
the distributional perspective on DRL [31], [32] is the random
return whose expectation is the value Qπ . The random

Algorithm I: Training Algorithm of the Proposed Fuzzy-
RBF Based Actor-critic Learning.
1- Set learning rate for the weights vector αc, variance

controlling the sensitivity σ 2
ji , and λ decay parameter

for eligibility trace mechanism in DRL.
2- Determine: initial state 0, a fuzzy weight vector ji

between i th hidden layer nodes and j th output node
of the actor-network, and xi weight vector between i th
hidden layer nodes and j th output node of the critic
network.

3- for all time step t = 0, 1, 2, . . . .. do
4- Perform the actor element receives the measured sys-

tem state t , and uses them to generate new rules if the
condition Oji ( t) , i = 1, 2, .., ,

5- Achieve the reward of action on a state of the predicted
MOS of multimedia transmission R ( t).

6- Calculate the action function: Al ( t) =∑
i=1 ji i ( t);

7- Calculate the Gaussian kernel function for the hidden
output layer as shown in (16);

8- Calculate the temporal-difference error as shown (17);
9- Update the fuzzy weight ji, the eligibility trace t ,

and update the weight vector xi as shown in (18a)
and (18b);

10- Update decay parameter for eligibility trace λ ∈ [0, 1];
11- If

∣∣ j − ji( t )
∣∣ < σji

12- The total number of iterations is satisfied, Stop.
13- Calculate , update temporal-difference error as

shown (19) based on the end the time step t;
14- Else go to step 4.
15- end if
16- end for

return achieved by adhering to a current policy π by per-
forming an action a from the state indicated by the random
variable π

q ( , a) due to the unexpected predictability in the

environment; thus, resulting in Qπ (( , a) = E
[

π
q ( , a)

]
and analogous distributional Bellman equation, that is,

π
q ( , a) , R ( , a)+9 π

q

(
′

, a
′
)
, (20)

where
′

and a
′

are random nature of the next state-action
pair after developing a policy, and A :, B indicates random
variable A has a similar probability law as B. Consequently,
the behavior of the policy evaluation for the distributional
Bellman operator can be defined by

π
q ( , a) : , R ( , a)+9 π

q

×

(
′

, arg max
a′∈A

E
[

π
q

(
′

, a
′
)])

′

∼ P (. | , a ) , a
′

∼ π
(
.

∣∣∣ ′ ) . (21)
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Our objective is to decrease a statistical distance based on
the traditional DRL:

sup
,a
dis π

q ( , a) ,
π
q ( , a) , (22)

where dis(A,B) represents the distance between random
variables A and B, which can be restrained by several met-
rics, such as p-Wasserstein [33] and Kullback-Leibler diver-
gence [31]. The p-Wasserstein metric extends the cumulative
distribution functions. For F, D two cumulative distribu-
tion functions over the reals, it is defined as P (F,D) =

inf
U,V
‖U− V‖P, where the infimum is possessed overall pairs

of random variables (U,V) with respective cumulative dis-
tribution F and D. By applying the inverse cumulative
distribution function, the achieved transform of a random
variable W uniformly distributed on [0, 1] as P (F,D) =∥∥F−1 (W)−D−1 (W)

∥∥
P. For P <∞, this is more explicitly

expressed as the C51 algorithm [31] π
q ( , a) using a dis-

crete distribution and attained state-of-the-art performance on
Atari 2600 games. The p-Wasserstein between them is given
by

P (F,D) =

(∫ 1

0
F−1 ( )−D−1 ( )d

)1/P
. (23)

Assumed two random variables U,V with cumulative
distribution functions FU, FV, can create P (U,V) :=
P(FU, FV). The optimal possible action value depends on

the distributional Bellman optimality operator, a hard con-
traction in the p-Wasserstein distance and decreasing (22)
with p-Wasserstein distance (error). To enhance the action
improvement value for each action and decrease random
noise’s effect in CIoT.We propose GANs to evaluate real data
and synthetic data by controlling the generation of real data
in real-time.

A. GENERATIVE ADVERSARIAL NETWORK (GAN)
Generative adversarial networks offer a virtual environment
for training and experimenting with DRL agents. The GANs
train two models: a generative model and a discriminative
model D. The Wasserstein GAN guarantees the suitability
of the discriminator as a 1-Lipschitz function, which is pro-
posed [34], [35] to adopt the gradient retribution and perform
as follows:

minmax
D∈D

E ∼ Pdata [D( )]

−EZ∼PZ (Z)
[
D
(
(Z)

)]
+ P(γ ), (24)

where D represents the set of 1-Lipschitz functions, repre-
sent a real data sample, Z is a random distribution sample,
and the probability of packets that have the same coding rate

is indicated by P (γ ) = γ
/
2
(∥∥∥∇ ′D( ′

)
∥∥∥
2
− 1

)2
,
′

=

ε + (1 − ε) (Z), ε ∼ ∪ (0, 1), where γ is the gradient
penalty coefficient. To handle the output using multiple neu-
ral layers in (18), (19) must depend on the flow of a DNN to
approximate the state-value distribution.

B. GAN- DDQN BASED ON REWARD CLIPPING
TECHNIQUE FOR DISCRIMINATOR NETWORK
According to the problems with large action space, we use
the GAN- DDQN algorithm to estimate the value of every
action for specific states. The discriminator network D uses a
1-Wasserstein criterion to decrease the error (distance)
between target action-value particles and the estimated
action-value particles, as shown in (22) and (23). The current
state St = and sample from the uniform distribution
∪ (0, 1) are fed to the network by the agent at iteration
t [36]. To perform the predicted action-value particles (sam-
ples), the agent computes ( , a) = (1/N)

∑ a( , ),∀a ∈
A, and select the action a∧ = argmax

a
( , a),∀a ∈ A.

Consequently, the agent receives a rewardR, and the environ-
ment travels to the next state St+1 =

′

. The tuple transition
(
′

,a∧,
′

, γ ) is collected into a replay buffer B, as shown
in Fig. 2. The networks and D are updated using every
transition tuples in B for every N iterations [37]. From the
transition i, the target action-value particles is denoted as

i =
′

i + 9
′a∧i ( ′i, i), where a∧i represent the action of

the highest expectation action-value particle, where a∧i =
argmax

a
(1/N)

∑ ′a∧i ( ′i, i). The loss functions are utilized

by the agent to train and D networks, respectively:

LD = E
∼∪(0,1)

( ,a)∼B

[
D a

( , )
]
− E

( ,a∧,R, ′ )∼B

×
[
D a

( , )+ P (γ )
]

(25)

LD = − E
∼∪(0,1)

( ,a)∼B

[
D a

( , )
]

(26)

where P (γ ) is declared in (24), and a
( , ) is the output

of the network parameterized by when the input is pro-
vided. The loss function, as shown in (25), will be high when
the discriminator D can discriminate between the real data
distributed according to replay buffer B. We propose a new
reward-clipping mechanism to prevent great variation in the
target action value, as shown in (27). The clipping strategy
can be formulated as follow:

Clip (D) = Clip( (D) , 1− ε, 1+ ε) (27)

where 1−ε and 1+ε are the thresholds that are manually set.
This new reward-clipping is used to measure the difference
between the precision of the network D distinguishing and
the optimal action-value particles generated by network .
We assume the ε thresholds that partition the transmission
schedule increase the utility and set the constant 1 + ε that
are taken as the rewards in RL, whose values are much lower
than the utility in the reward. Then, the utility as the reward
in RL is followed by clipping to these 1+ ε constants. If the
reward clipping (RC) parameter is large , then it can take
a long time for any weights, thus making the process of
setting parameters more sophisticated. However, if the RC is
small , this can easily lead to disappearing gradients when
the number of ε thresholds is small.
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FIGURE 2. The Flow chart of GAN- DDQN.

VI. SIMULATION RESULTS
This section evaluated the performance of our proposed
GAN-DDQN algorithm in the CIoT system. The target
schemes are compared to GAN-DDQN [37], a standard actor-
critic RL algorithm based on the policy gradient for TS[15],
and also depend on the analyzed deep Q-learning RL algo-
rithm for TS [19]. URLLC was evaluated under the GAN
scheduling by achieving a large real dataset in real-time, and
the URLLC packet is small in size. The main simulation
parameters are listed in Table 1.

A. TRANSMISSION SCHEDULING AND
TRANSMISSION DELAY
This section examined the learning process in terms of the
GAN-DDQN scheduling learning procedure compared to
actor-critic fuzzy-RBF and DQN concerning the power con-
sumption level, throughput, and transmit packet rate value
when the rate of normalized packet arrival is 0.5. The perfor-
mance gap between other algorithms and the GAN-DDQN
scheduling learning shows that the GAN-DDQN scheduling
becomes more pronounced and effective learning due to the
increase in the number of iterative steps. Figure 3 presents

TABLE 1. Simulation parameters.

normalized throughput, packet transmission, and power-
ful learning processes. Although the three DRL algorithms
achieve similar performance for the normalized through-
put, as shown in Fig. 3(a), during the training process,
the GAN-DDQN scheduling slightly achieves better per-
formance throughput than the other actor-critic fuzzy-RBF
and DQN. Furthermore, from Fig. 3(b), the GAN-DDQN
scheduling slightly improves transmit packet rate in fewer
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Algorithm II: Enhance Intelligent TS Based on Proposed A
GAN- DDQN Algorithm.

1) Initialize a generator and a discriminator D with
random weights q and qD, discount factor 9, the
number of predicted action-values N, and γ gradient
penalty coefficient.

2) Initialize the agent iteration t = 0, target action-value
′

with weight q .
3) Initialize replay buffer B to update every transition

tuples for and D.
4) for transition i ≥ 0 do
5) Select current state St = with smallest

′a∧i (
′

i, i)
that partition the transmission schedule and increases
the utility and set the constant 1+ ε,

6) Get the next state-action by search the predicted action-
value a( , ) from the current state St = , and agent
samples from the uniform distribution ∪ (0, 1).

7) Perform the predicted action-value for the agent com-
putes ( , a) = (1,N)

∑ a( , ),∀a ∈ A; and select
the action a∧ = argmax

a
( , a),∀a ∈ A.

8) The agent receiving a reward R, and the environment
travel to the next state St+1 =

′

,
9) The tuple (

′

, a∧,
′

, γ ) is collected intoB,
10) The agent updates the q and qD of and D using

transition tuples inB for N iterations,
11) for various transitions m ≥ 0 in GAN training, do
12) Fulfillment the target action; the agent first chooses m
13) transitions fromB as a mini-batch (

′

, a∧,
′

, γ ).
14) The target action-value denoted as i =

′

i +

9
′a∧i (

′

i, i), the agent expectation action-value a∧i =
argmax

a
(1/N)

∑ ′a∧i (
′

i, i),
15) Estimate the action value of every action, and the prob-

ability of packets that have the same coding rate
′

=

ε + (1− ε) (Z), by set a mini-batch ε ∼ ∪ (0, 1).
16) Use the gradient descent to update the weight qD to

(1/m)
∑m

i Li, where Li = D
( ai ( i, i)

)
− D( i +

γ
(∥∥∥∇ ′D( ′

)
∥∥∥
2
− 1

)2
,

17) Use the gradient descent to update the weight q to
(−1/m)

∑m
i D

( ai ( i, i)
)
,

18) end for
19) Set all the transitions in B for training and resetting

q′ = q , by the agent for replicating network to ′,
20) Set a new reward-clippingmechanism as shown in (27),
21) Calculates the difference between the precision of theD

distinguishing and the optimal action-value generated
by by Clip (D) = Clip( (D) , 1− ε, 1+ ε).

22) Update the iteration index t ← t + 1.
23) Predefined ending condition (1/m)

∑m
i Li, set number

of iterations index t is satisfied.
24) end for

iterations than actor-critic fuzzy-RBF and DQN. In con-
trast, the GAN-DDQN scheduling allows it to generate better

FIGURE 3. Comparison of scheduling scheme a) Normal of throughput,
b) Transmit packet rate, c) Power, based on the number of iterations in
DRL process for the three algorithms.

candidates with high fitness, while the actor-critic fuzzy-RBF
and DQN provide the same performance packet rate during
the training process. From Fig. 3(c), increasing the arrival rate
to all UEs will necessitate more re-transmissions and increase
the number of handoff processes. The lowest transmit power
is depicted by applying GAN-DDQN to learn the action value
distribution, reducing the difference between the predictable
action-value and target action-value distribution. Moreover,
the GAN- DDQN scheduling provides the best case of ran-
dom noise compared to actor-critic fuzzy-RBF and DQN,
as shown in Fig. 3(c).

Figure 4 presents the average TD performance by consider-
ing transmission power.When the value of power is small, the
performance of the average TD for the nth channel in CIoT
is almost the same good as the optimum. However, when the
power level is small, the actual average transmission power
of the scheduling packet rate remains constant, the constraint
on average transmission power weakens further, and most
packets must be transmitted with a very short delay, as shown
in (10). When the average packet delay increases, more
packets are in the queue waiting for transmission or more
packet retransmissions. However, in Fig. 4, increasing the
average transmission power does not assist in sending more

FIGURE 4. The average packet transmission delay against power for
different retransmission times.
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of the packet transmissions. In addition, the average packet
TD curves are nearly flat when the level of transmission
power is increased. This is because the packet arrival process
determines the average packet TD, not by transmission power
level.

B. THROUGHPUT
In this section, we examine the performance of the system’s
throughput that can be achieved under channel status during
the training process. From Fig. 5, the success of the packet
arrival depends on minimizing the amount of time it takes for
a packet and the difference in packet delay. The long waiting
time for the packets reduces throughput, making the packets
wait longer to transmit. The normalized throughput decreases
when the packet rate increases. The normal throughput is
close to 1 with successful training for GAN-DDQN schedul-
ing and achieves a high packet arrival rate, which does not
necessitate additional training for various TDs. The packet
arrival is randomly selected with a learning rate ranging from
0 to 0.14, and an optimization algorithm is used to obtain suc-
cessful training for actor-critic fuzzy-RBF and DQN. GAN-
DDQN increases intelligence and minimizes error (distance)
between target action particles and predicted action-value
particles to achieve minimal long-term costs based on signal
processing planning and the use of the RC for GAN-DDQN
data 9

′a∧i (
′

i, i), to distinguish real samples from a
( , )

samples produced by reducing the LD loss to transmit big
data. The transition probability is nearly proportionally to the
packet arrival rate, as shown in Fig. 6. Figure 6 also shows
that as the packet arrival rate increases, the transmission
of transition probability of the three algorithms improves.
When the packet arrival rate increases, the transition dropping
probability increases markedly and influences high traffic
load and continues to increase. On the other hand, the high
transition probability occurs when more packets are received
to provide the optimal TS. When the system’s radio resource
is fixed under heavy traffic, and more packets arrive, the
optimal broadcast planning decision increases linearly as the
traffic packet arrival rate increases. Moreover, the big average
data improves with the arrival rate when the packet arrival
rate exceeds the transmission transition probability. The tran-
sition probability depends on the successful transmission

FIGURE 5. Normalized throughput versus packet arrival rate.

FIGURE 6. Transition probability versus packet arrival rate.

probability of data packets in SNR as shown in (1), and also
the average arrival rate, as shown in (11) to (13). Finally,
the proposed GAN-DDQN scheduling algorithm has a better
transition probability performance than actor-critic fuzzy-
RBF and DQN algorithms to improve transmission packet
scheduling in the CIoT system.

C. SMALL PACKETS FOR URLLC TO GUARANTEE QOE
In this part, we considered the performance of the proposed
algorithms within the scenario that the packet size of the
URLLC service is small, as shown in Table 1. We consid-
ered two cases: the more bandwidth allocation resolution is
either 1 MHz or 200 KHz to guarantee meeting the MOS of
URLLC service.

From Fig. 7, the impact of average data rate for differ-
ent URLLC traffic depends on the GAN-DDQN scheduling,
actor-critic architecture for fuzzy-RBF, and DQN algorithm
to distribute the URLLC traffic. TheGAN-DDQN scheduling
algorithm learns the URLLC traffic, improves the channel
variations that come with difficulties, and adjusts the URLLC
weight dynamically (27), leading to more reliable transmis-
sions based on the proposed new method of new reward-
clipping to prevent significant variation in the target action
value. The GAN-DDQN scheduling provides an average bit
rate of 38 Mbps when the URLLC arrival load is 5 and
decreases to 8 Mbps when increasing the average URLLC
load to 100 packets/time slot. However, the average big rate
obtained by the actor-critic fuzzy-RBF and DQN algorithms
varies from 30Mbps to 19Mbps when increasing the average

FIGURE 7. Average URLLC rate for different arrival packet rate.
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FIGURE 8. Loss rate versus number of UEs.

URLLC load from 5 to 100 packets/time slot. Figure 8 shows
the packet losses rate by considering the varying numbers
of UEs for three algorithms; the loss rate increases with
more UEs. The algorithm of GAN-DDQN scheduling pro-
vides a smaller loss rate than actor-critic fuzzy-RBF, and
DQN when the number of UEs is less than 100. Further-
more, the control performance loss and enhanced TS depend
on enabling discrimination between the real-data distributed
according to replay buffer B, as shown in (25) for strin-
gent URLLC requirements. From Fig. 8, the GAN-DDQN
scheduling provides good performance with less loss of rate
than actor-critic fuzzy-RBF and DQN algorithms based on
applying the RC by increasing the intelligence and decreasing
the error between the target action-value and the estimated
action-value, as shown in (22) and (23). While the actor-
critic fuzzy-RBF provides a lower performance loss rate than
GAN-DDQN with an increased number of UEs depends on
minimization error for the hidden layer, as shown in (16), and
also depends on calculating the error between the estimated
value and real values by update temporal-difference error,
as shown in (19).

VII. CONCLUSION
In this paper, designing a learning agent with intelligent
decision-making ability is challenging in the CIoT system.
The smart scheduling in DRL for the RC guarantees a good
transmission packet with high reliability. Our proposal inves-
tigated the combination of GAN-DDQN used to solve the
intelligent TS in CIoT systems. In addition, the proposed RC
adopted in GAN-DDQN scheduling improves the training
stability with probability ratio clipping of reward, power
consumption, transmission packet rate, and throughput. The
simulation results show that improving the training stability
and increasing the intelligence for the GAN-DDQN schedul-
ing algorithm based on the action-value for the discrimina-
tor network for RC decreases the error between the target
action-value particles and the estimated action-value parti-
cles. Also, the simulation results show that the GAN-DDQN
scheduling algorithm has a more significant performance
than other DRL algorithms. Our future work will investigate
the distributed implementation of our proposed GAN-DDQN
based on removing the temporary training time in DRL in
the case of unforeseen maximum events that cause failure in
URLLC systems.
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