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Figure 1: Sketch segmentation: For each example pair, Scribbles on the left produce the segmentation on the right.

Abstract

We present Smart Scribbles—a new scribble-based interface for user-guided segmentation of digital sketchy draw-

ings. In contrast to previous approaches based on simple selection strategies, Smart Scribbles exploits richer geo-

metric and temporal information, resulting in a more intuitive segmentation interface. We introduce a novel energy

minimization formulation in which both geometric and temporal information from digital input devices is used to

define stroke-to-stroke and scribble-to-stroke relationships. Although the minimization of this energy is, in gen-

eral, a NP-hard problem, we use a simple heuristic that leads to a good approximation and permits an interactive

system able to produce accurate labelings even for cluttered sketchy drawings. We demonstrate the power of our

technique in several practical scenarios such as sketch editing, as-rigid-as-possible deformation and registration,

and on-the-fly labeling based on pre-classified guidelines.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.4]: Graphics Utilities—
Graphics editors, Computer Graphics [I.3.6]: Methodology and Techniques—Interaction techniques, Image Pro-
cessing and Computer Vision [I.5.3]: Clustering—Similarity measures

Keywords: digital sketches, interactive segmentation,
scribble-based user interface, energy minimization

1. Introduction

Sketchy drawings are prevalent across a wide range of ap-
plications and domains. In early development phases, rough
drawings are used, for example, for concept art in product
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design, and for storyboards in animation environments, and
are favored both for the speed of generation, and the expres-
siveness of the results. A sketchy style also has a place in fin-
ished art – providing a level of visual richness not found in
“clean” line representations, i.e. drawings constructed from
crisp, distinct outlines and minimal interior detail.

Modern digital devices and graphics software solutions
offer powerful stylization, deformation, morphing, and an-
imation capabilities for 2D drawings. However, in order to
perform these high-level tasks, a certain degree of under-
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standing of the content of the drawing is required. This is a
challenging problem due to the significant gap between the
ability of a human to discern structure in a drawing and the
capability of an algorithm to derive it from low level stroke
information. This is true even for clean line drawings, and
most existing approaches rely on the presence of a human
user to provide sufficient information to guide the task.

The problem of extracting structure from drawings be-
comes substantially more difficult for sketchy input, and this
is one reason it is far less common to find a consistently
sketchy style in full-length animations or automatic support
for sketchy input in high-level editing packages. One impor-
tant category of drawing abstraction is segmenting the draw-
ing into logical parts. To-date, there is no efficient method
available for automatic segmentation in this domain. In con-
texts where a breakdown of the drawing is required, seg-
mentation is typically achieved by design: the drawings are
created in different layers, one for each logical component.
This approach is too limiting in practice: it requires a priori
knowledge of the use of the drawing, is cumbersome (espe-
cially when different tasks require different segmentations),
and is an error-prone process, even for experienced artists.

We seek a semi-automated solution to segmenting sketchy
drawings that is fast enough for interactive use, but also pre-
dictable and easy to use – making it accessible to even the
most novice user.

To this end, we propose the concept of Smart Scribbles as
an accurate and simple way for the user to specify seman-
tically meaningful stroke clusters within a drawing. In con-
trast to previous methods that use scribbles as positional con-
straints for various image editing tasks [BJ01,LLW04,AP08,
SDC09b], our formulation considers more detailed geomet-
ric (position, orientation, curvature) and temporal informa-
tion (time of creation) when analyzing stroke-to-stroke and
Scribble-to-stroke relationships. In addition, we introduce
the concept of locality control as a way of conveniently trad-
ing off the Scribbles’ areas of influence for accuracy. This
allows our system to produce desired results with minimal
user intervention even for cluttered sketches.

We evaluate our approach on a collection of digitally
drawn sketches of varying complexity, and demonstrate its
application to various tasks including sketch editing and as-
rigid-as-possible (ARAP) deformation and registration. As
our solution is fast to compute, our method enables tight in-
tegration of these tasks within an interactive digital drawing
session.

2. Related Work

Relevant prior art can be divided into three main categories:
sketch labeling interfaces, scribble-based image segmenta-
tion, and classification of vector fields in scientific visualiza-
tion.

User-guided labeling of strokes in hand-drawn images

plays a central role in many sketch-based editing systems.
In Lank et al. [LS05], the authors present an approach for
inferring user intent from the local velocities, accelerations
and curvatures of the selection lasso. More recently, Wolin
et al. [WSA07] presented a technique for labeling groups of
strokes from a vectorized sketch where the system attempts
to automatically fragment continuous strokes into logical
pieces to assist the user. Both of these techniques ultimately
utilize a region-based selection approach. ScanScribe, a sys-
tem developed by Saund and colleagues [SFLM04], presents
the user with an intuitive selection paradigm that allows for
the creation of objects from collections of pixels and sup-
ports further grouping into composite objects. The system
is able to automatically segment the image into basic prim-
itives, such as linear curve fragments, and then group them
into more complex objects, such as rectangles, using a frag-
ment alignment metric (or by finding perceptually closed
paths as proposed in [Sau03]). Two limitations of this au-
tomatic technique are 1) limited complexity of objects de-
tected by the system and 2) the inability to handle sketchy
overlapping curve fragments, thus requiring more traditional
and tedious lasso/selection-box methods for more complex
drawings.

The approach presented in this paper leverages previous
works on interactive image segmentation in order to opti-
mize the labeling process based on user scribbles. Boykov
et al. [BJ01] developed such an approach based on graph
cuts for segmenting images and finding optimal boundaries
between objects. In [LLW04], Levin and colleagues present
a similar framework based on a least-squares optimization
for colorizing gray-scale images by roughly labeling re-
gions with colored scribbles. More recently, An and Pel-
lacini [AP08] developed an interactive energy minimiza-
tion framework for propagating color edits to similar regions
throughout the image. Our approach is most similar to Lazy-
Brush [SDC09b], a graph cut based system for the selec-
tion of regions in sketchy drawings. The main difference is
that this system cannot provide the labeling of the strokes
that bound each painted region. From this point of view, our
framework can be seen as a generalization of LazyBrush,
since it extracts meaningful boundaries first, and then builds
regions inferred from those boundaries. Because this process
removes clutter from the input drawing, it greatly improves
the accuracy of selection and reduces the amount of user in-
teraction needed to obtain clean results.

Our approach also bears some resemblance to sketch-
based clustering of vector fields in scientific visualiza-
tion [WWYM10]. Here the aim is to allow the user to sketch
2D curves and use them as a query to retrieve 3D field lines
whose view-dependent 2D projection is most similar to the
input sketch. The curvature along the sketched input is used
to measure the similarity between the input and projected
curves using the edit distance [WF74]. In our approach, cur-
vature is also used to distinguish between different shapes.
However, the main advantage of our work is that we formu-
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late an energy minimization problem where, in addition to
shape similarity, we also take proximity, orientation, tempo-
ral information, and smoothness of the final labeling into ac-
count. As a result, our system can produce reasonable clus-
tering even in cases when the shape of the input sketch is
very rough or incomplete.

3. Method

The method we present allows users to intuitively segment
digital sketches into semantically meaningful regions. The
input to our framework consists of a digitally hand-drawn
sketch and a small set of rough Scribbles. The input sketch
is composed of a set of strokes, which are piecewise linear
curves represented by sets of 2D vertices recorded from a
digital input device such as a tablet. For each vertex of a
stroke, we additionally store its time of creation. This helps
us to differentiate strokes which are spatially close but are
drawn at different moments in time.

The input Scribbles are special strokes that indicate the
user’s intent to segment a particular portion of the drawing.
Two criteria related to the Scribble primitives are critical in
order to ensure a useful and intuitive system. First, Scribbles
should not have to closely follow the target region. However,
if desired, the user should be able to precisely select local-
ized regions. We call this property locality control. The sec-
ond criterion specifies that the time of creation of the Scrib-
ble should not influence the segmentation results.

We observe that generally speaking, processing strokes as
a whole is very difficult. A single stroke can be arbitrarily
complex: it can cross or overlap with itself multiple times,
and/or it can densely cover an area the artist wished to fill in.
For this reason, we break strokes and Scribbles into linear
segments by densely resampling the input. Any property de-
fined locally over the stroke can easily be transferred to the
segments.

The remainder of this section describes in detail each of
the steps used by our method

We formulate the task of sketch clustering as an optimiza-
tion problem, where the goal is to label each stroke in a way
that minimizes an energy function. The concept of our de-
sign is depicted in Fig. 2 and the remainder of this section
describes in detail each of the steps used by our method.
The energy function is defined in Section 3.1. It relies on
a smoothness and data term which are described in Sec-
tions 3.1.1 and 3.1.2, respectively. In Section 3.2 we discuss
the minimization method used to compute the final solution
to the stroke labeling.

3.1. Energy function

The input to our method consists of a set of stroke segments
S and a set of Scribble segments R associated with a set of
labels L. The goal is to find a labeling, i.e., an assignment φ

of the labels in L to every segment in S, that minimizes the
following energy function E:

E(φ) = ∑
i, j∈S

Vi, j(φi,φ j)+λ ∑
i∈S

Di(φi) (1)

where Vi, j is a smoothness term that captures the cost of the
labeling with respect to the similarity between two stroke
segments i and j. The data term Di measures the affinity be-
tween Scribbles and strokes. The parameter λ controls the
relative influence of the smoothness and data terms.

Smoothness Term

Input

Output

Data Term

1

2

Scribble

Stroke

Figure 2: Energy definition overview. The input consists of

a set of strokes (black) and Scribbles (red and blue dotted

lines). The output consists of a labeling of all strokes (the

labeling is indicated here by the red/blue color assignment

to the strokes in the output). Smoothness Term: For a seg-

ment i and a neighbor segment j, Vi, j expresses the energy

of assigning a different label to i and j, based on how simi-

lar they are. Data Term: Given a labeling φi = l∗ (assigning

label l∗ to segment i), Di(φi) expresses the energy of the la-

beling, which is a function of the similarity of segment i to

all Scribbles associated with l∗.

3.1.1. Smoothness Term

The smoothness term is defined as:

Vi, j(φi,φ j) = ∏
g∈G

δ(g(i, j),σg) (2)

when φi 6= φ j, otherwise it is zero. G is a set of similarity
terms:

prox(i, j) = ||~p j −~pi||

dir(i, j) = 1−|~di · ~d j|

curv(i, j) = 1−min(ci,c j)/max(ci,c j)

time(i, j) = |t j − ti|

c© 2012 The Author(s)
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where i and j are two segments, and p, d, c and t are the
position, direction, radius of curvature, and time of creation
associated with each segment. The fall-off function δ is de-
fined as:

δ(g(i, j),σg) = exp

(

−
g(i, j)2

σ2
g

)

(3)

3.1.2. Data Term

The data term is defined as:

Di(φi) = 1− max
r∈R(φi)

A(i,r) (4)

where R(φi) denotes a set of Scribble segments r with label
φi. The affinity A(i,r) is defined as:

A(i,r) = ∏
g∈Gdata

δ(g(i,r),σg) (5)

Here, as with the smoothness term, we measure the similar-
ity between segments rather than strokes. However, as Scrib-
bles have no associated time information, we reduce the set
of similarity terms to Gdata = {prox,dir,curv} ⊂ G. Addi-
tionally, we alter the definition of curvature to become ori-
ented: curv(i, j) = ||~ci − ~c j||. This allows extra control in
separating curves with the same curvature but different ori-
entation (e.g. the tangled lines in Fig. 5).

One of our main goals is to allow users, if desired, to
have precise local control over the strokes that get affected
by each Scribble. To illustrate this, we consider a scenario
where the user draws a single Scribble, as shown in Fig. 3a.
In this case, because no concurrent label exists, all strokes
are selected. This behavior, though reasonable, is not in line
with a user’s expectations of having local control.

To address this, we introduce an artificial background la-
bel b ∈ L, in addition to the labels prescribed by the user.
This new label has a constant influence on each stroke seg-
ment i regardless of the existence of any particular user-
defined Scribble, i.e., A(i,b) = B, where B is a threshold to
override the influence of distant Scribbles. The background
label therefore serves as a lower bound for computing the
max component in the data term (4).

Furthermore, we control the locality of each Scribble r by
modifying its proximity fall-off δ (3) as follows:

δ(prox(i,r),σprox) =
1

σprox
exp

(

−
prox(i,r)2

σ2
prox

)

. (6)

Here σprox follows the desired locality (i.e., is large for
global influence and small for local influence) and the nor-
malization term 1/σprox ensures the integral over the fall-off
function stays equal for different values of σprox (i.e., ampli-
tude is high for small values and low for large ones). In other
words, the overall energy remains constant, while its spatial

spread is controlled. When σprox becomes very low, the re-
sponse of the fall-off function (6) for distant stroke segments
also becomes very low and can therefore be easily overrid-
den when computing the max value in (4) as illustrated in
Fig. 3b-f.

There are several possible ways to control the parameter
σprox. One natural way is to use the speed of the Scribble
based on the experimentally demonstrated linear relation-
ship between speed and perceived locality [AZ97]:

W =
β ·L

T −α
. (7)

Here W is the selection radius, L is length of the Scribble, T

is time spent on drawing it, and α and β are empirically mea-
sured constants. This rule was used to control the selection
locality in systems having limited modality [LS05]. Since
the spatial spread of the fall-off function (6) grows linearly
with the increasing σprox we can set σprox = W/2. Alter-
natively, one could consider the use of pen-pressure, or—in
the case of binary modality—a simple key toggle to switch
between two locality values.

3.2. Optimization method

As shown in [BVZ98], minimizing the energy function de-
fined in Equation 1 is equivalent to solving a multi-way
cut on a specific weighted graph G = {V,E}, where V =
{S,L} is a set of vertices and E = {Es,El} is a set of edges
(See Fig. 4). The graph vertices V consist of stroke seg-
ments S and label terminals L. Each stroke segment i ∈ S

is connected to all other stroke segments j ∈ S−{i} via
edges Ei, j having weight wi, j equal to the smoothness term
Vi, j when φi 6= φ j. In addition, auxiliary edges Ei,l connect
stroke segments i ∈ S to label terminals l ∈ L. Each Ei,l has
weight wi,l = λ(1−Di(l)), where λ is the parameter defined
in Equation 1.

1

2

1

2

Figure 4: Graph Construction. Stroke segments are shown

as black circles. Terminal labels (in this example l1 and l2)

are shown as colored squares. The graph edges wi, j reflect

the smoothness terms Vi, j between the stroke segments i, j ∈
S, while the data terms Di(l) for stroke segment i ∈ S and

label l ∈ L are captured by the weights wi,l .

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



Noris et al. / Smart Scribbles for Sketch Segmentation

= 3px= 30px= 60px= 90px= 120px= 150px

a b c d e f

Figure 3: The effect of the locality control by varying σprox: A blue Scribble is drawn on the foot (circled in red). On the right,

the value of σprox is progressively decreased. Notice how the selection becomes progressively more local as the influence of the

blue label gets overruled by the background label (shown in black).

The multi-way cut problem with two terminals is equiv-
alent to a max-flow/min-cut problem for which efficient
polynomial algorithms exist [BK04]. However, for three or
more terminals the problem is NP-hard [DJP∗92]. To ob-
tain a good approximate solution we use a simple divide-
and-conquer heuristic previously proposed in [SDC09b] to
gradually simplify the N-terminal problem into a sequence
of N − 1 binary max-flow/min-cut sub-problems. This ap-
proach provides results similar to more advanced techniques
(such as α-expansion or α/β-swap [BVZ01]), but is signifi-
cantly faster and therefore better suited for interactive appli-
cations.

4. Results

We demonstrate the effectiveness of our algorithm on a va-
riety of input sketches. All results were generated using the
parameters in Table 1.

Fig. 5 shows a collection of simple input sketches and
Scribbles, together with the color-coded stroke labeling out-
put by our system. These results show that desirable sketch
segmentations can be obtained using very different scrib-
bling strategies. We note that the input Scribbles do not have
to closely match the sketch in order for our algorithm to
work well—approximate similarity in terms of position, ori-
entation and curvature is sufficient.

Figs. 1 and 6 show results from more complex input
sketches. To correctly segment these images, users typically
start with rough, fast strokes, and then refine the output lo-
cally using slower, more accurate strokes. Our method ro-
bustly handles scenarios where strokes that are close to-
gether and almost parallel belong semantically to different
regions (as shown on the waiter’s legs and snake and pole
example in Fig. 6). In these cases, the time metric plays an
important role in the labeling process.

Our framework does not require artists to draw the input
sketches in any particular manner. It is possible that strokes
representing the same region can be drawn at very different
moments in time. This happens, for instance, when artists
first draw silhouettes for the whole scene, and then proceed
to refine the drawing. This can diminish the advantage of

Figure 5: Results for simple sketches: several different in-

puts produce the same segmentation.

taking timing into account in the similarity metric. Correct
segmentations can still be obtained, but more Scribbles may
be required. Alternatively the similarity metric can be ad-
justed to apply a smaller weight to the time parameter, or it
can be removed as is done for the Scribble metric.

4.1. User Study

In order to test the efficiency and ease of use of our method,
we conducted a user study comparing Smart Scribbles to our
implementation of several commonly-used selection tools,

c© 2012 The Author(s)
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Figure 6: Example Results: For each example, the colored Scribbles are shown on the input drawing and the adjacent image

shows the resulting color-coded labelings.
c© 2012 The Author(s)
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Parameter Value Unit
λ 4
σprox smooth 100 px
σdir smooth 0.5
σtime smooth 1000 ms
σcurv smooth 0.1
σprox data [10 ; 90] px
σdir data 0.1
σcurv data 0.25
B 0.0001
artboard width 1200 px
artboard heigth 1200 px

Table 1: Parameter settings for the user study and all exam-

ples in this paper.

drawing speed-up t(d f ) p-value
combo 1.23x −1.8798 0.07847
snake 1.53x −2.4807 0.02461
skull 1.83x −8.3931 0.00000

house 1.85x −5.2488 0.00001
abstract 2.36x −5.5759 0.00003

characters 1.65x −3.8896 0.00118

Table 2: Median speed-ups and results of paired t-tests

comparing times spent on labeling different drawings using

Smart Scribbles and common selection tools.

namely point, box, and lasso (these tools are typically in-
cluded in professional vector graphics software such as
Adobe Illustrator or Inkscape). This section includes an
overview of the study results.

Our user study had 35 participants (8 female and 27 male
with ages ranging from 18 to 62). Subjects had no prior ex-
perience using Smart Scribbles, and varying levels of profi-
ciency (from none to expert level) with the professional soft-
ware packages.

Participants were asked to use the different tools to match
given labelings on four different drawings of varying com-
plexity (see Fig. 7). The system recorded the time taken to
complete the tasks and the mouse mileage, as well as the
accuracy of the final labeling. Overall distributions of times
and mouse mileage measured during the experiment are de-
picted in Fig. 8. There is a notable performance gain (1 : 23x
to 2 : 36x median speed-up) when comparing Smart Scrib-
bles to the common selection tools. Paired t-tests (see Ta-
ble 2) indicate that this gain is statistically significant (p <
0.005) for 4 out of 6 drawings. The lower confidence level
for the snake and combo drawings is reflected by notable in-
tersection between interquartile ranges of box-and-whisker
plots in Fig. 8. Although the median speed-up is apparent,
the advantage of Smart Scribbles is not as convincing in this
case. The main reason here could be the relatively low com-
plexity of these examples.

house snake

baseball butler robot

skull combo

characters abstract

Figure 7: Given drawings and labelings from the user study.

In addition, participants were presented with different
ways of controlling the locality. We tested the linear rela-
tionship proposed in [AZ97], as well as a simple binary
modality associated with the extreme values of the param-
eter σprox data as shown in Table 1. When asked about their
experience, a majority (31) preferred the binary switching
approach. We believe this is due to two reasons. First, in
previous work, stroke speed had a direct associated visual
feedback. This cannot easily be done with our Scribbles, as
the result of the selection is not strictly bounded by a spatial
radius. A simpler, more explicit interface may therefore be
more appropriate. Secondly, a majority of the participants
(27) indicated that they do not want to be forced to draw
Scribbles slowly.

5. Applications

The labeling produced by our approach can be utilized to
generate input to perform region as well as stroke segmenta-
tion (see Fig. 10a). Once the labels for the segments of each
stroke are computed, we can automatically obtain an area
mask of the enclosed region using the LazyBrush [SDC09b]

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



Noris et al. / Smart Scribbles for Sketch Segmentation

0
5
0

1
0
0

1
5
0

ti
m

e
 [

s]
interaction time

charactersabstract

0
1
0

2
0

3
0

4
0

5
0

6
0

interaction time

ti
m

e
 [

s]

housecombosnake skull

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

p
ix

e
ls

mouse mileage

house abstract skull characters

Smart Scribbles

Common Tools

Figure 8: Interaction times and mouse mileage of participants for different drawings using Smart Scribbles (orange) and

common selection tools (blue).

algorithm (see Fig. 9). To this end, we first render all seg-
ments assigned to a specific label to a raster image. This im-
age is used both as an input gray-scale image (Fig. 9a) and as
foreground soft scribbles (blue in Fig. 9b) for input to Lazy-
Brush. In addition, we use a default background hard scrib-
ble around the image boundary (red in Fig. 9b). Given this
input, LazyBrush produces the desired area mask (Fig. 9c).
As compared to other naive methods (like convex-hull or
flood-fill), this approach works with concave regions and is
robust to small gaps.

For more complex sketches, the user may need to specify
additional Scribbles (Fig. 9d) to classify interior strokes and
use them as additional background soft scribbles for Lazy-
Brush (Fig. 9e). These new scribbles enable the area compu-
tation method to produce masks that contain holes (Fig. 9f).

We note that similar masks (Fig. 9i) can be produced with
the original LazyBrush algorithm directly. However, the area
segmentation alone is not sufficient to provide a labeling of
the individual strokes, because strokes at the boundaries be-
tween different area masks cannot be consistently assigned
to one mask or another (Fig. 9g). Moreover, with the original
LazyBrush algorithm, the user must be more careful, since
the optimization only takes into account the position of the
scribbles. In contrast, our framework also considers orienta-
tion, curvature, and time (compare Fig. 9d and h).

The ability to easily label both strokes and areas empow-
ers a large variety of applications. One can easily alter the
individual drawing style for all strokes that have the same
label. It is also possible to accurately separate the differ-
ent parts of a sketch, specify their depth ordering [SSJ∗10],
and then deform them independently using ARAP shape de-
formation techniques [IMH05] (see Fig. 10b). These opera-
tions can help, for instance, in the context of image registra-
tion [SDC09a] to produce better alignment.

When artists start a drawing, they typically begin with
a simple, high-level sketch that depicts a set of of primi-

b c

fed

ihg

a

Figure 9: Area mask computation: strokes of an input

sketch (a) can be used as LazyBrush soft scribbles (b) to au-

tomatically fill the drawing (c). Additional Scribbles (d) can

be used to segment the strokes (e) for better control of the

paint fill (f). Using the original LazyBrush algorithm (h) to

paint the figure also produces a good result (i), however, the

strokes cannot be classified based on the painting alone (g).

tive shapes (see examples and references in [GIZ09]) that
are called volume or scaffold lines. If available, we can use
these aiding structures as Scribbles to segment the final de-
tailed sketch (see Fig. 10c). This would let the artist focus on
drawing without having to switch between different brushes.
ARAP deformation, for instance, could then be used to cor-
rect the shape of semantically meaningful sketch regions.

c© 2012 The Author(s)
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c

ba

Figure 10: Applications. Opaquing of the segmented clusters (a), ARAP deformation and opaquing with depth inequalities (b),

on-the-fly labeling (c).
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Figure 11: Single parameter perturbation. Given a database of 8 drawings, each with 5 different sets of Scribbles drawn to

match a desired segmentation, we measure the segmentation accuracy obtained with perturbations of the empirically chosen

settings of Table 1. In each graph, the horizontal axis shows the multiplication factor for one of the parameters in exponential

scale. The vertical axis shows how the correctness of the segmentation evolves. The graphs show that the system is mostly

sensitive to time and proximity information, while direction and curvature have less influence.

6. Limitations and Future Work

The selection of good parameters for the similarity terms and
the energy function requires some effort. As can be observed
in the parameter sensitivity graphs in Fig. 11, the system is
robust when parameters are perturbed one at a time. This
is due to the correlation that exists between the similarity
terms. However, it is possible that the perturbation of multi-

ple parameters can lead to significant changes in the result.
We also tested the benefit of including the stroke creation
time in the stroke analysis. After removing this information
from the similarity terms, and re-tuning the remaining pa-
rameters, we achieved the results shown in Fig. 12. In our
experience, omitting this temporal information reduces the
effectiveness of our method, as overlapping strokes require

c© 2012 The Author(s)
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more effort to be separated. In the future we plan to develop
a system that allows automatic parameter tuning based on a
database of ground truth data.

Although we aim to produce accurate labeling with min-
imal user effort, detailed selection is necessary when ambi-
guities exist. One such ambiguous case occurs when an ob-
ject is occluded by another object and parallel strokes from
each are very close together or even overlap. In this case,
only the time constraint can provide a distinctive metric to
obtain correct labeling. However, when the time is not avail-
able or when the user does not preserve temporal coherency
of strokes, our approach requires additional user guidance.

The proposed graph-cut energy minimization strategy is
generally very fast and produces the labeling at interactive
rates. However, in the worst case, when a large number of
stokes are close to each other as defined by our similarity
measure, the number of edges in the graph can grow quadrat-
ically with the number of strokes and the computation can
become prohibitively slow (see Fig. 13). The problem can
be alleviated by subsampling the strokes and processing dis-
connected components individually. Another problem is re-
lated to the non-polynomial complexity of the core max-flow
algorithm [BK04]. In certain situations where the cost of the
minimal cut is very high and the graph topology is complex,
the number of augmentation paths can grow very quickly
along with the computation time. This issue can be solved
by a recently proposed incremental breadth-first search so-
lution [GHK∗11] that works in polynomial time and is typi-
cally notably faster than [BK04].

The use of previously labeled drawings as Scribbles of-
fers another avenue for future work. These annotations could
be used on-the-fly to label new sketches as they are created,
thus simplifying further interactions. This approach could be
used, for instance, as an extension to the recently presented
ShadowDraw system [LZC11], by augmenting each sketch
in the database with Scribbles. In this way the segmentation
could be provided automatically as new drawings are cre-
ated. A similar use case arises in the context of sketchy an-
imations where image registration [SDC09a] can be used to
transfer already labeled strokes and treat them as Scribbles
for the next frame. This can help, for instance, to better con-
trol temporal noise [NSC∗11]. Scribbles could also poten-
tially be used to improve the accuracy of drawing simplifi-
cation methods [GDS04,BTS05,SC08], as a typical problem
with the current, fully automatic, approaches is that they do
not take into account any semantic information such as pro-
vided by our approach.

7. Conclusions

We have presented Smart Scribbles, a scribble-based inter-
face for sketch segmentation. Our method is fast, supports
multi-label segmentation, and acts as an enabling technol-
ogy for a variety of applications in the context of drawing,
editing, and animation.

In the long term, we envision a next-generation draw-
ing application, where drawing, editing, and animation are
tightly integrated, and where the simplicity of the interac-
tion is the key. This work represents a step in this direction;
a bridge between classic drawing and digital editing.

Acknowledgements

We would like to thank Adam Sporka for help with the user
study, Maurizio Nitti for creating some of the drawings, and
all anonymous reviewers for their insightful comments and
suggestions.

References

[AP08] AN X., PELLACINI F.: AppProp: All-pairs appearance-
space edit propagation. ACM Transactions on Graphics 27, 3
(2008), 40. 2517

[AZ97] ACCOT J., ZHAI S.: Beyond Fitts’ law: Models for
trajectory-based HCI tasks. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (1997),
pp. 295–302. 2519, 2522

[BJ01] BOYKOV Y., JOLLY M.-P.: Interactive graph cuts for op-
timal boundary & region segmentation of objects in N-D images.
In Proceedings of Internation Conference on Computer Vision

(2001), pp. 105–112. 2517

[BK04] BOYKOV Y., KOLMOGOROV V.: An experimental com-
parison of min-cut/max-flow algorithms for energy minimization
in vision. IEEE Transactions on Pattern Analysis and Machine

Intelligence 26, 9 (2004), 1124–1137. 2520, 2525

[BTS05] BARLA P., THOLLOT J., SILLION F. X.: Geometric
clustering for line drawing simplification. In In Proceedings of

the Eurographics Symposium on Rendering (2005), pp. 183–192.
2525

[BVZ98] BOYKOV Y., VEKSLER O., ZABIH R.: Markov ran-
dom fields with efficient approximations. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (1998),
pp. 648–655. 2519

[BVZ01] BOYKOV Y., VEKSLER O., ZABIH R.: Fast approxi-
mate energy minimization via graph cuts. IEEE Transactions on

Pattern Analysis and Machine Intelligence 23, 11 (2001), 1222–
1239. 2520

[DJP∗92] DAHLHAUS E., JOHNSON D. S., PAPADIMITRIOU

C. H., SEYMOUR P. D., YANNAKAKIS M.: The complexity
of multiway cuts. In Proceedings of ACM Symposium on Theory

of Computing (1992), pp. 241–251. 2520

[GDS04] GRABLI S., DURAND F., SILLION F. X.: Density
measure for line-drawing simplification. In Proceedigns of Pa-

cific Conference on Computer Graphics and Applications (2004),
pp. 309–318. 2525

[GHK∗11] GOLDBERG A. V., HED S., KAPLAN H., TARJAN

R. E., WERNECK R. F. F.: Maximum flows by incremental
breadth-first search. In ESA (2011), pp. 457–468. 2525

[GIZ09] GINGOLD Y., IGARASHI T., ZORIN D.: Structured an-
notations for 2D-to-3D modeling. ACM Transactions on Graph-

ics 28, 5 (2009), 148. 2523

[IMH05] IGARASHI T., MOSCOVICH T., HUGHES J. F.: As-
rigid-as-possible shape manipulation. ACM Transactions on

Graphics 24, 3 (2005), 1134–1141. 2523

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



Noris et al. / Smart Scribbles for Sketch Segmentation

Figure 12: No-Time-Test: this image shows how the system works when no temporal information is used. Notice how the

cluttered regions require more Scribbles to produce a proper segmentation.
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