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Abstract

Background: Positron-emission tomography (PET) simulators are frequently used for

development and performance evaluation of segmentation methods or quantitative

uptake metrics. To date, most PET simulation tools are based on Monte Carlo

simulations, which are computationally demanding. Other analytical simulation tools

lack the implementation of time of flight (TOF) or resolution modelling (RM). In this

study, a fast and easy-to-use PET simulation-reconstruction package, SiMulAtion and

ReconsTruction (SMART)-PET, is developed and validated, which includes both TOF

and RM. SMART-PET, its documentation and instructions to calibrate the tool to a

specific PET/CT system are available on Zenodo.

SMART-PET allows the fast generation of 3D PET images. As input, it requires one

image representing the activity distribution and one representing the corresponding

CT image/attenuation map. It allows the user to adjust different parameters, such as

reconstruction settings (TOF/RM), noise level or scan duration. Furthermore, a

random spatial shift can be included, representing patient repositioning. To evaluate

the tool, simulated images were compared with real scan data of the NEMA NU 2

image quality phantom. The scan was acquired as a 60-min list-mode scan and

reconstructed with and without TOF and/or RM. For every reconstruction setting, ten

statistically equivalent images, representing 30, 60, 120 and 300 s scan duration, were

generated. Simulated and real-scan data were compared regarding coefficient of

variation in the phantom background and activity recovery coefficients (RCs) of the

spheres. Furthermore, standard deviation images of each of the ten statistically

equivalent images were compared.

Results: SMART-PET produces images comparable to actual phantom data. The

image characteristics of simulated and real PET images varied in similar ways as

function of reconstruction protocols and noise levels. The change in image noise

with variation of simulated TOF settings followed the theoretically expected

behaviour. RC as function of sphere size agreed within 0.3–11% between simulated

and actual phantom data.

Conclusions: SMART-PET allows for rapid and easy simulation of PET data. The user

can change various acquisition and reconstruction settings (including RM and TOF)

and noise levels. The images obtained show similar image characteristics as those

seen in actual phantom data.
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Background

Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography

(PET/CT) is widely used in oncology for diagnosis of cancer, estimation of prog-

nosis and treatment response [1–3]. PET allows the extraction of various quanti-

tative tracer uptake metrics describing numerous phenotype characteristics of a

tumour, commonly known as radiomics features, which may have added value

for diagnosis or treatment follow-up [4–6]. Before these features can be used in

a clinical setting, it is important to determine their repeatability and reproduci-

bility as a function of image quality as this quality can vary by the use of differ-

ent reconstruction settings and PET/CT systems [7–9].

In order to explore repeatability and reproducibility, it is necessary to analyse

a large number of PET images reconstructed with different settings. Actual

physical phantoms may be used for this purpose, but the collection of a large

number of replicate images can be time consuming, and physical phantoms are

often limited to simple geometrical shapes. Thus, to obtain a large number of

images, a PET simulation tool can be useful. Such a tool would allow the fast

and easy generation of a set of multiple realistic PET images using different

activity distributions, acquisition settings, reconstruction settings and/or noise

levels.

Several PET simulators are already available [10–19]. The most widely used

PET simulators are based on Monte Carlo calculations. These calculations most

accurately simulate the actual PET acquisition process and generate projection

data that accurately reflect PET system data [16, 19, 20]. The projection data

can then be reconstructed to generate accurate and realistic PET images. How-

ever, the main drawback of Monte Carlo simulations is that they are computa-

tionally very demanding and require a certain level of programming experience.

Therefore, analytic PET simulators have also been developed with the main ad-

vantage of producing a large number of simulated images in a relatively short

time [14, 15, 17]. The latter type of simulators cannot be used for detector de-

sign purposes but may be suitable for the evaluation of new image processing

methods, such as automated segmentation methods, and to assess the robustness

of quantitative features as function of underlying image quality, e.g. different

noise levels or acquisition and reconstruction settings.

Most analytical PET simulators, which are already available, require a certain

level of programming skills. The user has to get familiar with specific libraries,

which makes their use difficult, especially for users with less knowledge about

programming. Furthermore, to the best of our knowledge, current analytical PET

simulators lack either the implementation of time of flight (TOF) or resolution

modelling (point spread function, PSF). Therefore, in this work, we present

SMART (SiMulAtion and ReconsTruction) PET, a rapid PET simulation and re-

construction tool that includes the implementation of three different TOF set-

tings and two different resolution models and is easy to use. In this paper, we

describe its implementation and the calibration procedure to match simulations

with actual scan data. Finally, we compare results derived from simulations with

those obtained from actual PET studies and compare the effect of simulated

TOF changes to those expected theoretically.
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Methods

Description of SMART-PET

SMART-PET is a PET reconstruction and simulation tool that is based on analytic

simulation techniques. It is a standalone program written in Interactive Data Language

(IDL) (version 8.3, 64 bit; Harris Geospatial Solutions, Broomfield, CO, USA). The user

can select different parameters for the simulation and reconstruction process via a

Graphical User Interface (Fig. 1). A short manual on how to use and calibrate SMART-

PET can also be found on Zenodo. The simulations are derived from earlier developed

and applied software [21, 22]. In short, noise-free sinograms with and without TOF are

generated by forward projection of a mathematical emission image. Each sinogram con-

tains 128 angles; the number of sinogram bins is set equal to that of the matrix size of

the noise-free input images (as explained later). When studying the impact of noise on

image quality, multiple simulations can be created by repeatedly applying Poisson noise

to the simulated noise-free sinograms. Poisson noise was applied to each sinogram and

TOF bin independently using a totally random seed number. Next, the sinogram data

can be reconstructed using the ordered subset expectation maximisation (OSEM) algo-

rithm, using the attenuation correction coefficients as weighting factors. Resolution

modelling can be applied during reconstruction, but a post-reconstruction iterative de-

convolution approach is provided as well (Van-Cittert deconvolution). A more detailed

overview of the functionality and implementation of SMART is given below.

As input, SMART-PET requires a 3D PET image representing the ‘true’ activity distri-

bution and a 3D attenuation map or a CT image of the same object with corresponding

image dimensions. At present, images should be provided in either ECAT7 or nifti for-

mat, but DICOM will be supported in future releases (work in progress).

Fig. 1 The SMART-PET GUI. On the upper left, the parameters of the reconstruction can be set, like matrix

size, number iterations/subsets, resolution modelling ON/OFF and TOF ON/OFF. On the lower left, the

simulation parameters like system sensitivity, random/scatter fractions and scan duration can be assigned
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From the input images, SMART-PET calculates a simulated PET image according to

the following steps:

1. The input PET image is smoothed with a Gaussian kernel to simulate the spatial

resolution of the PET camera. The full-width-at-half-maximum (FWHM, in mm)

of the Gaussian kernel can be set by the user as appropriate for their system and/

or in case of simulating isotopes that show a large positron range.

2. The smoothed PET image is then forward projected with or without the use of

TOF. At present, TOF is applied with the number of time bins equal to the

simulated image matrix size. The size of the TOF kernel (in ps) can be specified by

the user. TOF is implemented by one-dimensional smoothing in the forward pro-

jection direction [23].

3. Attenuation of the PET projection data is derived from forward projecting the

attenuation map and then applying an exponential function to obtain attenuation

factors. In case CT data are provided, the CT image is first converted into 511 keV

attenuation coefficients using a bilinear scaling function, as described by Carney et

al. [24] and assuming 120 keV CT data.

4. A randoms fraction can be set. Randoms are assumed to be distributed uniformly

over the projection space. The randoms fraction is defined as the fraction of

simulated randoms over trues counts. This implementation has already been used

in previous work [21, 25].

5. The contribution of scattered events (or the scatter fraction) can be set by the

user. The distribution of scattered events is derived from the PET images by first

applying a 10-cm FWHM Gaussian kernel, followed by forward projection and

application of attenuation effects. The scatter fraction is defined as the total

number of scattered events over true events. The implementation of scatter is

analogue to the one of the analytical simulation tool PETSTEP [14].

6. Poisson noise is added to all simulated projection data. The user can define noise levels

by varying the number of simulated counts and/or a noise calibration factor. Multiple

noisy simulations or replicates are obtained by repeatedly drawing a noisy estimate

from the Poisson distribution using the forward projected noise free counts as the

expected or average value for the Poisson distribution per sinogram bin [14, 21, 26].

7. The noisy projection data are reconstructed using TOF or non-TOF ordinary

Poisson ordered subset expectation maximisation (OSEM) with or without reso-

lution modelling (applied during the reconstruction). The user can select several

matrix (or voxel) sizes as well as the number of iterations and subsets.

8. A Gaussian filter and/or iterative deconvolution (using the reblurred Van-Cittert

method with ten iterations [27]) can be applied upon completion of the recon-

struction (post-reconstruction processing). The size of the smoothing and/or de-

convolution kernel can be specified by the user.

9. Finally, the simulated image is saved in either ECAT7 or nifti format.

Steps 4 to 9 are repeated for generating a new noisy replicate. The number of desired

replicates can also be set.

In addition, the user can optionally add a random spatial shift (maximum spatial dis-

placement) to reflect variations in patient repositioning, as well as a PET-CT
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misalignment to simulate patient movements. The shift is applied to the emission and

transmission data, while the PET-CT misalignment is only applied to the CT data. Both

will be first applied in step 2, after which new noisy replicates are generated by repeat-

ing steps 2 to 9.

Procedure to adjust SMART-PET settings to simulate your PET system

Calibration

The aim of the simulation tool is to produce PET images comparable to real scan data

in terms of image quality and quantitative accuracy. To match the simulated PET data

to the actual data of a certain PET/CT system, SMART-PET needs to be calibrated (by

adjusting a sensitivity factor). To this end, the following parameters can be modified:

For the simulation step:

– System sensitivity/noise factor—this factor rescales the input data such that the

simulations provide (simulated noisy) images with comparable noise as seen in the

actual phantom data and can thus account for systems having different sensitivities.

– Scan duration (in seconds)

– Randoms fraction (a value between 0 and 1)

– Scatters fraction (a value between 0 and 1)

For the reconstruction step:

– Matrix and voxel size of the simulated image using either:

○ ORG: The simulated image has the same voxel and matrix size as the input image

○ Matrix size of 128 × 128, resulting in a voxel size of 4 × 4 mm

○ Matrix size of 170 × 170, resulting in a voxel size of 3 × 3 mm

○ Matrix size of 256 × 256, resulting in a voxel size of 2 × 2 mm

○ Matrix size of 400 × 400, resulting in a voxel size of 1.3 × 1.3 mm

The slice thickness will not be changed and will remain equal to that of the input 3D

PET image but can be varied by using an input image with a different slice thickness.

– Simulated spatial resolution of the system (default value is 5 mm)

– Reconstruction method:

○ Ordinary Poisson OSEM

– TOF can be turned off (none) or set by the user.

– RM; here, the FWHM can be assigned for each direction separately (the default

value is 5 mm for each direction). Any other value can be chosen to accommodate

systems with a different resolution and/or when using isotopes with a larger

positron range. In the case of simulating isotopes with a large positron range, the

most appropriate resolution size should be chosen carefully. The resolution during

simulations should be adapted to accommodate this effect on the final image

resolution, as was shown by Bertolli et al. [28]. The user can either use a

reconstruction-based resolution model or use a post reconstruction image-based it-

erative deconvolution approach (reblurred Van Cittert iterative deconvolution) [27].
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– The number of iterations and subsets of the OSEM reconstruction (the default

values are 4 iterations and 16 subsets).

Phantom scans

In order to calibrate SMART-PET, it is recommended to acquire a scan of a standard

phantom (e.g. the NEMA NU 2 image quality [IQ] phantom) and reconstruct it using

different reconstruction settings and with different durations/scan statistics.

As input for the simulation tool, two corresponding digital reference objects (DROs)

of the same phantom are needed: One representing the activity distribution and one

representing the attenuation coefficient map or CT image of the phantom. An example

of a DRO of the IQ phantom is provided on Zenodo. In order to make a valid calibra-

tion, the activity distribution of the DRO and the real scan should correspond. To gen-

erate DROs with corresponding activity values, a separate DRO modifier tool, ‘IQ_

DRO_Modifier’, is available on Zenodo which is also written in IDL. With this tool, the

user can set the activity values in the background compartment and the spheres to the

uptake values of the physical phantom data. Furthermore, the tool allows the user to

change image size and slice thickness of the DROs. A short manual of this tool is pro-

vided on Zenodo. Once the DRO, which matches the actual phantom data, has been

generated, a first run of simulations with acquisition and reconstruction settings that

equals the standard (calibration) phantom experiment should be made. Next, by com-

paring the observed simulated noise with that seen in the actual phantom, the sensitiv-

ity factor can be adjusted in order to match the noise levels between simulations and

real data (a higher factor represents a higher sensitivity and will result in simulated im-

ages with less percentage noise). This process may be repeated until a good agreement

in noise level is observed. This factor can then be fixed, and simulations for any other

conditions, acquisition and/or reconstruction settings or for other phantoms can be

made. Moreover, the factor needs to be determined only once per PET/CT system.

Validation and performance evaluation of SMART

Phantom experiments

In our study, the NEMA NU2 image quality phantom was scanned on a Siemens

Biograph mCT 64 (Siemens Healthcare, Knoxville, USA) in order to calibrate SMART-

PET and validate the accuracy of the simulated data.

The image quality phantom contains six spheres with an inner diameter of 10, 13, 17,

22, 28 and 37 mm that are placed in a background volume of 9400 ml. The spheres

were filled with an FDG activity solution ten times higher than the solution in the back-

ground, which was 2.1 kBq/mL at the beginning of each PET study. The PET scan was

acquired as a 60-min list mode scan. For attenuation correction purposes, a low-dose

CT scan of the phantom was acquired using the vendor-provided default settings.

From the list mode data images representing 30, 60, 120, and 300 s, scan durations

were generated. For every scan duration, ten statistically equal images were produced,

taking into account the decay of the tracer. The data were reconstructed using the

vendor-provided 3D OSEM algorithm with 3 iterations and 24 subsets. Moreover,

images were reconstructed using the time-of-flight implementation of the OSEM

algorithm with 3 iterations and 21 subsets. All images were generated with and without

Pfaehler et al. EJNMMI Physics  (2018) 5:16 Page 6 of 18



resolution modelling. All reconstructed images have a matrix size of 256 × 256 × 111

with a voxel size of 3.018 × 3.018 × 2 mm. All corrections, i.e. attenuation, scatter,

random, normalisation, decay and dead time, needed to obtain quantitative PET data,

were applied during the reconstructions.

Generation of simulated images

For the simulations, a PET and CT DRO of the image quality phantom were generated

using a Matlab script (Matlab 2014b, Mathworks, Natick, MA, USA). The objects were

constructed by extracting the torso shape of the phantom from a PET/CT image data-

set. The spheres were then placed in the torso according to the exact details of the

image quality phantom. The initial DRO PET image had a matrix size of 512 × 512 ×

111 and a voxel size of 1 × 1 × 1 mm. Spheres and background intensity values were

assigned in order to obtain a sphere to the background ratio of 10:1. With the DRO-

modifier tool, image and voxel size as well as the activity distribution in background

and spheres were matched with the actual physical phantom measurements. These

digital phantoms were used as input for SMART-PET. PET images acquired with the

same acquisition and reconstruction settings and scan durations as the real scan data

were then produced. For every combination of reconstruction setting and scan dur-

ation, ten statistical equivalent replicates were simulated to be in line with the physical

phantom experiment.

Evaluation of SMART-PET

The simulated and physical phantom data were analysed by comparing accuracy and

precision of the intensity values in the phantom background compartment and in the

spheres. Furthermore, a mean and a standard deviation image of the ten replicates were

calculated for each reconstruction setting and scan duration, and the standard deviation

values in spheres and background were compared.

The spheres in the simulated phantom data were delineated using a Matlab-based

script. Please note that Matlab scripts were only used to facilitate automated image

analysis but are not part of the simulation package. Any other image analysis software

may be used for this purpose as well. Six spheres with the exact radius were placed on

the corresponding positions in the simulated images. For the actual physical phantom

scans, the spheres were placed manually on the correct position in the phantom.

Furthermore, a PET-based segmentation of the spheres was obtained using the

European Association of Nuclear Medicine Research Ltd (EARL) analysis tool [29].

To compare the distribution of the intensity values in the phantom background, six

spheres with a radius of 3 cm were positioned randomly in the background compart-

ment (see Fig. 2). The overall mean intensity values of these spheres were considered to

represent the average background value.

Coefficient of variation in the background

The coefficient of variation (COV) describes the variation in the intensity values in a

region and is used here as a measure of image noise. It was calculated in the back-

ground regions of interest for every acquired image, leading to ten COV values for

every combination of reconstruction setting and scan duration. For comparison, the

mean of these ten values was calculated. The same analysis procedure was applied to

both simulated and actual phantom data.
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Furthermore, the observed COV in the simulated data was validated against the

expected theoretical behaviour as function of scan duration and TOF settings. When

changing the scan duration from t1 to t2, the COV is expected to follow Eq. (1):

COVt2 ¼

ffiffiffiffiffiffi

t1

t2

r

COVt1 ð1Þ

The change in COV due to the variation in TOF settings can be expected to be de-

scribed by Eq. (2) [30]:

COVTOF ¼

ffiffiffiffiffiffiffi

c∆t

2D

r

COVNON−TOF ð2Þ

where D equals the phantom diameter, c the speed of light and ∆t the TOF

performance.

SMART-PET provides reconstructions with different TOF time resolutions that can

be set by the user. The COV values obtained with the simulated TOF resolutions 150,

350, 450, 650 and 850 ps were compared with the theoretically expected values assum-

ing an average phantom diameter of 27 cm.

Recovery coefficients

To calculate the activity concentration recovery coefficients (RC), the mean and max-

imum values within each sphere were calculated and divided by the expected activity

concentration. RCs are plotted as function of sphere size and compared to the experi-

mentally obtained values for each set of acquisition and reconstruction settings and for

each scan duration. Furthermore, the RCs for an EARL reconstruction (OSEM + 5 mm

FWHM Gaussian smoothing) and an OSEM + PSF reconstruction with 2 mm FWHM

Gaussian smoothing were compared, as they are the default reconstruction settings in

our department. The mean and SD of the ten statistically equivalent replicates were

used for comparison.

Mean and standard deviation image

From the ten statistically equivalent images, a standard deviation image was calculated.

In the standard deviation images, we compared the intensity values in spheres and

Fig. 2 The regions of interest used to a calculate the COV in the phantom background at slice 38 and

b the intensity distributions of the standard deviation image at slices 53–57 (right). Both images are

generated using the physical phantom data, but the regions of interest are equally extracted from the

corresponding slices of the simulated data
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background between simulated and physical phantom images. Furthermore, the inten-

sity values in the centre part of the axial extend of the phantom (see Fig. 2) were

extracted, and the distribution of these intensity values were plotted.

Results

Evaluation of SMART-PET

Calibration steps

To match the simulations with real scan data, the parameters of the simulation were

changed in a stepwise approach. For this purpose, one scan duration and one recon-

struction method was chosen. From the resulting images, the RCs and COVs in the

large background compartment as well as the noise texture were compared. The simu-

lation parameters that led to the best fit were chosen. The calibration process consists

of the following steps:

Adjusting image noise: Several images were simulated with a noise scale factor varying

from 0.001 to 0.5. The noise scale factor was set such that it provided the best fit to the

physical phantom data regarding the COV in the background. Images with other recon-

struction settings and scan durations were produced using this noise level scale factor.

Matrix size: To give a better comparison in terms of image quality and noise texture,

the voxel size of the simulation was matched to the voxel size of the real scan. That led

to a voxel size of 3 mm × 3 mm× 2 mm and a matrix size of 170 × 170 × 55.

Spatial resolution of the image: To match partial volume effects or spatial resolution,

the FWHM of the system was modified. Different values, varying from 2 to 7 mm, were

selected, and the RCs over the different sphere sizes were compared. FWHM of 7 mm

showed the best fit with the data of the physical phantom experiments.

Adjust iterations and subsets: The noise texture in the simulated and physical phan-

tom data showed a different pattern. A comparison and adjustment of the number of

iterations changes this pattern and can help to match the images more closely. In our

case, we selected 4 iterations and 16 subsets as default value. The Additional files 1 and

2 display simulated and physical phantom images with different numbers of iterations.

For our validation, the PET-DRO was modified so that the intensity values corre-

sponded to an activity concentration of 23 kBq/ml in the spheres and 2.1 kBq/ml in the

background compartment. The slice-thickness of the phantom was adjusted to 2 mm

(equivalent to the scan).

Comparison of COV background

Figure 3 shows a comparison of the COV values for simulation and phantom scans

over various reconstruction settings for the 120-s scan duration. The images recon-

structed with OSEM or OSEM + PSF show similar values in scan and simulation (scan:

OSEM, 0.66; OSEM+ PSF, 0.32; simulation, OSEM, 0.65; OSEM + PSF, 0.35). Hence,

the decrease in COV from OSEM to OSEM + PSF is comparable between physical

phantom (decrease of 51.5%) and simulated data (decrease of 45.3%). Thus, for these

two reconstruction settings, we can conclude that the simulation follows the real scan

data. As is also illustrated in Fig. 4, the values from scan and simulation are almost

proportional for the different scan durations (OSEM: slope 0.78, intercept 0.09, R2 0.99,

p value < 0.01; OSEM + PSF: slope 1.49, intercept − 0.13, R2 0.99, p value < 0.01).
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Comparing the COVs over different scan durations shows that the COVs decrease

with longer scan durations as expected according to formula (1) (see Table 1).

The use of TOF in the phantom studies did not result in improved image quality (see

Table 2), while it can be seen clearly in the simulations. The observed COV value in

the physical phantom data (obtained with OSEM +TOF) was 78–82% higher than

expected (see Table 2). This effect occurred over all scan durations. Surprisingly the

physical phantom data does not follow the expected TOF behaviour, and it cannot be

used for validation purposes.

Fig. 3 The COV values in the background compartment of simulation and scan over different

reconstruction methods

Fig. 4 COV values in the background compartment of the NEMA image quality phantom of the simulation

against the COV values of the scan for OSEM (left) and OSEM+PSF (right) reconstructions
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Therefore, in order to validate the use of TOF in SMART, the simulated images were

compared with the behaviour that would be expected theoretically (Eq. (2)). As can be

seen clearly in Fig. 5, the simulated and expected COV values are showing a linear rela-

tionship (slope 0.71, intercept 0.11, R2 0.98, p value < 0.01). Comparing the expected

and observed SNR gains as reported in Conti et al. [31] (see Table 3) shows that the

SNR gains of the simulation are similar to the ones expected.

Comparison of recovery coefficients

Figure 6 illustrates that simulation and physical phantom studies show corresponding

behaviour for RCmean and RCmax for an EARL reconstruction (OSEM + 5 mm smooth-

ing) with 120 s scan duration. The RCs showed an almost directly proportional rela-

tionship (RCmean: slope 0.87, intercept 0.07, p value < 0.001, R2 0.98, RCmax: slope 0.95,

intercept 0.05, R2 0.99, p value < 0.001), see also Additional files 3 and 4. Moreover, the

results fulfil the EARL recommendations, as is also demonstrated in the graph.

Furthermore, it can be seen that the RCs are also in line for the OSEM + PSF

reconstruction with 2 mm smoothing and 120 s scan duration. The overshoot due to

the Gibbs artefacts can be observed clearly. Also here, the RCs of simulation and

physical phantom data show a linear relationship (RCmean: slope 0.79, intercept 0.19, R2

0.92, p value < 0.01, RCmax: slope 0.66, intercept 0.37, R2 0.94, p value < 0.01). As the

RC values for the OSEM + PSF reconstruction show few variability, a Bland-Altman

plot was additionally used for comparison. This plot illustrates the low differences be-

tween the RC values of physical phantom data and simulation. Similar observations can

be made for other reconstruction settings, scan durations and smoothing factors.

Comparison of standard deviation images

The distribution of the standard deviation values in the phantom background is plotted

in Fig. 7. It changes for the simulations and scans in similar ways over different recon-

struction settings. For the OSEM reconstruction of the simulated data, the distribution

is the widest, while it becomes narrower with the use of TOF. The use of PSF leads to

an even narrower distribution. The TOF effect can be seen more clearly in the simula-

tions, which corresponds with the earlier finding that TOF does not show the

Table 1 The change of COV over different scan durations for the OSEM + PSF reconstruction,

compared with the expected value, calculated based on the COV value at 30 s

Time (seconds) COV simulation Expected (acc. formula 1)

30 0.71

60 0.50 0.50

120 0.35 0.35

300 0.22 0.22

Table 2 The differences between observed and expected improvements with the use of TOF in

image quality for the physical phantom data and the simulations

OSEM OSEM + TOF OSEM + TOF expected (acc. formula 2)

COV scan 0.66 0.71 0.39

COV simulation 0.65 0.39 0.39
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(expected) increase in image quality in the real scan data. A standard deviation image

of scan and simulation can be found in the supplemental (Additional file 5).

Discussion

This paper described the development and evaluation of SMART-PET, a rapid and flexible

PET simulation and reconstruction tool that allows the realistic generation of 3D PET im-

ages. It is a standalone program that can be used via a Graphical User Interface and is

therefore easily accessible, especially for users with little experience with PET simulations.

SMART-PET was calibrated to the Siemens Biograph mCT 64, and we demonstrated

that the simulated images show similar image characteristics as physical phantom data

over different reconstruction settings and scan durations. Some discrepancies were ob-

served when comparing the COV of the OSEM +TOF reconstructions for different

TOF resolutions with the theoretically expected values. These discrepancies may be

due to the fact that the expected TOF effect is calculated expecting a cylindrical object

with a fixed diameter [32]. As the IQ phantom does not have a cylindrical shape, the

average diameter was estimated, what can be the cause for these small differences.

Furthermore, when comparing the simulated and the physical COV values over the

different scan durations, the relationship between scan and simulation was not directly

proportional for the OSEM + PSF reconstruction. This is due to the fact that the COVs

Fig. 5 The linear relationship between the COV values of the simulated and the expected TOF values

(calculated with formula 2)

Table 3 The expected and observed SNR gains for an object with 27 cm diameter

Time resolution (ps) Expected SNR gain Observed SNR gain in simulation

150 3.56 4.9

350 2.27 3.02

450 2.0 2.47

650 1.6 1.67

850 1.4 1.36
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of the physical phantom data did not follow the expected behaviour over time (accord-

ing to formula 1), while the simulated data behaves as expected. However, apart from

these points, we demonstrated that the images generated with SMART-PET are

comparable to physical phantom data.

Depending on the matrix size and the chosen reconstruction algorithm, SMART-PET

takes from 3 to 15 min to simulate one PET image. Other analytical PET simulators

produce images in a comparable time. The recently developed open source software

PETSTEP requires approximately 4 to 10 min for the simulation of one PET image.

PETSTEP requires CERR, an open source radiology tool [33], and Matlab 2014a to pro-

duce PET simulations. It allows the simulation of PET images with manually added le-

sions and user-defined acquisition and reconstruction parameters. However, it lacks the

implementation of TOF [14].

Another analytical PET simulator was developed by Thielemans et al. STIR is a re-

construction software that can also be used to simulate scatters, randoms and noise

[15, 34, 35], as well as realistic 4D PET-MR data [18]. With STIR, realistic 3D or 4D

PET images can be generated for a variety of scanners and image acquisition settings.

The main drawback of simulations with STIR is the computational time required to

perform a simulation (4 to 6 h for one simulation). Furthermore, the user has to be

Fig. 6 RC max (upper line) and RC mean (lower line) and the standard deviation of the RC values as

function of sphere sizes for EARL reconstruction (OSEM + 5 mm smoothing) on the left and OSEM+PSF

reconstruction with 2 mm smoothing on the right
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familiarised with the STIR library, which requires time and effort especially for users

without comfortable use of C++.

ASIM, an analytic PET simulator developed by Comtat et al. [17] allows the simula-

tion of static and dynamic PET images with realistic noise texture and resolution prop-

erties. The simulated projection data can be reconstructed and corrected with the same

software as used in clinical practice. However, the installation and the use of ASIM

requires experience in working with Linux and programming.

The most widely used PET simulator is nowadays GATE, a complex but very accurate

Monte Carlo PET simulator, that allows the exact modelling of different scanner de-

signs and detector materials [12, 36–38]. The user can accurately model the scanned

object with the option to use different tissue materials and radiotracers. GATE calcu-

lates from this information a 3D PET image that includes counts, noise, randoms and

scatter fractions, which fit to the modelled object and the applied radiotracer. Never-

theless, the main disadvantage of Monte Carlo simulations is the computational time

cost. In order to generate accurate and correct simulations, the user has to become

familiar with the GATE library, which requires time, experiences in working with the

Fig. 7 The changes in the distribution of standard deviation values over the different reconstruction

settings for scan (above) and simulation (down). The values are extracted from a region in the phantom

background in the standard deviation images
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Linux operating system and basic programming. In addition, knowledge of GEANT4 is

required if additional functionality needs to be implemented that is not present in

GATE.

The lower computational time costs, which are coming with the use of analytical sim-

ulators, are especially of interest for studies requiring a large number of images or

when modelling tracer kinetics. However, in comparison with Monte Carlo simulations,

the main drawback of analytical simulators is that they lack the capability to simulate

various scanner designs and detector materials. Thus, for studies investigating these pa-

rameters, SMART-PET is not suited. However, as we showed, for the exploration and

evaluation of new segmentation algorithms and quantitative uptake metrics, SMART-

PET produces images with good accuracy and quality.

Limitations and future developments

In the current version of the SMART tool, some functionalities are not yet included or

some approaches may be suboptimal.

First of all, the simulation tool is not yet able to simulate dynamic (kinetic) PET stud-

ies. When dynamic simulations would be required, one option would be to first make

noise-free DROs per time frame, then run the simulation for each time frame inde-

pendently and finally combine the simulated images into a dynamic PET study. Future

releases will allow the use of a 4D dynamic DRO and automatically simulate data over

all time frames. Alternatively, it may be desired to have a single DRO with per voxel

specified tissue classes and assign a time activity curve to each tissue class.

Secondly, in our tool, we applied the same method to simulate scatter as was done in

the PETSTEP tool [14]. Although this type of scatter simulation is based on a

pragmatic choice, it may not be accurate enough in all cases and it does not include

TOF information.

Furthermore, the simulation tool is lacking the implementation of Filtered-Back-

Projection (FBP); as in the modern PET/CT system, mostly iterative reconstruction

algorithms are used. However, we will add FBP in future releases.

In addition, at present, the resolution model used assumes spatial invariance, while in

reality, the resolution of a PET/CT system varies over the field of view; in particular, it

decreases at off-centre locations. This effect is mostly pronounced in systems with a

small detector ring diameter, such as in dedicated brain and/or in preclinical systems.

Finally, it is of interest to expand the functionality to include more sophisticated pa-

tient motion models into the TOF-PET simulation. The approach suggested by Polycar-

pau et al. [39] seems interesting and should be further explored.

Despite the above listed limitations, we found that SMART seems to be suitable to

generate images with realistic noise and resolution/contrast recovery characteristics

that are representative for current clinical PET/CT systems.

Conclusions

SMART-PET is a fast, easy to use and flexible PET simulation and reconstruction tool.

The user can modify several parameters for the simulation and reconstruction step. In

this way, SMART-PET can be adjusted to every clinical PET/CT system. As input, it re-

quires a noiseless PET and CT image and produces a realistic PET-image that is
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comparable to actual PET scan data. The simulated images show similar image charac-

teristics as real scan data. Small discrepancies between scan and simulations can be re-

solved by more closely matching simulation settings with the actual PET data using the

described calibration process.

With SMART PET, a PET and CT mathematical phantom of the NEMA NU image

quality phantom can be provided that can be used to adjust SMART-PET to a specific

system. Furthermore, a DRO modifier is available that modifies the activity distribution

and matrix size of the PET-DRO. The tools and DROs can be found at Zenodo.
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