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Abstract 

In this paper, comparison of deep learning-based target de-
tection methods is presented for precision weed management 
system. Conventional weed control methods are to spray 
herbicides uniformly in every fields. However, it is intimately 
related with massive herbicides consumption, environmental 
issues and agrochemical residues on food product. Hence, an 
autonomous and intelligent herbicide sprayer has been devel-
oped with machine vision in order to determine the type of 
weeds in real-time and spray the proper herbicide only on de-
sired spots. This paper presents a comparison of deep learn-
ing frameworks with evaluation metrics; Precision and Re-
call. Through this comparison, the smart sprayer system will 
be developed with more precise real-time target detection 
performance. 

 Introduction   

Since Weed control is closely related to crop yields, it is im-

portant to eliminate weeds in agriculture (Rajcan, Chandler, 

and Swanton 2004; Zimdahl 2018; Clements et al. 2004; 

Gianessi 2013). Weeds impede growing progress of the crop 

by depriving of light and the essential resources (e.g. water 

and nutrients). Once weeds are not removed at the proper 

period, the yield potential can be negatively impacted. 

 In order to control weeds, United States farmers sprayed 

about 113.36 million kg of herbicides (glyphosate) in 2014 

(Benbrook 2016). Global herbicide market shows that farm-

ers sprayed a total of 746.58 million kg of herbicides 

(glyphosate) worldwide in 2014 (Benbrook 2016). This 

enormous consuming number of herbicides is mostly due to 

the conventional spraying strategy, spraying herbicides uni-

formly in every area of fields. Since weeds usually occur in 

patches, conventional spraying strategy is not efficient in 

terms of cost and method. In addition, indiscriminate herbi-
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cide spraying causes environmental issues (e.g. soil and wa-

ter contamination) and agrochemical residues on food prod-

ucts. The United State government warns regarding effects 

of herbicides on human health and environment (US Envi-

ronmental Protection Agency; US Fish and Wildlife Ser-

vice). Furthermore, there is an issue of a shortage of farm 

labor and increased costs for weed control (Duke 2012). 

Hence, developing autonomous and intelligent herbicide 

sprayer is required to reduce these negative impacts.  

 In recent decades, there has been a constant increase of 

interest in pest and disease detection  (Cruz et al. 2017; Ab-

dulridha et al. 2018; Cruz et al. 2019) and autonomous 

sprayer for controlling weeds (Moller 2010; Fernandez-

Quintanilla et al. 2018), concluding that computer vision 

technologies will lower workload and costs in agricultural 

field. Using computer vision helps a smart sprayer system to 

have the ability to determine the type of weeds in real-time 

and spray the proper herbicide only on desired spots. In 

(Hong, Minzan, and Qin 2012), various sensors and tech-

niques are surveyed for a smart sprayer analyzing machine 

vision, spectral analysis, remote sensing and thermal im-

ages. (Wendel and Underwood 2016) present classification 

of crops and weeds using spectral images, and it showed 

good performance. A spectral camera, however, has disad-

vantages that it is too expensive and has heavy computation 

load comparing to a RGB camera. There is also literature 

supporting the use of RGB images for weed detection. Weed 

detection is performed using Convolutional Neural Net-

works (CNNs), and weeds among grass and broadleaf are 

classified in (dos Santos Ferreira et al. 2017). Even though 

there is no contribution for a smart sprayer, it showed satis-

fying performance results. A herbicide sprayer using a RGB 

camera is developed for wild blueberry in (Esau et al. 2018). 

In this paper, weeds are determined using the color contrast 
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between the green weeds and the wild blueberry plants and 

soil surface which shown in reddish-brown background 

color. The image processing used in this paper is a low-level 

object detection strategy, and this method is limited only to 

certain wild blueberry farms. 

 In this paper, we present a comparison of deep learning-

based target detection frameworks for a low-cost and smart 

precision sprayer system. In order to detect weeds, machine 

vision and deep learning-based target detection are applied 

to the developed system. In the next section, we present ma-

terials and method for the smart sprayer system, then three 

applications of deep learning-based target detection are 

compared and evaluated in Experiment Section. Finally, we 

present the conclusion and future works at the end of the 

paper. 

 In this paper, a comparison of deep learning-based target 

detection frameworks is presented for a low-cost and smart 

precision sprayer system (previously developed by Partel et 

al., 2019). In order to detect weeds, machine vision and deep 

learning-based target detection were applied to the devel-

oped system. In the next section, we present materials and 

method for the smart sprayer system; then, three applica-

tions of deep learning-based target detection were compared 

and evaluated.  

Materials and Methods 

A prototype of the smart sprayer system consists of individ-

ual nozzle control (12 nozzles with an adjustable spraying 

cone and 12 valves), a low-cost pump, a Real-Time Kine-

matic GPS (RTK-GPS), three video cameras (Webcam 

Logitech c920), speed sensor (odometer and laser-based 

sensor), and several relay boards, tubes, pressurized mani-

folds, etc. (Partel et al. 2019). 

Hardware Description 

Fig. 1 presents the smart sprayer attached on an All-Terrain 

Vehicle (ATV) through a hitch, and the workflow of the 

smart sprayer system is depicted in Fig. 2.   

The nozzles arrangement is designed considering a work 

length of 1.08 m to be covered by sprayers. It employs 

Figure 1. (a) The smart sprayer mounted on an All-terrain vehi-

cle (ATV); (b) main components of the smart sprayer. 

Figure 2. Overall workflow of the smart sprayer system. 

Figure 3.  Nozzles arrangement design. 



twelve nozzles to spray a width of 0.09 m each from 0.03 m 

of height as shown in Fig 3. 

In order to spray herbicide rapidly and precisely after re-

ceiving signals from the main computer, a 95 L tank was 

utilized to store herbicide with a 4.10 bar, 8 L/min pump 

(FIMCO LG-25-SM, North Sioux City, SD, USA) as shown 

in Fig. 4. 

12 V solenoid valves (WALFRONT 2 V025, China), with 

a response time of less than 50 ms, were utilized in order to 

control nozzles (TEEJET 5500-X5 Glendale Heights, IL, 

USA). Three nozzles can be adjusted by changing the angle 

of the spraying cone. 

For the image acquisition system, three low-cost cameras 

(LOGITECH c920, Newark, CA, USA) were utilized. The 

cameras cover the work length of 1.08 m. The three cameras 

were installed to minimize an overlap.  

For the positioning system, a RTK GPS (TOPCON 

HiperXT, Tokyo, Japan) was used with a 2.50 Hz update 

rate. Using the position data, a heading angle is also calcu-

lated to obtain accurate geo-locations of the targets on the 

soil. 

The main computer unit utilized was a graphical pro-

cessing unit (GPU) (NVIDIA GTX 1070 Ti, Santa Clara, 

CA, USA) with 2432 CUDA cores on a clock frequency of 

1607 MHz. This GPU has 8 GB of memory. 

The future overall goals of this project can be described 

as shown in the following; 

1. Develop further a low-cost, high throughput, and 

smart technology to simultaneously scout and 

spray a variety of weeds with different herbicides. 

2. Develop low-cost and multi-crop autonomous ve-

hicles equipped with the precision spray technol-

ogy. 

3. Design and develop a high-level task planning and 

control system for the autonomous precision spray-

ers. 

4. Conduct comprehensive economic analyses of the 

proposed multi-robot system. 

Smart Sprayer Software 

A software was developed to achieve a precise spraying on 

the target and to develop a weed map. The software can pro-

cess up to 28 fps (frames per second) in all the steps in real-

time. Fig. 5 depicts the overall workflow of the smart 

sprayer system. 

Image Acquisition 

Three cameras simultaneously provide the software of 

frames of resolution 640 x 480 pixels each. The obtained 

images are then merged as one single image of a 1920 x 480 

pixels, which is then resized for a 1024 x 256 pixels final 

image. The final image was found to be a proper size to 

achieve real-time processing speeds. The cameras are lim-

ited to acquire up to 30 fps. The overall processing speed is 

determined by the network utilized and the capabilities of 

the GPU. 

Target Detection 

For the real-time target (object) detection, two frameworks 

were tested: (i) Faster R-CNN, and (ii) YOLOv3 (Redmon 

and Farhadi 2018). A primitive approach of target detection 

takes different regions of interest from the image, and it uti-

lizes a CNN to classify the presence of the object within that 

region. The problem, however, is that the objects of interest 

might have various locations and scales in the image. Since 

the algorithm must select every region over the entire image, 

a computational load can be naturally increased. Hence, 

such an algorithm like R-CNN and YOLO have been devel-

oped in order to detect the target fast. 

Convolutional Neural Network and Deep Learn-

ing 

When considering a network of the object detection frame-

works, Faster R-CNN and YOLO employs CNNs to train 

and detect objects. The name of CNNs is from a mathemat-

ical operator, convolution, and CNNs consist of three layers; 

input layer, output layer, and hidden layers. A typical CNN 

Figure 4. Tank and pump. 

Figure 5. Hardware components of the smart sprayer. 



has four main operations known as convolution, non-linear-

ity, pooling (sub-sampling) and classification.  

Evaluation Metrics 

In all experiments, the performance of the target detection 

was evaluated based on visual observations, determining 

whether the targets or non-targets are detected correctly. The 

output videos, which are the results of deep learning-based 

target detection using various frameworks, were used to val-

idate and calculate evaluation metrics.  

 As the evaluation metrics, the precision and recall (Fig. 

6) of the deep learning-based target detection are used. For 

each framework, precision and recall are defined as shown 

in the following equation. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑃𝑃

(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)
 , 

                        (1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑃𝑃

(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹)
 , 

where TP is True Positives, and FP and FN represent False 

Positives and False Negatives, respectively. 

Results and Discussion 

In this section, we present experiment results of two differ-

ent object detection frameworks for developing the smart 

sprayer. In order to compare performances, we apply Faster 

R-CNN with Resnet 50, Faster R-CNN with Resnet101, and 

YOLOv3 with Darknet53 for detecting one specific type of 

target weeds. We utilized three different artificial plants as 

shown in Fig. 7. In the experimental field, twenty target 

weeds were randomly placed, and six and three of non-target 

plants were also implanted, respectively.  

 All networks used in this experiment were trained using 

1821 images of targets and non-targets labeled manually for 

each target position on the images. After training the net-

works, the real-time target detection was performed with 

two frameworks mentioned above using two videos rec-

orded between 2 PM to 3 PM in September 2019 on sandy 

soil. On video is recorded without shade disturbances, and 

other one is recorded with shade disturbances. The hardware 

system used in this experiment are described in the previous 

Hardware Description section. 

 The experiment results are shown in Table 1 and Table 2. 

The best performing network was Resnet50 achieving 100% 

in all metrics for both video experiments. YOLOv3 

achieved the lowest metrics of all three but still performed 

well, struggling mainly with false negative detections on 

shade disturbance zones (Fig. 8). 

 Note that the significant difference in processing time 

(evaluated in frames per second) of YOLOv3 compared to 

the two other networks, 176.13% and 228.38% for Resnet50 

and Resnet101, respectively. This optimized processing 

time, while still achieving fairly good detection results, 

makes YOLOv3 a viable solution for the network frame-

work detection for real-time or near real-time smart sprayer.  

Figure 6. Precision and Recall. 

Figure 7. Target weed and Non-target plant used in the ex-

periment. 



Conclusion 

This paper presented a prototype of the smart herbicide 

sprayer with machine vision in order to determine the type 

of weeds in real-time and spray the proper herbicide only on 

desired spots. For the machine vision part, performances of 

deep learning-based target detection methods are compared. 

We utilized two types of deep learning frameworks, Faster 

R-CNN and YOLOv3, and three types of networks, Res-

net50, Resnet101 and Darknet53. After training all networks 

using 1821 images, experiments were carried out with two 

videos which is recorded one type of target weeds and two 

types of non-target plants in the field with and without shade 

disturbances. The experimental results showed the best per-

forming network was Resnet50, and it will be successfully 

applied to the smart sprayer system for better performances. 
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Table 1: Experimental results. 

 

Framework Network Scale FPS  
True 

Positives 

False 

Negatives 

False 

Positives 

Faster R-CNN Resnet50 1248x708 5.405 
 20 0 0 

w/ Disturbances 20 0 0 

Faster R-CNN Resnet101 1248x708 4.545 
 20 0 0 

w/ Disturbances 19 1 0 

YOLOv3 Darknet53 1248x708 14.925 
 18 2 2 

w/ Disturbances 17 3 2 

 

Table 2: Precision and Recall. 

 

Framework Network  Precision Recall 

Faster R-CNN Resnet50 
 100% 100% 

w/ Disturbance 100% 100% 

Faster R-CNN Resnet101 
 100% 100% 

w/ Disturbance 95% 100% 

YOLOv3 Darknet53 
 95% 90% 

w/ Disturbance 85% 89.5% 
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