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Preface

In 1990, a pilot project was started at the Alfred Gessow Rotorcraft Center (Univer-
sity of Maryland) to build a smart rotor with embedded piezoelectric strips. Soon, it
attracted the attention of Dr. Gary Anderson of the Army Research Office (ARO).
He encouraged us to put together outlines for a major initiative in the smart struc-
tures area, which subsequently resulted in the award of a multi-year (1992–1997)
University Research Initiative (URI). This provided us an opportunity to develop
an effective team of interdisciplinary faculty from Aerospace, Mechanical, Electri-
cal, and Material Engineering. As a result, there was an enormous growth of smart
structures research activities on our campus. Following the success of this URI, we
were awarded another multi-year (1996–2001) Multi University Research Initiative
(MURI) in smart structures by ARO. For this major program, we collaborated
with Penn State and Cornell University. This further nurtured the ongoing smart
structures activities at Maryland. We deeply acknowledge the support and friend-
ship of many faculty colleagues at Maryland: Appa Anjannappa, Bala Balachandran,
James Baeder, Amr Baz, Roberto Celi, Ramesh Chandra, Abhijit Dasgupta, Allison
Flatau, James Hubbard, P. S. Krishnaprasad, Gordon Leishman, V. T. Nagaraj,
Darryll Pines, Don Robbins, Jim Sirkis, Fred Tasker, Norman Wereley, and Manfred
Wuttig.

While the research frontier in smart structures was expanding at the Alfred
Gessow Rotorcraft Center, we also initiated classroom teaching at the graduate level
in the smart structures area. This textbook was developed from material covered
in early versions of these class notes, and it aims to give a broad overview of smart
materials and their applications in smart structures and integrated systems. The focus
is on the fundamental physical phenomena observed in active materials and on the
mathematical modeling of the coupled behavior of a smart structure with active
material actuators and sensors. Simplistic descriptions of the physical mechanisms
are given so that the reader can obtain an intuitive grasp of the fundamentals without
having to delve deeply into rigorous solid mechanics concepts.

The research activities generated a large cadre of dissertations; many of these
were pioneering foundational efforts in smart structures. We fondly acknowledge
the contributions of our graduates: Jayasimha Atulsimha (VCU), Ron Barrett
(Kansas), Oren Ben-Zeev (NAVAIR), Andy Bernhard (Sikorsky), Mike Both-
well (Bell), Peter Chen (IAI), Peter Copp (UMD), Ron Couch (APL), Anubhav
Datta (NASA-Ames), Jeanette Epps (NASA-Astronaut), Farhan Gandhi (RPI),

xvii
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xviii Preface

Ranjan Ganguli (IISc), Gopal Kamath (Bombardier), Nikhil Koratkar (RPI), Taeoh
Lee (Bell), Judah Milgram (NSWC-Carderock), Harsha Prahlad (SRI), Beatrice
Roget (Wyoming), Jinwei Shen (NIA), Kiran Singh (Cambridge), Ed Smith (Penn
State), Burtis Spencer (Air Force), Mike Spencer (Orbital Science), Curtis Walz
(Boeing-Philadelphia), and Gang Wang (U. Huntsville).

During the 1990s, there was tremendous growth of smart structures activities in
the United States and abroad. Many new conferences and workshops were initiated
during this period, including: ARO Workshop in Smart Structures, SPIE Symposium
in Smart Structures and Materials, AIAA Adaptive Structures Forum, ASME Adap-
tive Structures and Materials Systems (now called SMASIS), and ICAST (Interna-
tional Conference on Adaptive Structures and Technologies). These conferences and
workshops not only helped to communicate our activities in smart structures but also
provided avenues for meeting many great friends in this discipline. Over the years,
we enjoyed the warmth of many friends in the United States and abroad, includ-
ing V. K. Aatre (IISc), H. Abramovich (Technion), Diann Brei (Michigan), Flavio
Campanile (EMPA), Greg Carman (UCLA), Carlos Cesnik (Michigan), Aditi Chat-
topadhyay (ASU), Eric Cross (Penn State), Marcello Dapino (OSU), Paolo Ermanni
(ETH), Mary Frecker (Michigan), Mike Friswell (Swansea), Ephrahim Garcia
(Cornell), Paolo Gaudenzi (U. Rome), Victor Giurgiutiu (South Carolina), S.
Gopalakrishnan (IISc), Z. Gurdal (Delft), Dan Inman (Michigan), Seung Jo Kim
(KARI), A. V. Krishnamurthy (IISc), Dimitris Lagoudas (Texas A&M), C. K.
Lee (National Taiwan), In Lee (KAIST), Jinsong Leng (Harbin), Don Leo (VPI),
George Lesieutre (Penn State), Wei-Hsin Liao (Chinese University of Hong Kong),
Chris Lynch (UCLA), John Main (VPI), Dave Martinez (Sandia), Yuji Matsuzaki
(Nagoya), Peter Monner (DLR), M. C. Natori (Waseda), Fred Nitzsche (Carleton),
Roger Ohayon (CNAM), Zoubeida Ounaies (Penn State), K. C. Park (Colorado),
Jinhao Qui (Nanjing), Dimitris Saravanos (U. Patras), Janet Sater (IDA), Jongh-
wan Suhr (Delaware), J. Tani (Tohoku), Horn-Sen Tzou (Zhejiang), A. R. Upadhya
(NAL), Ben Wada (JPL), Kon-Well Wang (Michigan), and Wenbin Yu (Utah).

We also collaborated with rotorcraft and other aerospace industries to tran-
sition this technology to full-scale systems. Under the DARPA Smart Rotor Pro-
gram, Friedrich Straub and Hieu Ngo actively collaborated with the Alfred Gessow
Rotorcraft Center and injected enthusiasm among our students. We again fondly
acknowledge industrial friends in the United States and abroad, including Eric
Anderson (CSA), Dan Clingman (Boeing), L. Porter Davis (Honeywell), Peter
Jaenker (EADS), Shiv Joshi (NextGen), and Jay Kudva (NextGen). We would also
like to thank the University of Maryland and the University of Texas at Austin,
where we worked on material for this textbook.

Finally, we acknowledge our deep appreciation for the support and encourage-
ment that we received from Dr. Gary Anderson, a true gentleman, who spearheaded
the growth of smart structures activities in the United States. This book is dedicated
to him.

Inderjit Chopra (University of Maryland)
Jayant Sirohi (University of Texas at Austin)
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