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Abstract: Cancer is the second largest cause of death worldwide with the number of new

cancer cases predicted to grow significantly in the next decades. Biotechnology and medicine

can and should work hand-in-hand to improve cancer diagnosis and treatment efficacy.

However, success has been frequently limited, in particular when treating late-stage solid

tumors. There still is the need to develop smart and synergistic therapeutic approaches to

achieve the synthesis of strong and effective drugs and delivery systems. Much interest has

been paid to the development of smart drug delivery systems (drug-loaded particles) that

utilize passive targeting, active targeting, and/or stimulus responsiveness strategies. This

review will summarize some main ideas about the effect of each strategy and how the

combination of some or all of them has shown to be effective. After a brief introduction of

current cancer therapies and their limitations, we describe the biological barriers that

nanoparticles need to overcome, followed by presenting different types of drug delivery

systems to improve drug accumulation in tumors. Then, we describe cancer cell membrane

targets that increase cellular drug uptake through active targeting mechanisms. Stimulus-

responsive targeting is also discussed by looking at the intra- and extracellular conditions for

specific drug release. We include a significant amount of information summarized in tables

and figures on nanoparticle-based therapeutics, PEGylated drugs, different ligands for the

design of active-targeted systems, and targeting of different organs. We also discuss some

still prevailing fundamental limitations of these approaches, eg, by occlusion of targeting

ligands.

Keywords: active targeting, drug delivery systems, EPR effect, nanoparticles, passive

targeting, stimulus-responsive targeting

Introduction
The American Cancer Society estimates for 2018 more than 1.7 million of new

cancer cases in the United States of America, and 1600 million cancer-related

deaths with lung cancer being the primary cause of death (43%, www.cancer.org).

These statistics are expected to increase in the coming decades “unless we make

more progress today” (Joe Biden, Vice President at the American Association for

Cancer Research Annual Meeting, 2016).

Currently, surgery, radiation therapy (RT), and chemotherapy are the principal

treatment strategies against cancer. Surgery is usually recommended at an early

stage of the disease and is most effective when all the cancer cells can be excised.1,2

It is also used in later stages but mostly to debulk tumors and improve quality of

life. Thus, chemotherapy and RT are the most widely used interventions for the

treatment of cancer.1–3 In contrast to surgery, chemotherapy and RT are mostly only

capable of killing a fraction of tumor cells during each treatment regimen and

typically never completely cure the disease.3 Cytotoxic anticancer drugs are used in
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chemotherapy to primarily kill metabolically active cells.

Most normal cells do not divide as often as cancer cells

and thus are proportionately less affected by these cyto-

toxic drugs. However, although chemotherapy and RT are

employed to improve the patient’s quality of life or to

prolong it, they are frequently associated with severe

side-effects related to systemic toxicity due to the lack of

tumor specificity.3–7 Similar to chemotherapy, RT also

damages healthy cells, organs, and tissues. For example,

the term “mucositis” describes one of the common adverse

effects of RT and chemotherapy treatments. Mucositis may

limit the patient’s ability to tolerate chemotherapy or RT,

and the nutritional status may become compromised.3,4 In

addition, one of the leading causes of treatment failure in

cancer therapy is the phenomenon of multidrug resistance

syndrome (MDRS), typically acquired during prolonged

exposure to chemotherapy.8–12 MDRS is characterized by

the ability of cancer cells to efflux drugs by molecular

pumps, which results in reducing the therapeutic effect.12

With this in mind, in the last decade, a diverse range of

drug delivery systems (DDS) has been developed to

improve cancer therapies. There are two main types: tar-

geted and non-targeted drug delivery systems. Both types

of DDS have been designed at the nanoscale (in this

review loosely defined as 10–1000 nm) to enable efficient

transport in blood vessels, to overcome biological barriers

during the transport, and to reach pathological cells.13

In this review, we will focus on some recent develop-

ments of smart targeting in cancer treatment, particularly

promising data and advanced preclinical and clinical studies.

We will evaluate the use of different nanoparticles (NPs) to

facilitate drug delivery by both, passive and active targeting

mechanisms and highlight the potential advantages of utiliz-

ing nanotechnology within the field of cancer therapy.

Passive Targeting For Enhanced

Drug Tumor Accumulation By DDS
In cancer applications, passive targeting is defined as the

preferential accumulation of the drug in the tumor. The

accumulation and delivery of the drug are determined by

the capability of the DDS to overcome biological barriers

and the inherent characteristics of the DDS itself (eg, size,

material, and charge).

Overcoming Physiological Barriers
The delivery of drugs from nanosized DDS offers a multi-

tude of advantages over their delivery from larger-sized

particles (eg, microparticles) or their delivery as single-mo-

lecule drugs (<10 nm). In general, nanosized drugs are

better suited than larger delivery systems in the micrometer

range for important delivery routes, eg, intravenous (i.v.)

and oral delivery.13–16 In the case of oral delivery, the size

limit for the particles to be able to cross the intestinal

mucosal barrier of the gastrointestinal tract is the main

restriction. Particles in the intestinal lumen within a size

range of 3–10 µm cannot migrate through the lymphatic

system whereas particles larger than 10 µm are not taken up

in the gastrointestinal tract.17–19 NPs are also better suited

for i.v. delivery in comparison with microparticles. Since

the smallest capillaries in the body are 5–6 µm in diameter,

the size of particles being distributed into the bloodstream

must be significantly smaller than 5 µm and they must show

no propensity for forming aggregates, to ensure that the

particles do not cause an embolism.20,21 NPs with a dia-

meter of >100 nm are susceptible to phagocytic clearance

by the reticuloendothelial system (RES), an essential com-

ponent of the immune system located in different organs of

the human body (eg, liver, spleen, and lymph nodes). In this

context, the effective diameter must be >10 nm and <100

nm because particles with a diameter of <10 nm are

secreted readily by the kidney.22–24 In addition to the size

restriction by drug administration routes and to avoid urin-

ary excretion, the optimum particle size will depend on the

specific target organ (also called primary targeting) and the

purpose of the delivery (Table 1). At this point, it is impor-

tant to elucidate that studies may show a discrepancy for

what the optimal recommended size is for delivery to a

specific organ. This discrepancy may be due to the use of

different delivery materials and diverse methods to deter-

mine the particle size with potentially limited accuracy.25

One of the most challenging organs to be targeted is the

brain, due to the blood–brain barrier which consists of

tightly bound endothelial cells forming a lining that blocks

the entrance of a lot of molecules into the brain. However,

in general, the optimum particle size to deliver a drug to

specific organs (eg, brain, liver, and lymph nodes) is in the

nanoscale range.26–28

Exploiting The Enhanced Permeation And

Retention Effect
Small molecule drugs can enter and exit tumors and nor-

mal tissues and typically do not accumulate in them. In

contrast, nano-sized DDS have been proven to be able to

cause drug accumulation in tumors through exploiting the
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dimensions of fenestrae in tumor blood vessels and the

lack of a proper lymphatic system.29,30 This effect has

been referred to as “enhanced permeation and retention

effect” (EPR effect).31–33 The EPR effect in tumor tissues

is the consequence of rapid tumor growth. Angiogenesis,

the process of growing new blood vessels, is necessary to

satisfy the increased oxygen and nutrient demand of fast-

growing cancers. Angiogenesis is strictly necessary once

the tumor reaches a size of just over 1 mm in diameter to

allow for further growth and produces blood vessels with

large fenestrae, ie, pores between the endothelial cells.34

The irregular gaps of the vasculature have been shown to

be increased by vascular endothelial growth factor

(VEGF) and nitric oxide in the endothelia.13,35,36 In con-

sequence, NPs can penetrate through the fenestrae into the

tumor tissue, whereas tight junctions between healthy

endothelial cells do not allow such penetration.

The EPR effect is also being caused by inefficient lym-

phatic drainage in tumors due to the absence or malfunction

of lymphatic vessels.24,37 This, in consequence, leads to a

high interstitial pressure (10–50mmHg) and enhanced inter-

stitial space retention of NPs in the tumor.38 The EPR effect

(Figure 1A) was first reported by Matsumura and Maeda in

198639 and was validated by Maeda and coworkers.32

Matsumura and Maeda found that polymer-protein conju-

gates of approximately 80 kDa MW accumulated preferen-

tially in tumor tissues.39 Therefore, due to their high

molecular weight, macromolecules (>40 kDa) can be inter-

nalized and retained in the tumors by the EPR effect.40–42

Many studies show an increment in drug efficacy when the

system is designed to utilize the EPR effect.27,31

In order to optimize the accumulation of nano-sized

drugs in tumor tissues via the EPR effect, one must consider

that the size of gap junctions between endothelial cells in

tumor vasculature may vary from 100 to 800 nm25,29,40

unlike the tight gap junctions between endothelial cells of

normal vessels (5–10 nm).43 The irregularity of “leaky”

vasculature varies depending on cancer type, affected

organ, and furthermore, from patient-to-patient.44 Usually,

the unique pathophysiological characteristics of the tumor

vasculature enable NPs of less than 400 nm to accumulate

in the interstitial space in tumor tissues.17,29,31 Therefore,

NPs can accumulate in tumor tissues and deposit anticancer

agents passively in the interstitium or cytoplasm of tumor

cells after cellular uptake.40,41,45 In contrast, conventional

small anticancer drugs (<10 nm) and microparticles have a

limited plasma half-life and do not take advantage of the

EPR effect. The DDS size plays a significant role in passive

tumor targeting in order to minimize or even overcome the

toxic side effects of most current chemotherapies using

small cytotoxic drugs. The basic idea is that due to the

accumulation of nano-sized DDS in the tumor tissue, the

local drug concentration can be higher in the tumor than in

other body parts.36,40,41,46 Many scientists have designed

particles in the range of 200 nm for optimum delivery to

solid tumors.47–49

There are several factors which might limit the EPR

effect in tumors. One of the most obvious limitations of

passive targeting is that when small molecule drugs are

released from DDS in cancer tissues, they can in principle

diffuse out of the tumor area and interact with normal tissues.

Therefore, it is important that DDS can address issues asso-

ciated with the low target-site specificity. Ideally, cancer cells

should do both: 1) take the DDS up preferentially and 2) the

drug should only be released from the delivery device after

cellular internalization. Strategies that accomplish this

Table 1 The Nanoparticle Size Recommended For Intravenous Delivery To Specific Organs

Organ Specifications Recommended Sizea,b References

Brain Particles should be able to across the blood–brain barrier (BBB) and

exhibiting a molecular weight of <400 Da

<12 nm (<200 nm may also penetrate the

brain but with less efficiency)

195,196

Liver For rapid uptake 10–20 nm. However, particles ~150 can cross the

fenestrae present in the liver endothelium

<150 nm 197

Lung For long accumulation times, cationic nanoparticles are recommended >300 nm

<1000 nm

198,199

Colon Carbon nanotube and polymeric NPs ~100 nm 200

Pancreas L-fucose-receptor-mediated delivery of nanoparticles was recommended

to target fucosyltransferases

20–100 nm 201

Breast Albumin nanoparticles are recommended to diminish dose-limiting

toxicities of extremely hydrophobic drug formulations

<150 nm 202

Notes: aIn general, ~200 nm is the recommended size to avoid RES. bThe recommended size can vary by the tumor size that also influences the irregular vasculature gaps.
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require much more intimate knowledge of the specific char-

acteristics of the targeted cancer. In the next sections, we will

discuss these more evolved strategies.

To date, hundreds of nano-sized DDS are being

researched and tested (in vitro and in vivo) to improve

therapeutic and diagnostic outcomes in different types of

cancers. At least seven nanoparticle-based cancer thera-

peutic drugs are approved by the US FDA, four additional

nano-sized drugs were approved in Europe and Asia, and

there are other formulations in various stages in current

clinical studies (Table 2).

Drug delivery by exploiting the EPR effect is certainly

an important starting point in improving drug efficiency

and thus cancer treatment, but limitations remain with the

approach. Foremost, the particle size is by far not the sole

determinant of tumor specificity or lack thereof.33 There

are literature data that suggest that surface charge is also

an important factor to consider for DDS tumor accumula-

tion and physiological interactions.50 Cell membranes

have large negatively charged domains, which could

explain the commonly reduced cellular adsorption by

negatively charged nanoparticles and the effective cellular

uptake of positively charged ones. Although a positively

charged DDS should increase the therapeutic efficacy in

vitro, molecules with a positive charge rapidly bind to

vascular endothelial cells, which reduces the in vivo

tumor drug accumulation.31 Likewise, highly negatively

charged NPs have been shown to be taken up rapidly by

the RES in the liver and spleen.42 Due to this, it is

recommended to create neutral or slightly negatively

charged NPs. In addition, the uptake by the target cell

can be improved incorporating an active targeting modal-

ity (eg, antibodies, ligands, etc.) into the DDS; this

approach will be discussed later in this review.

Figure 1 Scheme of (A) a free drug (eg, chemotherapy) versus encapsulated drug in a DDS for tumor delivery by passive targeting via the EPR effect and (B) active targeting

using a ligand-mediated cellular internalization of the encapsulated drug via receptor-mediated endocytosis. The nanosize of well-designed DDS allows the drug to circulate

for a longer period of time in the bloodstream to eventually extravasate and accumulate in the tumor tissue through “leaky” tumor vasculature. Decorating the nanocarriers

with targeting ligands allows the specific binding to receptors overexpressed on tumor cells.
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PEGylation As The Main Strategy For

Increasing DDS Circulation Half-Life
To protect NPs from the RES and increase their circulation

half-life, the most commonly used strategy is to conjugate

poly-ethylene glycol (PEG) onto the nanoparticle surface to

cover any undesired charge or surface properties.36

PEGylation is considered one of the best methods to stealth

DDS of immunological responses.51–53 In addition, it has

been shown that PEGs increase the solubility, size, molecular

mass, and pharmacokinetic and pharmacodynamic properties

of drugs.54–56 For example, Zhang et al encapsulated

paclitaxel (PTX) into PEGylated polyphosphoester-based

Table 2 Nanoparticle-Based Cancer Therapeutic Drugs For Clinical Use

Commercial Name Composition

(Drug/

Nanocarrier)

Company

(Manufactured/

Distributed)

Type Of Cancer Year Or Stage

Of Approval

US FDA approved

Doxil (Caelyx) Doxorubicin HCl/

Pegylated Liposome

Johnson & Johnson Ovarian cancer, Kaposi sarcoma, multiple

myeloma

1995

Gliadel Carmustine/

Polymeric Wafer

Guilford

Pharmaceuticals

Brain tumors 1996

DaunoXome Daunorubicin

Citrate/Liposome

Galen Pharmaceuticals Kaposi sarcoma 1996

DepoCyt Cytarabine/Liposome Pacira Pharmaceuticals Lymphomatous meningitis 1999

Tocosol Paclitaxel/Tocopheryl-

based Emulsion

Sonus Pharmaceuticals Urothelial cancer, bladder cancer 2005

Abraxane Paclitaxel/Albumin-

bound Nanoparticles

Celgene Corporation Metastatic breast cancer, non-small cell lung

cancer, adenocarcinoma of the pancreas

2005

Marqibo Vincristine Sulfate/

Liposome

Talon Therapeutics Philadelphia chromosome-negative acute

lymphoblastic leukemia

2012

Lipoplatin Cisplatin/Liposome Regulon Pancreatic, head and neck, and breast cancer 2012

Onivyde Irinotecan Liposome Merrimack

Pharmaceutical

Pancreatic cancer 2015

Approved by other

countries

Myocet Doxorubicin/

Liposome

Elan Pharmaceuticals Breast cancer 2000-Europe

and Canada

Nanoxel Paclitaxel/Polymeric

Micelle

Dabur Pharma Breast cancer, non-small-cell lung cancer, and

ovarian cancer

2006- India

Genexol-PM Paclitaxel/Polymeric

Micelle

Samyang

Pharmaceuticals

Breast and small cell lung cancer 2007- South

Korea and

Europe

Rexin-G Cytocidal Cyclin G1/

Retroviral Vector

Epeius Biotechnologies

Corporation

Sarcoma, osteosarcoma, pancreatic cancer, and

other solid tumors

2007-Philippines

Ongoing clinical

trialsa

ThermoDox PEG-liposome/

Doxorubicin

Celsion Hepatocellular carcinoma Phase III/Phase I

Paclical Paclitaxel Micelles Oasmia Pharmaceutical Ovarian cancer Phase III

Nektar −102 PEGylated Irinotecan

Liposome

Nektar Therapeutics Breast/colorectal cancer Phase III

Autoimmune TNF-α – Gold NPs Cytimmune Sciences Head and neck cancer Phase II

Auroshell Gold Nanoshells Nanospectra

Biosciences

Cancer aurolace therapy Phase I

NKTR-105 PEG-Docetaxel Nektar Therapeutics Solid tumors Phase I

Notes: aThis is just a summary of the most important formulations for different types of cancers. There are more drugs in clinical trials.
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nanocarriers, increasing the aqueous drug solubility from

<2.0 µg/mL to 4.8 mg/mL.57 In addition, Ma et al showed

an increase in the therapeutic efficacy of recombinant human

interleukin-11 mutein (mIL-11) when modified with PEG.55

A single-dose administration of PEGylated mIL-11 was

comparable to the effect obtained with 7 to 10 consecutive

daily administrations of native mIL-11.

PEG has been utilized to improve DDS based on NPs.

Jain et al developed a targeted PEG-siRNA/peptide NP

which demonstrated improved biophysical properties,

including high serum stability and high cellular uptake.58

Zhao et al developed a biocompatible VEGF-targeted poly

[bis(ε-Lys-PEI)Glut-PEG] (PLEGP) NP for triple-negative

breast cancer. The authors determined that PLEGP-1800

was the most effective among others in the DDS construc-

tion leading to high cellular uptake, high tumor penetra-

tion, and downregulation of VEGF expression.59 This

study showed how modulating the PEG and polymer con-

tent can influence the delivery outcome.

Due to the promising features displayed by PEGylation,

some PEGylated protein drugs, summarized in Table 3,

have received US FDA approval, including PEG-L-aspar-

aginase (Oncaspar®), PEG-interferon (PEGIntron®), and

PEG-granulocyte colony-stimulating factor (Neulasta®).

However, PEGylation can also impart certain disadvan-

tages. In contrast to the general thought that PEGylation

inhibits the opsonization process, some published studies

have claimed that in their DDS, PEGylation actually accel-

erates the clearance.60,61 In another study, Mohamed et al

recently reviewed different studies demonstrating an unan-

ticipated immune response to PEGylated NPs after repeated

administration and called this “the accelerated blood clear-

ance (ABC) phenomenon”.62 In a very recent review,

Shiraishi and Yokoyama analyzed different results from

Table 3 FDA-Approved PEGylated Drugs#

Product Trade Name PEGylated

Molecule

PEG Size

(kDa)

Disease Approval

Year

Company

PEGadamase Adagen® Adenosine deaminase 5 Immunodeficiency 1990 Enzon

PEGaspargase Oscarpar® L-asparaginase 5 Leukemia 1994 Enzon

PEGinterferon-α2b PEG-Intron® Interferon-α2b 12 Hepatitis C 2000 Schering-Plough/

Enzon

PEGinterferon-α2a Pegasys® Interferon-α2a 20 Hepatitis C 2001 Hoffmann-La Roche

PEGfilgrastim Neulasta® filgrastim 20 Neutropenia 2002 Amgen

PEGvisomant Somavert® Growth hormone

antagonist

5 Acromegaly 2003 Pfizer

PEGaptanib Macugen® Anti-EVGF aptamer 20 Macular degeneration 2004 Pfizer

Doxorubicin HCl

liposome

Doxil/Caely® Liposome of

doxorubicin

2 Cancer 2005 Ortho Biotech/

Schering-Plough

Epoetin beta-

methoxy PEG

Mircera® Erythropoietin-beta 30 Anemia 2007 Roche

PEG-Certolizumab

pegol

Cimzia® Tumor necrosis

factor inhibitor

20 Rheumatoid arthritis

and Crohn’s

2008 Nektar/UCB Pharma

PEGloticase Krystexxa® Uricase 10 Gout 2010 Savient Pharma

PEGinesatide Omontys® dimeric peptide 40 Anemia 2012 Affymax/Takeda

Pharmaceuticals

PEGinterferon β1a Plegridy® interferon β1a 12 Multiple sclerosis 2014 Biogen

Naloxegol Movantik® opioid 0.34 Opioid-induced

constipation

2014 AstraZeneca

PEG-growth

hormone

Jintrolong® growth hormone 40 Growth deficiency 2014 GeneScience

PEG-antihemophilic

Factor VIII

Adynovate® Coagulation factor

(VIII)

~2 hemophilia A 2015 Baxalta

Nonacog β pegol Rebinyn® Coagulation factor

(IX)

40 hemophilia B 2017 Novo Dordisk

Pegvaliase Biomarin® phenylalanine

NH3-lyase

20 Phenylketonuria 2018 BioMarin

Pharmaceutica

Note: #All data from publicly available sources.
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them and other researchers about the use of PEG and this

ABC phenomenon. They concluded that PEG-liposomes

and PEG-coupled to nonhuman enzymes easily exhibit the

ABC phenomenon, whereas other PEG-NPs do not.63

These immunogenic responses could be deeply related to

inherent characteristics of the polymer that encapsulate the

drug in these PEG-conjugates than of the PEG itself. In

addition, PEG-modified DDS sometimes display slower

uptake into tumor cells which have coined the term “PEG

dilemma”.64 To overcome this, Hatakeyama et al designed a

gene delivery system modified with an enzymatically clea-

vable PEG-lipid which confers higher stability in systemic

circulation and higher uptake in tumor cells.65 Thus, despite

of some of the adverse effects PEGylation might cause, the

PEG dilemma can be reduced by the using cleavable PEGs

and by efficiently conjugating targeting moieties (eg, anti-

bodies, ligands, etc.) to the PEGylated NPs,66,67 an

approach referred to as active targeting discussed later in

this review.

The reported disadvantages caused by protein or DDS

PEGylation demonstrate the importance to construct and

evaluate each system in the desired therapeutic application

and optimize it. An improvement in the DDS efficacy in

one specific application could cause a drawback in others

depending on the core material used, the route of admin-

istration, its target, among others.

Active Targeting For Enhanced

Tumor Cell Uptake By Steering

Moieties
Tumor cells undergo rapid proliferation and uncontrolled cell

growth due to their self-sufficiency in growth signals, insen-

sitivity to anti-growth signals, apoptosis evasion, and sus-

tained angiogenesis.68 All of these tumor hallmarks have

been explored to target cancer cells. One example is the

targeting of receptors overexpressed on tumor cells that

respond to growth signals or facilitate nutrient uptake for

DNA and protein synthesis. Such overexpressed receptors

constitute excellent targets for ligands to afford docking and

uptake of the delivery device by the targeted cells and

thereby promoting intracellular delivery of anti-tumor

agents.29,31,69 DDS are conjugated to targeting moieties to

take advantage of ligand–receptor, antigen–antibody, or any

other form of molecular recognition.70–72 The use of this

strategy is called “active targeting”. Active tumor targeting

(Figure 1B) results in more specific secondary targeting after

primary targeting based on the EPR effect takes place

(Figure 1A). It has been suggested that for active targeting

to be effective, passive targeting must be attained first.73

While the EPR effect is considered a common phenomenon

in many tumor tissues, the nature of the specific receptor

overexpressed on a tumor cell is an event depending on the

Figure 2 From passive to active targeting by the attachment of steering molecules to the surface of the NPs for molecular recognition by cancer cell membrane.

Abbreviations: FA, folic acid; HA, hyaluronic acid; Tf, transferrin; EGF, epidermal growth factor.
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specific type of tumor.74–76 The moiety ligand selected

(Figure 2) for the active targeting must be based on the

specific cell surface properties, ie, membrane overexpressed

targets of the tumor cell. To obtain an optimum and specific

DDS involving active targeting, the selected targeting moiety

(eg, ligand) must preferentially bind to the target receptor

overexpressed by tumor cells and the target receptor must be

homogeneously expressed on all target cells. Also, this tar-

geted molecule on the membrane, ie, receptor, must be

promptly recycled back on the cell membrane after uptake

and mostly not released into circulation.

It is relatively straightforward to investigate which recep-

tors are overexpressed in a certain tumor by employing ligand-

decorated chromophores for imaging.77 The same ligand can

then be used to facilitate drug targeting to the tumor. Table 4

shows some examples for tumor-receptor specific delivery via

small molecule ligands, such as folic acid (FA), sugar residues

(eg, hyaluronic acid (HA)), peptides (eg, RGD), and proteins

(eg, cytokines, lectins, and transferrin (Tf)). Other strategies

include the release of a small therapeutic cargo in the tumor

area or the reduction of the nanoparticle sizemediated by some

tumor microenvironment stimulus after nanoparticle accumu-

lation near the blood vessels.78

Because active targeting can promote receptor-mediated

endocytosis for increased cellular uptake, it could help over-

come the reduced or slower uptake caused by PEGylation.

PEGylation of DDS NPs employing carefully controlled

conditions (eg, PEG chain length, shape, density, molecular

weight) and incorporation of different targeting ligands are

emerging as promising in DDS development for anticancer

therapy.53,67,76,79,80 Bao et al designed a novel DDS consist-

ing of the chemotherapeutic agent daunorubicin (DNR)

loaded into poly(lactic-co-glycolic acid) (PLGA)-poly-L-

lysine (PLL)-PEG-Tf NPs.81 Results showed that DNR-

loaded NPs increased the intracellular concentration of

DNR in K562 cells in vitro and induced a remarkable

improvement in anticancer activity in vivo. Cruz et al cova-

lently linked PEG molecules of various chain lengths (Mw

2,000 to 20,000 g/moL) to PLGA NP vaccines coated with

various antibodies recognizing the dendritic cell-specific

receptor DC-SIGN.82 These DDS were designed to study

the effects of shielding on antibody–receptor interactions.

Results demonstrate that binding and uptake of NPs by

human DCs were affected by PEG chain length, showing

that NPs coated with PEG-3,000 had the optimal chain

length for antibody–receptor interactions and induction of

antigen-specific T-cell responses. In another study, Su et al

generated bispecific PEG-binding antibodies (PEG enga-

gers) for targeted delivery of PEGylated nanomedicines to

tumors.83 Their experiments demonstrate that pre-targeting

of PEG engagers allowed subsequent accumulation and

endocytosis of PEGylated nanocarriers in tumors, leading

to enhanced antitumor efficacy of PEG-modified therapeu-

tic agents in vitro and in vivo.

Table 4 Examples Of Ligands For Active Tumor Targeting

Ligand Targeted Membrane

Molecule

Cancer With Frequent Expression References

FA FARa High expression: ovarian, uterus, testicular, lung, brain, and pituitary

cancers. Variable expression levels: breast, colon, and renal tumors.

89–97

HA HA-binding receptors (eg,

CD44 and RHAMM)

Epithelial, ovarian, colon, stomach, and acute leukemia tumor. 116–125

Exposed RGD

tripeptide proteins

αvβ3 integrin receptorb Melanoma, glioma, pancreatic, prostate, ovarian, cervical, and breast

cancer.

71

Cytokines Cytokine-binding receptors

(eg, IL-2, IL-4, and IL-13

receptors)

Cutaneous T-cell lymphoma, renal cell carcinoma, glioblastoma, Kaposi’s

sarcoma, ovarian, head and neck, and prostate cancer.

203,204

Lectin Lectin-binding glycoproteins

(eg, P-glycoprotein)

Pancreas, kidney, ovarian, and breast cancer. 112,115,205

Tf TfR Ovarian, lung, colon, and brain cancer. 99–104,206

EGF, EGF-like

ligands, TGF-α, and

HRGs.

EGFR Colon, lung, head, neck, ovarian, kidney, pancreatic, and prostate cancer,

and especially in breast cancer.

106–111,207

VEGF VEGFR-1 and VEGFR-2c Breast, colon, lung, gastric, renal, and oropharyngeal cancers. 207,208

Notes: aPresent in normal lung, brain, and kidney cells are inaccessible to the NPs via i.v. route. bUpregulated in both tumor cells and angiogenic endothelial cells.
cUpregulated in tumoral endothelium.
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While ligand-selection requires specific knowledge of

the type of receptor overexpressed, another type of macro-

molecules, aptamers, does not require such knowledge.

Aptamers are nucleotides that bind to cell surface groups

and can be selected from vast libraries and also allow for

recursive optimization by mutational approaches.84

Similar to antibodies, they can be directed towards a

wide range of targets and be useful for personalized

medicine.85 While this potentially offers huge advantages,

it is a tricky type of targeting because, in principle, for

each patient, one or more aptamers have to be selected and

it has to be assured that no unwanted cells are targeted. In

how far this can be made clinically relevant remains to be

seen.

It is important to mention that the aim to incorporate

different targeting ligands on DDS is to increase the tar-

getability to cancer cells, not cytotoxicity. Nevertheless,

when the targetability is enhanced, this results in an

increase of the intracellular drug concentration thus simul-

taneously enhancing therapeutic efficacy.86

Membrane Overexpressed Targets
Folic Acid Receptor (FAR)

Folic acid (FA) is one of the most frequently used tumor-tar-

geting ligands in DDS because the FAR is a

well-known tumor marker and the conjugation chemistry to

therapeutic and imaging agents is well characterized.37,87–93

FA is important in the formation of new cells because it is

required in one carbon metabolic reactions and consequently

is essential for the synthesis of nucleotide bases.94 In fact,

FARs are a family of 35–40 kDa glycoproteins which can be

divided into four different isoforms (FARα, FARβ, FARγ,

and FARδ). Very few places in the body express the FAR and

these are typically not targeted with nanosized DDS.95 In

contrast, FAR-α and FARβ have been overexpressed in lots

of cancer cells, ie, ovarian, breast, lung, bladder, pancreas,

prostate, colon, and kidney.96 Overall, 40% of the tumors

showed FARα and 25% showed FARβ expression. In addi-

tion, FARβ is also highly expressed in activated myeloid cells

of the immune system.97 This makes FA an attractive mole-

cule to target cancer and inflammatory/autoimmune diseases.

Due to the FAR overexpression in different cancer types,

Morales-Cruz et al designed a smart nanosized DDS of

cytochrome c modified with PEG-FA. They confirmed the

FAR targeting, selective internalization, and cytotoxicity of

the system on FAR-positive HeLa cells compared to FAR

deficient cell lines. This DDS also showed great potential on

an in vivo tumor model.98

Transferrin (Tf) Receptor

The transferrin receptor (TfR) is a cell-membrane-asso-

ciated glycoprotein involved in the cellular uptake of

holo-Tf (iron-bound to Tf) and the regulation of cell

growth.99,100 Transferrin is a plasma protein responsible

to transport iron to proliferating cells. Therefore, various

studies have shown elevated levels of TfR particularly in

lung, ovarian, colon, and brain cancer.101 Due to this, Tf is

an important potential ligand in the active targeting of

tumors. Thus, there are some promising results of

TfR-targeted drugs against different types of tumors show-

ing strong cytotoxic effects.37,102–104 For example, Saxena

et al developed a DDS of a Tf-modified cytochrome c to

target TfR on A549 lung cancer cells. The results suggest

that this conjugate design would be effective in cancers

with enhanced expression of TfR due to its nontoxic

pattern to lung normal cells.105 These outcomes make

TfR an important molecular target in the study of more

effective cancer therapies.

Epidermal Growth Factor Receptor (EGFR)

The EGFR is a member of the family of tyrosine kinase

receptors (also known as the HER family).106,107 In humans,

more than 30 ligands have been identified that bind to EGFR,

including EGF and EGF-like ligands, transforming growth

factor (TGF)-α, and heregulins (HRGs, also known as

neuregulins).74 EGFR is activated upon ligand-binding

stimulating key processes involved in tumor growth and

progression, including proliferation, differentiation, angio-

genesis, cell motility, metastatic spread, and survival.74,107

EGFR is frequently overexpressed in many different cancers,

including colon, lung, head, neck, ovarian, kidney, pancrea-

tic, prostate, and especially breast cancer.108 Based on this,

there are two classes of anti-EGFR agents that are currently

approved for the treatment of cancer: monoclonal antibodies

directed at the extracellular domain of the receptor and

competitive inhibitors of its tyrosine kinase. Anti-EGFR

and anti-VEGFR monoclonal antibodies are mostly

employed to play the role of both, targeting ligand and drug

(eg, Herceptin®).109 Recently, several drugs binding to

EGFR have received FDA approval (ie, Kisqali® and

Nerlynx®) (Table 5). Taking advantage of active targeting

based on antigen-antibody recognition to promote the intra-

cellular delivery of drugs, BESPONSA® has been designed

and approved by the FDA in 2017 (Table 5). BESPONSA®

(inotuzumab ozogamicin) is composed of a monoclonal anti-

body linked to the cytotoxic agent calicheamicin. Its mechan-

ism of action is based on targeting of the CD22 antigen, a cell
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surface antigen expressed on cancer cells in almost all B-cell

precursor acute lymphoblastic leukemia patients. Once

attached to the CD22 antigen, the system is internalized by

the cell and the cytotoxic agent released causing

cell death. Additional examples in clinical trials of huma-

nized anti-EGFR are necitumumab, zalutumumab, and

nimotuzumab.37,110 In a preclinical in vivo study, Hartimath

et al developed a PEGylated nimotuzumab DDS using may-

tansine as the drug. Their results showed higher cellular

internalization due to the PEGylation versus the non-

PEGylated system. However, the PEGylation has to be main-

tained at a low ratio (ie, ~1:3 nimotuzumab-to-PEG molar

ratio) to avoid the disruption to the EGFR affinity.111

Lectins

Lectins are proteins of non-immunological origin

which preferentially recognize and bind certain carbohy-

drates attached to glycoproteins.112 Carbohydrate–lectin

interaction-based systems have been developed to target

cancer cells.37,40 The interaction of lectins with particular

carbohydrates can be as specific as the interaction between

those of antigen and antibody or substrate and enzyme.

Therefore, lectins are used for the detection of glycopro-

teins on cell surfaces. Lectins mediate biological processes,

such as tumor cell survival, adhesion to endothelium, or

extracellular matrix, as well as tumor vascularization and

other processes that are crucial for metastatic spread and

growth.112 Cancer cells often express glycoproteins that are

different to those of normal cells. For example, P-glycopro-

tein is widely expressed in many human cancers including

those of the liver, pancreas, kidney, ovary, and breast.113

P-glycoprotein is one of the molecules responsible for the

MDR syndrome in many types of cancer.113,114 However, if

these glycoproteins could be specifically targeted, treatment

would consequently be more effective. Shimomura et al

conducted in vivo experiments and demonstrated how lectin

could be used for active targeting and as a drug carrier in the

treatment of pancreatic ductal adenocarcinoma.115

Hyaluronic Acid (HA) Receptor

HA is a linear, negatively charged polysaccharide, contain-

ing two alternating units of D-glucuronic acid and N-

acetyl-D-glucosamine with a molecular weight range

from 105 kDa up to 1 MDa. HA is distributed widely

throughout connective, epithelial, and neural tissues. As

one of the principal components of the extracellular

matrix, HA is responsible for various functions within it,

such as cell growth, differentiation, and migration.116 HA

is the main ligand for the CD44 receptor, a multifunctional

cell surface glycoprotein.117 It is well known that various

tumors, such as epithelial, ovarian, colon, stomach, and

acute leukemia, overexpress this receptor.118,119

Table 5 Active-Targeted Drugs To Treat Different Cancer Types Approved By FDA In 2017 And 2018 (cancer.org)a

Product Trade

Name

Mechanism Of Action Type Of Cancer Company

Ribociclibactive Kisqali® Cyclin-dependent kinase

inhibitor

Breast cancer Novartis

Neratinib Nerlynx® Kinase inhibitor Breast cancer Puma Biotechnology

Midostaurin Rydapt® Kinase inhibitor Acute myeloid leukemia Novartis Pharmaceuticals/

Invivoscribe Technologies

Inotuzumab

ozogamicin

Besponsa® Antibody-drug conjugate Acute lymphoblastic leukemia Pfizer

Dabrafenib/Trametinib

combination

Tafinlar®/

Mekinist®
Kinase inhibitor Anaplastic thyroid cancer Novartis

Acalabrutinib Calquence® Bruton tyrosine kinase

inhibitor

Mantle cell lymphoma AstraZeneca

Niraparib Zejula® Poly ADP ribose

polymerase inhibitor

Ovarian cancer Tesaro

Apalutamide Erleada® Androgens hormone

inhibitor

Prostate cancer Janssen

Lutetium Lu 177-

dotatate

Lutathera® Peptide receptor

radionuclide therapy

Gastroentero-pancreatic

neuroendocrine tumors

Advanced Accelerator

Applications

Paclitaxel poliglumex Xyotax® Protease-reactive

lysosomal degradation

Lung, breast, and ovarian cancer with

high levels of estrogen

Cell Therapeutics

Notes: aThese drugs are not nanosized or encapsulated in a drug delivery system. Except Xyotax®, a macromolecular taxane.
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Furthermore, CD44 expression is upregulated in important

subpopulations of cancer cells and is recognized as a

molecular marker for cancer stem cells.120,121 This makes

HA a key molecule in the development of novel cancer

therapies, due to there are no drugs able to kill cancer stem

cells. Consequently, various anticancer therapeutics have

been linked or modified with HA to increase their cellular

uptake and therefore their pharmacokinetic effect on can-

cer cells.122,123 For example, Figueroa et al showed how

pro-apoptotic protein-HA bioconjugates can reduce at least

3-fold the cell viability of CD44 overexpressing cancer

cells versus normal cells.124 The ONCOFID™-S biocon-

jugate, which links the anticancer drug irinotecan and HA,

showed a significant increment in drug efficacy in vitro

and improved mice survival in ovarian cancer.125

Cell-Penetrating Peptides (CPP)

CPPs (also known as tumor-penetrating peptides) are a

promising to target the nanocarriers to specific cells and

penetrate cells. CPPs can be attached to the nanocarrier

surface conferring the potential to translocate across the

membrane via micropinocytosis.126,127 CPPs are normally

short peptides of 1 to 5 kDa of less than 20 basic amino

acids and can be attached to >30 kDa cargoes (eg,

TAT).128 CPP-based drug strategies are considered a

form of subcellular targeting due to preferential accumula-

tion in the cell nuclei and sub-nuclear regions.129 It has

been shown that CPPs are effectively internalized in lung,

breast, and heart cancer cells.126–130 Hsieh et al synthe-

sized a TAT-derived peptide that specifically targets the β-

catenin signaling in breast cancer, resulting in cell growth

inhibition.130 El-Sayed et al reported the conjugation of

Paclitaxel and Camptothecin to a cyclic CPP containing

tryptophan and arginine residues.131 Results revealed that

the antiproliferative activities of the CPP-drug conjugates

were less than that of the free hydrophobic drugs in the

breast cancer cell line MCF-7 after 72-hr incubation.

Lastly, the modification of DDS with CPP (eg, RGD pep-

tide) made NPs capable of penetrating deeper into tumor

tissue, resulting in several-fold higher therapeutic efficacy

indices.71,72

Considering the targeting of CD44 receptor again, sev-

eral peptides sharing sequence homology with the

HA-binding domain of CD44 have been discovered for

treatment and diagnosis of cancers.132–134 For example, it

was found that the RP-1 peptide showed affinity and

specificity to the HA-binding domain of CD44. The results

demonstrate the potential of RP-1 peptide to detect gastric

cancer.132,133 Furthermore, studies have shown that bind-

ing of A6-peptide to the HA-binding domain of CD44

results in the inhibition of migration, invasion, and metas-

tasis of tumor cells, and the modulation of CD44-mediated

cell signaling.134

Protein And Peptide-Based Therapeutics

For Anticancer Targeting
In general, it has been shown that when DDS are modified

with any of these ligands (eg, FA, HA, Tf, CPPs, and anti-

EGFR) (Figure 2), therapeutic performances are improved

in cellular and animal models when compared to their non-

targeted counterpart. Furthermore, the use of proteins as

drug carriers (as mentioned in the section “Passive target-

ing for enhanced drug tumor accumulation"), as targeted

ligands (as discussed in the section “Membrane overex-

pressed targets"), or as therapeutic agents has had great

impact in the development of nanomedicines for cancer

therapies. The high chemical specificity, biodegradability,

low toxicity, non-antigenicity, and non-mutagenic charac-

ter of proteins and peptides make them attractive substi-

tutes of small cytotoxic drugs.135,136 Highlighting this is

the fact that since the early 1980s, a total of 239 therapeu-

tic proteins and peptides have been approved for clinical

use by US FDA.136,137

However, the potential of proteins has not been trans-

lated into successful clinical trials most of the time. At this

point, Abraxane® is the only nanosized protein-based for-

mulation currently approved by the FDA taking advantage

of both, passive and active targeting mechanisms to treat

cancer. Its mechanism of action is based on the high affinity

of SA to the Gp60 receptor in endothelial cell walls.85 The

use of human SA as drug carrier is based on the fact that SA

is an important carrier of endogenous and exogenous hydro-

phobic molecules in the human circulation.138 Studies have

demonstrated that the SA-bound paclitaxel formulation dif-

fers favorably from unbound paclitaxel in terms of tumor

accumulation of SA, patient toleration, response rate, and

extends the time to tumor progression.139 Besides

Abraxane, an active-targeted NP, Rexin-G, is commercially

available outside of the USA (Table 1) and there are other

drug nanocarriers that incorporate an active targeting ligand

in clinical trials (eg, HA-Irinotecan in phase III and

RGD-PET-CT in phase II).71,140–142 Indeed, a small

ligand-targeted therapeutic agent avoids deficiencies in

tumor penetration sometimes shown by bigger nanoparticles

(>100 nm) to cells deep within a tumor mass which can be
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dense and not well supported by blood vessels.79,143 Also,

the anti-metabolite methotrexate covalently bound to human

SA has been evaluated, demonstrating its great potential as

carrier for targeted delivery of antitumor drugs.144

Therapeutic peptides offer several advantages over pro-

tein-based therapeutics, such as less immunogenicity,

lower manufacturing costs, and easier synthesis due to

their simpler linear structures.145 A total of 60 peptide-

based drugs are already on the market and several other

therapeutic peptides are currently being evaluated in dif-

ferent phases of clinical trials.137

Furthermore, it has also been shown that peptides can

be an alternative as drug delivery vehicles. Peptide–drug

conjugates (PDCs), which are usually composed of the

peptide, the small molecule drug, and a cleavable or non-

cleavable linker, are an emerging technology that has

resulted in many PDCs in the developmental phase of

preclinical and clinical studies.146 PDCs have yet to get

marketing approval from regulatory agencies.146

Zoptarelin doxorubicin, consisting of doxorubicin linked

to a small peptide agonist to the luteinizing hormone-

releasing hormone (LHRH) receptor, has been evaluated

in phase 3 clinical trials in a number of human cancers.147.

GRN1005 is a PDC composed of paclitaxel covalently

linked to a peptide, angiopep-2, that targets the low-den-

sity lipoprotein receptor-related protein 1. This conjugate

is in clinical trials for the treatment of advanced solid

tumors in patients with brain metastases.148

A number of cancer-targeting PDCs, such as camp-

tothecin–somatostatin conjugate,149 camptothecin–bombe-

sin conjugate,150,151 H2009.1 peptide-polyglutamic acid–

doxorubicin conjugate,152 cyclic RGD peptide–paclitaxel

conjugate,153 RGD-4C peptide–doxorubicin conjugate,-
154,155 aptide-SN38 conjugate,156 and aptide-docetaxel

conjugate,157 have been developed and are being explored

in targeted cancer therapy. Tai et al prepared a PDC con-

sisting of HER2-specific peptide conjugated to TGX-221,

a potent inhibitor of PI3Kβ, a lipid enzyme that has been

found to be over-activated in human cancers, such as

prostate cancer.158 This PDC exhibited a much higher

cellular uptake in prostate cancer cells in comparison to

the parent drug, indicating its tremendous potential as a

targeted therapy for prostate cancer patients.

Although PEGylation has been used to obtain a PDC

with an extended half-life, their efficient tumor penetration

and cost-effectiveness were adversely affected.159 Due to

the need to develop a new approach that can significantly

extend the half-life of PDCs while retaining the expected

tumor-penetrating ability associated with the small size of

PDCs, Kim et al studied the delivery of a PDC assisted by

an antibody.160 They showed that the conjugation of a

cotinine-labeled PDC with an anticotinine antibody

resulted in a therapeutic formulation with a significantly

extended circulation half-life in blood, greater penetration

and accumulation within the tumor, and, ultimately, inhi-

bition of tumor growth. It has been demonstrated that due

to the low manufacturing costs, excellent cell permeability,

and a high drug-loading capability exhibited by PDCs,

their development is promising for the targeted delivery

of chemotherapy drugs.

Stimulus-Responsive Targeting For

Specific Release
An additional smart targeting strategy that takes advantage

of specific characteristics of the chemical environments of

the tumor interstitium or the cell interior consists in devel-

opment of stimulus-responsive DDS. The DDS is designed

to release or activate the drug only when triggered by

specific internal or external stimuli161 (this is also known

as tertiary targeting). Such stimuli include pH, proteases,

redox potential, heat and light, among others (Figure 3).

Internal Stimuli
Since many cancer cells generate energy exclusively by

glycolysis and are deprived of oxygen, the extracellular

matrix of tumor sites frequently has a lower pH compared

to normal tissues. The extracellular matrices of tumor sites

frequently have an approximate pH range from 6.5 to 7.0,

whereas in normal tissues and blood the typical pH is

around 7.4.162,163 These circumstances of cell metabolism

abnormalities and resulting low pH values are known as the

Warburg effect.163,164 Exploiting the pH gradient between

normal tissues and the tumor microenvironment to afford

external drug release, and the low pH in cellular endosomes

(~pH 5) to afford intracellular drug release, pH-sensitive NP

systems have been designed to facilitate the release of

anticancer drugs in a pH-controlled manner.165–168 One

release mechanism is a change in the ionization of acidic

or basic groups in the NP upon exposure to acidic environ-

ments. The resulting electrostatic repulsion causes the par-

ticle to swell, releasing the encapsulated drug. Studies

published by Zhao et al showed that their designed

PEGylated pH-sensitive NPs were long circulated in blood

and highly phagocytosed by tumor cells.169 This delivery
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strategy resulted in several advantages including prolonged

circulation, accumulation in tumors, highly efficient cellular

internalization, and rapid intracellular drug release.170

The extracellular release of small drugs from DDS

avoids some tumor penetration problems of nanosized

DDS when tumors are very dense.24,170 However, the

main problem with using extracellular stimuli is that

non-specific drug leakage is likely to occur (ie, after

being released small-molecule drugs can exit the tumor

since they are not trapped in the interstitium). Intracellular

drug release overcomes this drawback, but it is required

that the DDS is taken up by the cancer cells, which

typically is accomplished by decoration with receptor-tar-

geting ligands as discussed earlier. FAR-targeted-doxoru-

bicin-loaded polymeric micelles are one example of using

intracellular stimuli once the DDS are endocytosed by the

cells.167 The resulting endosome acidifies as it moves

towards the lysosomes where the pH can be as low as 4.

These DDS are optimized to release their drug only at a

low pH. PH-sensitive nanocarriers can be constructed to

be able to sense small changes in the microenvironment

pH as well as the lower pH in endosomes or lysosomes.170

Zhou et al reported a pH-sensitive PEG-doxorubicin stable

at pH 7.4 and activated at an endosomal acidic pH with

increased circulation time and drug accumulation com-

pared with free doxorubicin.171

Differences in the redox potential between extra- and

intracellular spaces provide another opportunity for the

development of a stimulus-responsive DDS. The cell cyto-

plasm is significantly more reducing than the outside of the

cell, with a concentration of reducing species, mainly glu-

tathione (GHS), as much as 1000 times higher.172,173 DDS

that are redox-activated will exhibit intracellular drug

release or activation.174 Therefore, they are only cytotoxic

to the cells that internalize them. Redox-responsive DDS

can be generated by using thiol-cleavable crosslinkers,

Figure 3 Scheme of the types of stimuli-responsive strategies utilized in the development of DDS. Drug release can in principle occur in the extracellular microenvironment

or directly in the cell cytoplasm.
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which will be cleaved upon reduction by GHS. Such sys-

tems have been used to trigger the activation of pro-apop-

totic proteins (eg, cytochrome c and caspase-3).98,175,176

Recently, a system composed of a Cyt c NPs stabilized by

an amphiphilic copolymer through a redox-sensitive bond

(FA-PEG-PLGA-S-S-Cyt c NPs) exhibited excellent stabi-

lity under extracellular physiological conditions (1 µM

GHS), whereas once in the intracellular reducing environ-

ment (10 mM GHS) Cyt c was released from the DDS.177

Also, smart release nanosized (passive targeting) DDS com-

bining HA-based active and redox-responsive targeting can

release up to 92% of its payload once experiencing the

characteristic reductive conditions of the intracellular

space. Once the NPs are internalized, they can reduce the

cell viability by up to 80%.178

Another characteristic of the interstitium of tumors is

that it is frequently rich in proteases (eg, membrane-type

matrix metalloproteinase, MMP) and thus protease-sensi-

tive DDS (eg, peptide-based DDS) have been developed as

well. Proteases play a key role in many processes in the

human body, such as cell cycle, tissue remodeling, and

homeostasis. However, upregulated proteolysis is a typical

hallmark of the tumor microenvironment.179 Graeser et al

target the prostate-specific antigen, which is a protease

overexpressed in prostate cancer, with a SA-bound doxor-

ubicin DDS. Then, they showed that the formulation

releases the doxorubicin drug effectively due to the clea-

vage of the SA by the protease. Interestingly, they demon-

strated that even when the SA-bound doxorubicin DDS

was ~100-fold less active than the free doxorubicin in in

vitro experiments, in an in vivo model of human prostate

tumor, the DDS showed greater efficacy compared to the

free doxorubicin.180 In the clinical context, Xyotax® is a

pioneer protease-reactive drug in which its activity is

dependent on the degradation of the poly-(L)-glutamic

acid to release the paclitaxel drug.181

External Stimuli
External stimuli, such as heat, ultrasound, and light have

also been exploited to afford the specific release or activa-

tion of drugs at a specific time and location. ThermoDox®,

a heat-activated doxorubicin liposome, is an example of a

stimulus-responsive nanomedicine in Phase III of clinical

trials.182,183 In a recent study, the trial demonstrated that

the ThermoDox®, designed to release targeted levels of

doxorubicin into and around tumors with heat and ultra-

sound activation, increased doxorubicin delivery to tumors

in the majority of liver cancer patients in a 10-patient

trial.184

In addition, photodynamic therapy (PDT) is a novel

noninvasive medical application that utilizes a photosensi-

tizing agent (PS) to kill pathological cells. The PS is a

chromophore normally derived from porphyrins which

absorbs light and then produces reactive oxygen species

(ROS) that kill targeted cells.183 After 1–2 days of PS

administration, the tumor area is exposed to light to kill

affected cells.185 This photosensitizing agent could take up

to 48 to 96 hrs to successfully reach cancer cells and its

body elimination up to 50 days.186 For example, patients

treated with Photofrin® should avoid light for at least 1

month after administration and home equipment that emits

heat (eg, hairdryer). Another limitation of this treatment is

the unspecific accumulation of PS in healthy tissues near

to pathological areas thus inducing adverse side effects,

such as burns, swelling, and pain during treatment.186–188

To overcome this, the PS is conjugated to a DDS to

increase the selectivity for tumor tissues over healthy

tissues.189–191 Positive effects include accumulation of

the PS in the tumor by the EPR effect and reduction of

unwanted radical formation by the PS due to self-quench-

ing prior to DDS disintegration.192,193 Internal and exter-

nal stimuli can be combined within a single system to

reduce self-quenching of the drug and produce the thera-

peutic effect preferentially at the tumor site.194

Conclusion
The present review discusses recent advances in smart-

targeted delivery systems, including the use of NPs.

Although stimulus-responsive strategies add tumor specifi-

city to DDS, it is important to note that only a nanosized

carrier increases the chances of the drug reaching the tumor

tissue per se (See Figure 1). Both, active targeting and

stimulus-responsive strategies are more efficient if the

drug accumulates in the tumor tissue and is not distributed

evenly throughout the body and/or eliminated from the

bloodstream via renal or hepatic pathways. However, drug

accumulation in the tumor tissue per se is not enough if the

drug is released before reaching the target site or cannot

enter the tumor cells. In summary, combining the use of

passive targeting with additional targeting strategies such as

active targeting and employing stimuli-responsive chemis-

try can potentially enhance the DDS selectivity towards

cancer tissues and improve the overall therapeutic index.

Even though nanomedicine is a young science, it has

demonstrated the potential to increase the therapeutic
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efficacy in cancer therapy when compared with the con-

ventional chemo- and radiation-therapy by the exploitation

of smart targeting. Passive targeting can significantly con-

tribute to diminish toxic side effects by accumulation of

the NPs in the tumor area taking advantage of the EPR

effect. Active targeting takes advantage of different mole-

cules overexpressed in the tumor cell to design selective

NPs-based DDS that recognize the specific target. The use

of stimulus-responsive DDS can prevent the premature

systemic release of the drug by the design of a biologically

stable NP until exposure to a specific stimulus in the tumor

or cellular site. These relatively new potential nanomedi-

cines expose the possible multifunctionality of DDS

designed using different smart targeting strategies. In the

future, multidrug-loaded delivery systems incorporating

passive, active, and stimulus-responsive targeting, alone

or in combination with chemotherapy will become a

powerful tool. Carefully designed and optimized DDS

will enhance the therapeutic index, reduce side effects,

avoid drug resistance, and increase patient compliance

and survival.
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