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Smart transparency for illustrative
visualization of complex flow surfaces
Robert Carnecky, Raphael Fuchs, Stephanie Mehl, Yun Jang, and Ronald Peikert

Abstract—The perception of transparency and the underlying neural mechanisms have been subject to extensive research in

the cognitive sciences. However, we have yet to develop visualization techniques that optimally convey the inner structure of

complex transparent shapes. In this paper we apply the findings of perception research to develop a novel illustrative rendering

method that enhances surface transparency non-locally. Rendering of transparent geometry is computationally expensive since

many optimizations, such as visibility culling, are not applicable and fragments have to be sorted by depth for correct blending.

In order to overcome these difficulties efficiently, we propose the illustration buffer. This novel data structure combines the ideas

of the A- and G-buffers to store a list of all surface layers for each pixel. A set of local and non-local operators is then used

to process these depth-lists to generate the final image. Our technique is interactive on current graphics hardware and is only

limited by the available graphics memory. Based on this framework we present an efficient algorithm for a non-local transparency

enhancement that creates expressive renderings of transparent surfaces. A controlled quantitative double blind user study shows

that the presented approach improves the understanding of complex transparent surfaces significantly.

Index Terms—illustrative rendering, transparency, flow visualization, integral surface, user study, diffusion, a-buffer, illustration

buffer, perception

✦

1 INTRODUCTION

T HE shape of a complex surface can be very hard to

understand from a single image. The difficulties arise

from a wide range of sources: a rendering on the screen

does not have binocular depth cues, the lighting is very

different from what we are used to, and the often unfamiliar

shape does not allow the human visual system (HVS) to

apply context knowledge as it often does for real-world

objects. Examples of such complex surfaces include integral

surfaces, which are an important tool to visualize the

behavior of time-dependent flows, and which can contain

complex twists and self-intersections. Other examples are

Lagrangian coherent structures as used in flow visualiza-

tion, which are often non-orientable and non-manifold, or

nested technical designs for industrial prototypes created in

computer aided design (CAD) applications.

For all these examples it is critical to provide users with

the capability to see through all surface layers to reveal

interior parts of the object. If users need to understand the

whole object at once, opaque rendering is not an option.

Cutting away parts of the object can be a good approach,

however, for many geometries the important structures are

layered in a way that a cutaway would remove important

information.

Even though transparency can show more information

about the object, transparent surfaces are generally more
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difficult to understand. The aim of this work is to develop

a method for assigning transparency in illustrations that

improves the understanding of transparent surfaces. In fact,

this approach has been adopted by illustrators for a long

time [1]. In Figure 1 we can see an example of illustrative

transparency as applied in a hand-crafted illustration. In

this drawing, the opacity of the outer object is high near

the silhouette and decreases smoothly toward the inner part

of the object in order to create a strong depth ordering cue.

The goal of illustrative visualization is not to render im-

ages in a physically correct way, but to convey information.

On the other hand, the HVS is accustomed to perceive

physically correct images most of the time. In this paper,

we do not want to create purely non-photorealistic (NPR)

renderings since this rendering style tends to remove much

of the visible features. For example, we are not interested

in approaches that reduce the shape to a set of important

lines. We believe it is important to retain the information

available from shading. Based on these conditions, we

discuss relevant findings from perception research, where

the importance of so-called X- and T-junctions for the

perception of transparency is known for a long time. Recent

results were even able to find neurons with specific response

patterns to a display of squares that form a X-junctions in

the image [2]. Therefore, the motivation for our approach

is two-fold: it is inspired by hand-drawn illustrations and

also motivated by positive results from perception research.
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Fig. 1: Example of artistic drawings. The occluded object is hidden near
the edge and its visibility increases with the distance to the edge. This
effect is combined with four different shading styles. c©Gerald P. Hodge

2 RELATED WORK

In this section we discuss a selection of the related work

to provide context for the contributions presented in this

paper.

Illustrative techniques: Illustrative techniques for the

visualization of complex objects have become a popular

research topic during the past decade. Similar to our

method, Diepstraten et al. [3] discuss the application of

transparency as suggested by Hodges [1]. However, their

approach can only handle two transparent layers and is

based on expensive object space distance computations.

Luft et al. [4] present the unsharp masking of the depth

buffer to add depth cues to images. Unlike our approach,

their method modifies the color of the image and depends

on the magnitude of the depth discontinuity at object

silhouettes. Moreover, it is unclear how their method can be

applied to transparent surfaces with multiple layers. Bruck-

ner and Gröller [5] use volumetric halos to achieve a similar

effect for volume rendering. In recent work Hummel et

al. [6] present an illustrative approach for flow visualization

based on user-placed cutting planes and surface streamlines.

Transparency: Transparent rendering is a common

approach to visualizing occluded scene parts. However,

a naı̈ve use of transparency often results in images that

are difficult to understand. Born et al. [7] suggest the use

of normal variation to assign transparency for illustrative

visualization of integral surfaces. Interrante et al. suggest to

support the understanding of transparent surfaces by adding

ridge and valley lines [8] and curvature-directed strokes [9].

Similarly, Lum et al. [10] suggest to augment transparent

surfaces with animated particles to convey their shape.

Weigle and Taylor [11] suggest glyphs and coloring to

improve the understanding of multiple intersecting surfaces.

In a seminal paper Chan et al. [12] present a method to

minimize the discrepancy between actual and perceived

transparency in volume renderings. The suggested methods

rely on an expensive optimization scheme which requires

several seconds per frame, whereas our method is interac-

tive. Luboschik et al. [13] suggest to replace transparency

by color weaving for 2D shapes and present a user study

which evaluates shape recognition and interactive picking

with respect to task-completion timings and errors. In recent

work, Busking et al. [14] present an interesting algorithm

based on depth-peeling for the image-based rendering of

intersecting surfaces.

Lines: Line-based techniques are important because

they use pixels very economically without occluding in-

ner structures. Many illustrative techniques add lines to

highlight the structure of the rendered objects. Saito and

Takahashi [15] suggest a screen-space rendering approach

to highlight discontinuities, edges, and contour lines, where

data about the geometric properties are represented as a

G-buffer. Nienhaus and Döllner [16] present blueprints, a

technique for enhancing occluded features using edge maps.

Other popular methods for detecting important feature lines

include apparent ridges [17], Laplacian lines [18], and

suggestive contours [19]. Complex objects often produce

a dense set of feature lines which is difficult to understand.

Appel et al. [20] propose the haloed line effect to improve

the perception of the relative depth ordering of lines. Everts

et al. [21] improve the effect by using depth-dependent

halos. Similar to our method, Hamel et al. [22] use the

priciples of Hodges [1] to enhance line drawings.

Shading, coloring, and texturing: In illustrative visual-

ization, several approaches have been proposed to improve

the perception of surface shape and details. Since our

method does not change the actual surface color or lighting,

they could be combined with our method. Gooch et al. [23]

present a shading model for technical illustrations that uses

both luminance and changes in hue to indicate surface

orientation, reserving extreme lights and darks for edge

lines and highlights. Vergne et al. [24] suggest a modified

lighting model to enhance surface details, which uses a

diffusion scheme to obtain a consistent global effect. Wong

et al. [25] present texturing and coloring approaches to dis-

play layered information. Taylor [26] proposes a technique

to optimize color and texture to visualize multiple fields on

the same surface. Wang et al. [27] present a novel color

design approach for illustrative visualization.

GPU and graphics buffers: Due to its easy hardware

implementation, many approaches for order-independent

transparency rendering are based on the depth peeling

technique by Mammen [28]. A disadvantage of this tech-

nique is that it requires multiple rendering passes. A

different approach is followed by the A-buffer, introduced

by Carpenter [29]. In this technique, the color buffer is

replaced by a linked list of fragments for each pixel. Early

GPU implementations of the A-buffer are presented by

Bavoil et al. [30], and Myers and Bavoil [31]. However,

both implementations can only store a limited number of

fragments in each list. Yang et al. [32] present an un-

bounded GPU implementation of the A-buffer by exploiting

recent advances in graphics hardware. This work is a major

inspiration for the implementation of our technique.

Silhouettes: As discussed above, artists often enhance

silhouette lines of the illustrated surfaces. Since there is

a significant variability in terminology, we give here our

definition of a silhouette, as illustrated in Figure 2. Tradi-

tionally, the silhouette is defined as the set of points where

the surface normal is perpendicular to the view direction

(blue lines) [33]. However, this definition does not capture

the surface boundary (red lines), which intuitively belongs

to the silhouette as well. Therefore, we define a silhouette
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surface surface boundarytraditional silhouette our silhouette

Fig. 2: Silhouette lines for two open concentric cylinders.

as the union of the two aforementioned sets (black lines).

Perception: Apart from being motivated by hand

drawn illustrations, our method is also supported by the

findings of perception research. In particular, Wilson and

Keil [34] explain that the perception of transparency relies,

as does visual perception in general, upon context to

determine the most likely interpretation. Figure 3 illustrates

the importance of X- and T-junctions, which are the sin-

gle most important monocular cue for transparency [34].

Albert [35] shows that also the perception of lightness

is based on the relation of contours forming X- or T-

junctions and that the HVS does not compute layered

decompositions of luminance. Nakayame et al. [36] explain

that the HVS functions effectively by employing “crude

tricks” or heuristics, rather than performing a detailed

and/or exhaustive interpretation of the scene with all of

the information available. They show that transparency is

not coupled strongly to real-world chromatic constraints

since combinations of luminance and color that would be

unlikely to arise in real-world scenes still give rise to the

perception of transparency. From this we are motivated to

apply non-local changes to the rendering of transparent

surfaces even though such a configuration is unlikely to

occur in reality. The approach suggested in this paper is

also supported by work of Beck [37], who explains that

the visual system appears to incorporate an assumption of

balanced transparency. In cases of unbalanced transparency

the visual system is able to choose an interpretation that

in some sense is the simplest. Anderson [38] discusses

the importance of perceived contours to understand depth

relations in transparent surfaces. He states evidence that

the HVS employs rules that combine contrast magnitude

and contour continuity to decide the depth ordering of

surfaces. This insight serves as an additional motivation

for the contour enhancement as illustrated in Figure 3. In

other words, he conjectures that the HVS treats the highest

contrast portion of a contour as a region in plain view. This

relationship is exaggerated by our non-local transparency

approach.

3 OVERVIEW

From the discussed results of perception research we can

draw some conclusions: First, the heuristics applied by

the HVS are robust even under non-realistic conditions

as long as contrast relations are kept intact. Second, X-

junctions (Figure 3(a)) are important cues for transparency.

Third, T-junctions (Figure 3(b)) are good for understanding

which surface is above which. The strength of the depth-

ordering cue provided by transparent occlusion is directly

proportional to the degree of contrast reduction. In the limit

case the depth-ordering cue is maximal for fully opaque

surfaces, as in the case of a T-junction. Therefore, we can

infer from perception research a motivation to keep the T-

junction property of layered surfaces. X-junctions, on the

other hand, give rise to the perception of transparency,

therefore we suggest to depict crossings as a fusion of both

cues (Figure 3(c)).

Illustrators use similar rules as we can see in Figure 1.

We can see that the illustrators modify the transparency

to improve the perception of layers behind. Transparency

is decreased where shading is important, for example for

boundary enhancement. To further improve the perception

of the silhouettes, we enhance these further by not only

decreasing the transparency on the boundary, but also by

increasing the transparency behind a boundary such that

the background becomes visible. This results in a halo-

like effect (Figure 3(d)). The final result is illustrated in

Figure 3(e).

X-junction T-junction

non-local transparency silhouette enhancement result: XT-junction

(a) (b)

(c) (d) (e)

Fig. 3: The perception of transparency in the HVS is crucially dependent
on the distinction between X- and T-junctions. (a) X-junctions evoke
the perception of transparency. (b) T-junctions are best cues for depth-
ordering. (c) Non-local enhancements to improve the perception of depth-
layers. (d) Silhouette enhancement is important in the case of crossings. (e)
We suggest a visual cue which combines properties of X- and T-junctions.

Based on the concept of XT-junctions, we design a novel

transparency enhancement method for the rendering of

layered surfaces. First, we define three transparency fields

on the surface: one for the base transparency, one for the

silhouette enhancement and one for the halos. The values

for the two latter fields are fixed at the surface silhouette and

a diffusion process is used to spread the information along

the surface to the local neighborhood of the silhouettes.

Finally, all three fields are combined and a modified alpha

blending procedure is used to compute the final image color.

The details of this method are described in Section 5.

The implementation of the transparency enhancement

requires view-dependent and non-local information at each

image point. In order to achieve interactive performance

while maintaining full flexibility, we use a novel 2.5D im-

age space representation of the whole scene. Similar to the

A-buffer, our illustration buffer stores an unbounded linked

list of all surface layers for each pixel. Unlike existing im-
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Fig. 4: Overview of our method. The input geometry is first rasterized into fragments which are then stored in our illustration buffer. This 2.5D image
space representation is implemented on the GPU. All fragments are then sorted by depth and connected with geodesic neighbors. In the next step, we
set boundary conditions and apply a transparency diffusion process based on results from perception research. Finally, all fragments in the illustration
buffer are composed into the output image.

plementations, however, each fragment stores an arbitrary

number of surface properties for deferred computations, as

well as explicit links to geodesically neighboring fragments.

Thanks to recent advances in graphics hardware, the illus-

tration buffer is implemented on the GPU and can be used

at interactive frame rates. Having simultaneous access to

all fragments along a viewing ray as well as neighboring

fragments along the surface makes our representation very

flexible. It can not only be used to implement a wide range

of existing transparency assignment techniques, but serves

also as a base for novel 2.5D image filters. The illustration

buffer is described in Section 4. Additionally, the work flow

of our approach is illustrated in Figure 4.

Finally, in order to objectively assess the effectiveness

of our method, we designed and conducted a rigorous user

study measuring the understanding of complex surfaces

from transparent renderings. In this study, three different

tasks are used to quantitatively measure the task perfor-

mance related to understanding of complex surfaces. The

task scores are then used to compare our method to two

other transparency assignment techniques. The study is

described in Section 8.

4 ILLUSTRATION BUFFER

For the purpose of this paper, we define a pixel as the

smallest addressable image element and a fragment as

an intersection of the rendered surface with a ray going

through the pixel center. Typically, surfaces are rendered as

triangle meshes. Large triangles that cover multiple pixels

in the image will therefore consists of multiple fragments.

Conversely, small triangles that cover an area far smaller

than a pixel might not generate any fragment at all. Some

applications use multiple fragments for each pixel for the

purpose of anti-aliasing (e.g., the supersampling technique).

For the sake of simplicity, we do not discuss this case here,

however, it would be straightforward to extend our method

to handle multiple fragments per pixel.

Before describing the illustration buffer, we review the

conventional way graphics cards generate images. Tradi-

tionally, graphics cards use two buffers to store the rendered

image: the color buffer (or frame buffer) stores the color

of each pixel and the z-buffer stores its distance to the

viewer. Whenever an object is rendered, its polygons are

projected onto the screen and rasterized into fragments.

Each fragment then checks in an atomic way if it is closer

to the viewer than the currently stored distance at the given

pixel. If the fragment passes the z-buffer test, it updates

both the color and depth information.

The illustration buffer uses a different approach, com-

bining the ideas of the A-buffer and G-buffers. In this

approach, each pixel stores a linked list of fragments. After

the surface polygons are rasterized into fragments, each

fragment is simply inserted into the respective list. In a

final stage, each list is sorted by distance to the viewer and

processed in order to determine the final pixel color. The

following subsections describe in detail how the illustration

buffer is built and used.

4.1 Buffer layout

The illustration buffer data structure consists of several

separate buffers, which are all stored in graphics memory.

Each buffer represents an array, whose elements store a

fixed number of values. There are three types of buffers:

those that contain a constant number of elements, those

that contain one element per screen pixel, and those that

contain one element per surface fragment. The following

list describes the individual buffers. Their basic layouts are

illustrated in Figure 5.

• fragData contains the data for all fragments. Each

element in this buffer stores a number of application

dependent properties of one fragment, such as the frag-

ment position, normal direction, and color. This buffer

is implemented as a 1D four channel texture object,

with one buffer element spanning N consecutive texels,

leaving room for 4N properties for each fragment.

• fragData2 has the same layout as fragData and

is used in ping-pong computation schemes.

• fragNext contains for each fragment the index of

the next fragment belonging to the same pixel. This is

similar to a “next” pointer in a linked list.

• pixelHead contains for each pixel the index of first

fragment belonging to that pixel. This is similar to a

“head” pointer in a linked list.

• pixelCount contains for each pixel the number of

fragments belonging to that pixel.

• fragCount contains one single element, storing the

total number of fragments written so far. This is also

the index of the next free cell in the fragData array.

• fragCountMax is a constant number storing the size

of the fragData buffer.
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color buffer

z-buffer
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(pixelHead)
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per-pixel data per-fragment data global data
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Traditional rendering

Illustration buffer
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{
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Fig. 5: The illustration buffer layout. Each red cell stores data of one pixel
in the image, each blue cell stores data of one fragment. Green cells are
global data.

4.2 Buffer filling

As in conventional rendering, polygons are first rasterized

into fragments. This is done automatically by the graphics

hardware. Each fragment is then simply inserted into the

fragment list, using a fragment shader described in Algo-

rithm 1. The shader consists of three important steps: First,

fragCount is increased by one to get the index of a free

cell in fragData (line 1). Next, the previous value of

pixelHead is stored and replaced by the new index (line

3). After this step, prevHeadId and newFragId contain

the old and the new fragment list heads, respectively.

Finally, these two list elements are linked (line 4). The

return value of this function is then the index of a free

element that can be used to store all fragment properties.

The above algorithm needs several non-standard frag-

ment shader operations, all of which are available in

recent graphics hardware: atomic operations for protection

against concurrent access, and read and write from arbitrary

memory locations in a buffer. In our implementation, we

access this functionality through OpenGL with the exten-

sion EXT shader image load store.

Note that fragData can only store a limited number of

fragments and any additional fragments are simply ignored.

After each rendering, we check if the number of generated

fragments was larger than the buffer size. If this was the

Algorithm 1 Inserting a fragment into the illustration buffer

1: newFragId ← add(fragCount, 1)

2: if newFragId < fragMaxCount then

3: prevHeadId ←
exchange(pixelHead[x,y], newFragId)

4: fragNext[newFragId] ← prevHeadId

5: return newFragId

6: else

7: return -1

8: end if

case, we resize the buffer to the required size and repeat the

whole rendering process. This approach might be seen as

wasteful of resources. However, we regard this limitation as

temporary since current graphics hardware already contains

specific constructs for dynamically sized buffers, available,

e.g., in DirectX 11 as append/consume buffers.

4.3 Fragment sorting

In the second step, the fragment lists are sorted by depth.

This is implemented with a full-screen render pass, where

a single quad covering the whole image is rendered. The

fragment shader for this pass uses selection sort to construct

the sorted sequence. This sort needs to repeatedly traverse

the input fragment list. However, unlike previous methods

based on insertion sort [32], it only uses one write operation

per output list element and does not need a fixed-size local

array. In our experiments, we have found no performance

difference to the insertion sort method, presumably because

repeated read operations benefit from caching.

At this point, the sorted elements could be used to

compute the final pixel color. Unlike existing A-buffer im-

plementations, however, we use the sorted lists in multiple

subsequent passes and therefore we copy them back to

global memory. For efficient access, the list elements are

stored in consecutive buffer elements. Since this reordering

cannot be done in-place, the second buffer fragData2 is

used to store the sorted lists. Similar to Algorithm 1, the

corresponding shader program first reserves a block of free

buffer elements. The index of the first element as well as the

number of elements in the block are stored in pixelHead

and pixelCount, respectively.

4.4 Neighbor search

In the third step, we connect each fragment to its four

geodesic neighbors. More precisely, for a fragment with

pixel coordinates (x,y), we search and store the index of the

four nearby fragments with pixel coordinates (x+ dx,y+
dy) with (dx,dy) ∈ {(� 1,0),(1,0),(0,� 1),(0,1)} in the

fragData buffer. This information is used later to access

the surface neighborhood of a fragment. Since fragments

at the boundary or silhouette of a surface have fewer than

four neighbors, a special value is used to indicate missing

neighbors.
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(a) (b)

Fig. 6: Four neighboring viewing rays intersect the rendered surface at
fragments (black circles). (a) Given these fragments alone, one cannot
decide which ones are neighbors along the surface. Two possible cross
sections of the original surface are indicated in red and green. (b) For finely
triangulated objects and surfaces almost parallel to the viewing direction,
two neighboring fragments might be separated by an arbitrary number of
polygons.

ɛ
z

ɛ
n

(a) (b)

Fig. 7: (a) The difference between the fragment normal and eye distance
gives a measure for how likely the fragments are neighbors along a
continuous surface. (b) Arrows indicate the most likely neighbor according
to the continuity measure. Fragments are marked as neighbors only if this
relationship is mutual.

The problem of finding the correct neighbors with screen

space information only is inherently difficult: in the situ-

ation depicted in Figure 6(a), one cannot decide how the

fragments are connected. One difficulty is that during the

rasterization of the triangle mesh into fragments, all connec-

tivity information is lost. Additionally, using object space

information is not simple: for finely triangulated surfaces,

or for surfaces which are almost parallel to the viewing

direction, neighboring fragments may lie on triangles which

are very far apart (see Figure 6(b)). Since we cannot afford

a global object space search for each fragment, we use a

heuristic screen space method to decide which fragments

are connected.

In practice, the visualized surfaces are often locally

smooth and continuous. We therefore use a heuristic mea-

sure ε for the continuity of a fragment pair, as shown in

Figure 7(a). This measure will be small for neighboring

fragments along a continuous surface, and large for two

fragments belonging to different surface layers. Given such

a measure, a necessary condition for two fragments i and

j being geodesic neighbors is that ε(i, j) is smaller than

the measure between i or j and any of the other neighbor

candidates, i.e., that both fragments think of each other as

the best candidates among the fragment list of the adjacent

pixel. (see Figure 7(b)).

Our neighbor search is based upon the above obser-

vations and is again implemented in a full-screen render

pass. The fragment shader traverses the fragment list of the

current pixel and for each fragment, uses Algorithm 2 to

find the corresponding geodesic neighbor. This search is

repeated for each adjacent pixel. The continuity measure

Algorithm 2 Finding geodesic neighbors

1: fragNeighbor ← -1 {current neighbor candidate}
2: eNeighbor ← ∞ {measure ε for fragNeighbor}
3: {find the best candidate for A among all B’s}
4: for all fragB ∈ fragListB do

5: eB ← ε(fragA, fragB)
6: if eB < eNeighbor then

7: eNeighbor ← eB

8: fragNeighbor ← fragB

9: end if

10: end for

11: {check if there is a better candidate among all A’s}
12: for all fragA2 ∈ fragListA do

13: eA ← ε(fragA2, fragNeighbor)
14: if eA < eNeighbor then

15: return -1

16: end if

17: end for

18: return fragNeighbor

ε(i, j) used in our neighbor search is given by

εz(i, j) =
1

rob j

[

zi +(x j−xi) ·

(

dz

dx

)

i

− z j

]

(1)

εn(i, j) = 1−ni ·n j (2)

ε(i, j) = wz · εz(i, j)+wn · εn(i, j) (3)

Here rob j is the radius of the bounding sphere of the ren-

dered object and xi, ni, zi, and ( dz
dx
)i the pixel coordinates,

normal, eye space z coordinate, and z coordinate gradient of

fragment i, respectively. Note that the gradient corresponds

to the slope of the triangle that produces the fragment

and can be computed efficiently with the GLSL shader

instruction dFdx. In our measure, εz is a second-order

difference in the normalized fragment z coordinate, and εn

a function of the angle between the fragment normals. Both

components are small for densely sampled neighboring

fragments on a smooth surface. However, due to noise and

discretization errors, none of them is reliable on its own.

In our applications, we have achieved best results with

a weighted average error with wz = wn. For objects with

multiple connected components, we additionally store the

component ID for each fragment and set ε to infinity if the

two fragments belong to different components.

Note that our algorithm for the neighbor search can

potentially introduce errors. The first type of error results

from the loss of geometric information during the raster-

ization: if there is a sub-pixel size surface gap between

two neighboring fragments, Algorithm 2 will still connect

the fragments as if the surface was continuous. The second

type of error is introduced by our heuristic measure. For

very noisy surfaces, the measure could classify the wrong

fragment pair as being closest along the surface. In this

case, other measures can be used, such as the fragment

distance in parameter space. This measure is particularly

interesting for integral surfaces, which often have a natural

global parametrization. In practice, we have found our
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neighbor search to be robust enough for the practical use,

demonstrated by the absence of artifacts or flickering in

animated scenes.

4.5 Operators

After the neighbor search, the illustration buffer contains

a complete and general screen-space representation of the

rendered surface, where each fragment has access to its

geodesic neighbors along the surface as well as its neigh-

boring fragments along the viewing ray. This representation

can be processed by any number of purely local, local,

or global operators, as discussed below. The choice of

operators depends on the application and is discussed in

Section 5. The following paragraphs therefore only give a

definition of the three operator types.

Purely local operator: A purely local operator is a

function that takes the fragment list of a pixel and computes

new values for some properties for each fragment in that

list. For example, a purely local operator could implement

angle-based transparency [6] by setting the fragment trans-

parency to the angle between surface normal and viewing

direction. See Figure 11 for an example. Such an operator

can again be implemented in a full-screen render pass with

an appropriate fragment shader.

Local operator: A local operator is similar to a

purely local operator, except that it uses information from

neighboring fragments, as described in Section 4.4. Since

updating the fragment properties could affect the input

of other concurrently processed fragments in an unpre-

dictable way, the two fragment data buffer fragData

and fragData2 are used in a ping-pong computation

scheme. Examples of local operators include image filters

such as the Sobel operator. Local operators can also be used

for iterative implementations of global operations, such as

image diffusion, and can therefore be repeated for a user-

specified number of iterations.

Global operator: A global operator is a function that

takes as input all fragment lists in the illustration buffer.

Similar to a local operator, two fragment data buffers have

to be used in a ping-pong computation scheme. Since mem-

ory bandwidth and latency are the two major bottlenecks in

our method, care must be taken to limit the actual amount

of input data consumed by such an operator. We do not use

global operators in our visualization, however, they could

be useful in other methods such as a multilayered screen

space global illumination.

4.6 Fragment compositing

The last step in our method takes the fragment list of

each pixel and computes the final pixel color. The details

of this operation are application dependent. For example,

opaque rendering sets the pixel color to the color of the

first fragment in the list. Another very common example is

alpha blending, where the final color is a linear combination

of all fragment colors. Similar to a local operator, this

step is implemented in a full-screen render pass with an

appropriate fragment shader. Note that having simultaneous

access to all surface layers in a single shader pass enables

compositing operations that can not be easily implemented

using conventional rendering and depth peeling. Addition-

ally, since depth peeling renders the whole geometry each

time a surface layer is extracted, compositing operations

that traverse the fragment list multiple times might result

in a large rendering overhead.

5 NON-LOCAL TRANSPARENCY ENHANCE-
MENT

The previous section described how to build the illustration

buffer data structure. This section describes how we use

this data structure to implement an illustrative transparency

assignment method that improves the understanding of

transparent surfaces. Based on the result of previous per-

ception research, we have extracted a set of simple rules

for the surface transparency:

1) The transparency of the surface is set to zero at the

silhouette and increases slowly with the distance to

the contour. This enhances all surface silhouettes.

2) The opacity of the surface is set to zero wherever it is

occluded by another surface silhouette and increases

rapidly with the distance. This will create narrow ha-

los around occluding surfaces. The increased contrast

further enhances the perception of T-junctions.

3) The transparency should be a smooth function of

the surface, except at the points described above. A

discontinuity could easily be mistaken for a surface

contour.

The first two rules are a straightforward application of

our concept of the XT-junction (see Figure 3). Note that the

first rule also corresponds to the rules postulated by Hodges

(see Figure 1). The third rule was chosen to prevent high

frequency changes in the transparency to be mistaken for

shading details or surface shape.

These rules can be implemented with our illustration

buffer approach. We use a purely local operator to set

initial and boundary conditions for the transparency of

individual fragments and then use a local operator to

apply transparency diffusion. Similar to the solution of the

heat equation after a finite time, we use the transparency

diffusion with a fixed number of iterations to spread the

boundary enhancement to the neighborhood of each sil-

houette.

5.1 Transparency fields

Because of the non-linear behavior of the transparency near

junctions, we define three scalar fields on the surface:

• The initial transparency of the surface α
• A silhouette highlight field β , used to implement rule

1. This field will have high values at surface silhouettes

and fall off with the distance to the silhouette.

• A halo highlight field γ , used to implement rule 2.

This field will have high values near occluding edges

and fall off with the distance to those edges.
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In order to identify boundary fragments for each of the

above fields, we also store binary fields bα , bβ and bγ

with values of 0 for boundary fragments and 1 for all other

fragments.

The values of the three fields α , β , and γ are stored

as custom fragment properties (see Section 4.1). Since the

scalar fields only take values from zero to one and b is a

binary value, we can store both values in one scalar with

minimal precision loss, e.g., as 2 ·bα +α .

5.2 Initial conditions

All fragments are first initialized with β = 0, γ = 0, bα = 1,

bβ = 1, and bγ = 1. For the initial value of α , we let the user

choose among two different styles, defined by one of the

following equations, where i is the index of the fragment

in the sorted fragment list, n the number of fragments at

the given pixel, and s ∈ [0,1] a user-specified parameter.

αi = s (4)

αi = 1− (1− s)
1
n (5)

Equation 4 assigns a constant initial transparency to each

fragment and therefore produces results most similar to

traditional alpha blending. A disadvantage of this approach

is that regions with many layers will appear too opaque,

while regions with only a few layers will appear washed

out. Therefore, we additionally provide an adaptive trans-

parency defined by Equation 5. This approach initializes

the transparency so that the accumulated color intensity in

the final image remains constant regardless of the number

of layers, i.e., it solves the following problem:

n

∑
i=1

(1−α)i−1α = s (6)

5.3 Boundary conditions

After the initial transparency values are set, a local operator

classifies the fragments to find fragments at the boundary

of the surface. Since this operator does not depend on the

output of the previous step, it can be implemented in the

same rendering pass as the operator that sets the initial

conditions. The boundary conditions are set according to

the following rules, illustrated in Figure 8:

• If the fragment has fewer than four neighbors, it is a

boundary fragment (red cell). Set β = 1 and bβ = 0.

• If the fragment layer index is smaller than the index

of one of its neighbors, it is adjacent to a silhouette

fragment (blue cell). Set γ = 1 and bγ = 0.

• If the fragment layer index is greater than the index of

one of its neighbors, it lies directly underneath some

silhouette fragment (green cell). Set β = 0 and bβ = 0.

• Otherwise, it is an ordinary fragment (gray cells). No

changes to the initial values are made in this case.

These boundary conditions are required for the subsequent

diffusion step.

Fig. 8: Cross-section of the rendered surface. Boundary conditions for the
transparency are set at the red, green and blue fragments.

5.4 Transparency diffusion

In order to smooth the initial transparency α according to

rule 3, we apply a homogeneous diffusion defined by

∂

∂ t
α = λα ∆α (7)

with a diffusion coefficient λα . We do not reach the steady

state of the diffusion process, but instead stop after a

given time. The diffusion process is implemented as a local

operator using a forward discretization of Equation 7:

αk+1 = αk +bα λα ∆αk (8)

with a 2nd order central finite difference approximation of

∆α . In our default configuration, we use 10 to 50 iterations

with a diffusion coefficient of λα = 1.

The same diffusion process could be used to spread the

initial values of β and γ to the neighborhood of silhouettes

and occluding edges. However, the homogeneous diffusion

transports values very inefficiently. Instead, we use a non-

physical process

uk+1 = max{uk
,max{uk

neighbor}−λu} (9)

where u ∈ {β ,γ} and uneighbor are the values of u for the

neighboring fragments. Using this procedure, the values of

1−u will be approximately proportional to the distance to

the nearest boundary.

After the diffusion process, transparency fields β and

γ will have a characteristic profile with high values near

a boundary and values falling off with the distance to

the boundary. For artistic reasons, we apply one of the

following functions to the transparency fields in order to

modify this profile:

u←
1

1− e−p

[

e−p(1−u)2

− e−p
]

(10)

u← up (11)

Note that both functions are bijective on the range

[0,1]. Figure 9 shows results of different configurations of

parameters described in this section.

5.5 Fragment compositing

The three transparency fields α , β , and γ are combined

in the final stage using a modified front-to-back alpha

blending procedure. In this procedure, the transparency of

a fragment is first initialized with α . The edge highlight

field β is then multiplied with the remaining transparency

1−α and added to the base value. Finally, the transparency
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Fig. 9: Different parameter configurations for the transparency diffusion. Di f f . is the equation used for the diffusion process, Mod. is the equation
used for modifying the field (if any), n is the number of iterations, and λβ , λγ and p are the parameters for the diffusion, as described in Section 5.4

Fig. 10: A close up comparison of our method (left) with constant
transparency (right).

Algorithm 3 Calculate the final pixel color

1: α ← 1

2: c← 0

3: for i ∈ [1..n] do

4: α̂i← (1� γi)(αi +(1� αi)βi)
5: c← c+αα̂ici

6: α ← α(1� αi)
7: end for

8: c← c+αcbackground

9: return c

is multiplied with 1� γ in order to account for halos. Note

that since all input fields are smooth and we do not produce

values outside of the acceptable range [0,1], the resulting

fragment transparency will be smooth along the surface.

Algorithm 3 illustrates our blending procedure, where n

is the number of fragments for this pixel, c is the final pixel

color, ci is the color of i-th fragment and αi, βi, and γi are

the values of the three fields as defined above. A close up

comparison with constant transparency alpha blending is

given in Figure 10.

6 RESULTS

In this section we present images generated with our

technique and compare our method with previous work.

Figure 11 shows a simple scene rendered with several

common transparency assignment techniques [6]. While

existing techniques only use local surface properties and

are therefore very fast, they show various disadvantages.

Opaque rendering (Figure 11(a)) has strong depth ordering

cues, however does not show occluded objects. Constant

transparency (Figure 11(b)) shows all occluded parts, but

lacks depth ordering cues. Additionally, the transparency

has to be made very high if one is to see all surface

layers, which leads to a low contrast in the resulting

image. Angle based transparency (Figure 11(c)) nicely

highlights the silhouettes of curved objects, but not those

of the flat cube. Similarly, normal variation transparency

(Figure 11(d)) completely fails for the flat cube. Moreover,

it is sensitive to noise and irregular tessellation due to

the use of derivatives of the surface normal. Finally, our

method (Figure 11(e)) properly highlights all silhouettes

and maintains a high contrast while giving view of all

surface layers.

Figures 12 and 16 show several examples from flow

visualization. Such visualizations often contain complex

surfaces for which one has to rely on the expressiveness of

the rendering as it is difficult to apply context knowledge.

Figure 12 shows a stream surface as well as an isosurface

of vorticity in the simulation of two colliding vortex rings.

Figures 16(a) and 16(c) show two different stream surfaces

of a turbulent flow rendered with our method. Renderings of

the same surfaces using conventional transparency assign-

ment methods can be found in the supplementary material.

Figure 13 shows the visualization of a jet engine. Similar

to blueprint rendering [16], Figure 13(a) was rendered with

low constant transparency and enhanced with silhouette

and crease lines. Figure 13(b) was rendered with normal

variation transparency enhanced with haloed lines for in-

creased depth ordering cues. Finally, Figure 13(c) was

rendered with our method. Since the density of silhouettes

is very high for this model, halos have been omitted to

reduce visual clutter. Instead the same feature lines as

in Figure 13(a) have been used. Even though all three

methods show the overall structure of the engine and haloed

lines provide strong depth ordering queues, our method

additionally features unique stylistic elements such as a

more uniform image brightness and a more visible surface

shading around silhouettes due to increased opacity. All

feature lines in these figures have been computed in object

space and rendered as alpha blended triangle strips.

7 EVALUATION

We have implemented our method as a custom render-

ing subsystem in the Visdom visualization toolkit [39].

Our implementation uses OpenGL 4.0 and its exten-

sion GL EXT shader image load store for the concur-

rent global memory access as required for the illustra-
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(a) (b) (c) (d) (e)

Fig. 11: A comparison of different transparency assignment methods: (a) opaque rendering, (b) constant transparency, (c) angle based transparency,
(d) normal variation transparency, and (e) our method.

(a) (b) (c) (d)

Fig. 12: A stream surface and an isosurface of two different turbulent flows. (a,c) Constant transparency. (b,d) Our method. Note the improved depth
ordering cues at object silhouettes as well as an adaptively increasing transparency at points with many depth layers.

tion buffer. This extension is available on all consumer

level hardware starting with the NVIDIA GeForce 400

and AMD Radeon 5000 series. Alternatively, OpenGL 4.2

core extensions GL ARB shader image load store and

GL ARB shader atomic counters could be used.

Figures 14 and 15 show the performance of our method

in various settings. All tests were performed on a desktop

computer with a NVIDIA GeForce 470 graphics card. The

rendering time is broken down to the individual rendering

passes fill (Section 4.2), sort (4.3), connect (4.4, 5.2, and

5.3), solve (5.4) and compose (5.5). The clear rendering

pass is used to clear the contents of the illustration buffer.

Each line represents the average time it takes to finish the

respective rendering pass, including all previous passes. The

measurements were performed by taking averages among

1000 images with a random camera position, so that the

bounding sphere of the rendered object fills the entire

image. Note that the solve pass corresponds to one iteration

of our transparency diffusion. In practice, this pass will be

repeated for a user specified number of iterations (typically

10 to 50), depending on the artistic preference and the

resolution of the image. A comparison of different settings

is shown in Figure 9.

Figure 14 presents the rendering time of the toroid

surface as a function of the total number of fragments in

the illustration buffer. The corresponding image resolutions

range from 128× 128 to 2048× 2048. As expected from

a screen-space method, our implementation scales linearly

with the number of fragments in the scene. Note that for a

square image, the number of fragments scales quadratically

with the image width. This makes our method highly output

sensitive: a 1024×1024 image with 50 iterations will take

20 times longer to compute than a 512× 512 image with

10 iterations. In practice, applications should adapt the

image resolution and/or the number of iterations to the

desired level of interactivity. As an example, the scene from

Figure 12(b) with a resolution of 512×512 pixels and 20

iterations runs at around 15 frames per second.

Figure 15 presents the rendering time of the toroid

surface as a function of the total number of triangles in

the surface mesh. The image resolution is set constant to

1024×1024 in this case. As seen from the timings of the fill

pass, its run time has a constant component (indicated by

the non-zero intercept) and increases approximately linearly

with the number of triangles in the mesh. All other passes

are independent of the input geometry.

For most images, the lengths of the fragment lists will

vary across the image. The distribution of the list lengths

depends on the shape of the input geometry and obviously

influences the performance. However, we do not try an

extensive evaluation of this effect since the distribution is

hard to control without changing other parameters at the

same time. In our examples, we have found the maximal list

length (the number of passes required for depth peeling) to

be usually several times higher than the average list length.

In Figure 13(c), the average list length across the image is

5.64 while the maximal length is 95 (34 layers of geometry

and 61 layers of feature lines). A similar variation was

present in the toroid surface with a mesh resolution of 500K

triangles. Even though most fragment lists contain only 1

or 2 elements, the average maximal list length (averaged

over 1000 random camera settings) is surprisingly as high

as 8.94. This can be explained by the fact that some isolated

pixels depict parts of the surface which are almost parallel
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(a) (b) (c)

Fig. 13: Visualization of a jet engine model: (a) constant transparency, (b) normal variation transparency, and (c) our method. All methods have been
enhanced with silhouette and crease lines.

to the viewing direction and contain many fragments of the

very fine and slightly uneven surface mesh.
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Fig. 14: Rendering time vs. number of fragments. Lines depict cumulative
rendering times.
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Fig. 15: Rendering time vs. number of triangles. Lines depict cumulative
rendering times.

8 USER STUDY

In this section we discuss the design and results of a user

study performed to analyze the effectiveness of our illustra-

tive transparency. The goal of this case study is to evaluate

whether using the illustrative transparency presented in this

paper instead of alpha blending or normal variation helps

with the understanding of a three-dimensional flow surface.

8.1 Study Design

One important question in our study design is how to op-

erationalize the concept of “understanding the visualization

of a surface” so as to make it measurable [40].

Tasks: One problem is that other factors such as

general intelligence or visual memory of the participants

may constitute the main cause for variations in the test

scores. Therefore, it is important to have multiple different

tasks to balance such effects. In the present example we

have selected the following tasks (see also Figure 16):

• Task 1 – layer index: The participant is asked to

specify on which layer the surface silhouette at the

given point is located. For example in Figure 16(a),

the correct solution for A is two, since A is on the

second layer.

• Task 2 – follow the boundary: The participant is

asked to follow the shortest path on the boundary of

the surface from a given start point to a given end

point. The participant is asked to mark all other points

encountered on the way. For example in Figure 16(b),

the correct solution for the path from A to B is Y.

• Task 3 – nearest point: The participant is asked to

specify which point is geodesically closest to another

given point. For example in Figure 16(c), the nearest

point to A is X.

These tasks have a precise definition, a unique solution,

and can be solved within a short time frame. Of course,

each of these tasks could be better solved by presenting a

specialized visualization; however, this affects their value

as an operationalization for the presented technique. Note

there might be other tasks suitable for this user study. We

do not claim here that our choice of tasks is optimal. For

each task we present multiple sets of given points (chosen

manually such that the task is sufficiently difficult) and

calculate the score of a participant in this task as the number

of correct answers.

Consideration of confounding factors: Another issue

of a user study is the presence of confounding factors [41].

When multiple variables of the rendering such as trans-

parency, texturing, coloring, and shading vary at the same

time, it is impossible to understand the importance of

each variable in separation. Therefore we modify only the
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Fig. 16: Examples of the three tasks of the user study. (a) Task “layer
index” with the “Pretzel” surface. (b) Task “follow the boundary” with
the “Toroid” surface. (c) Task “nearest point” with the “Bubble” surface.

transparency of the surfaces and keep other factors such as

viewing parameters, texturing, coloring, or shading fixed.

Study execution: To avoid surface shape training ef-

fects over the tasks, we use three different flow surfaces

“Pretzel”, “Bubble”, and “Toroid”, which are shown in

Figure 16. This way each task can be performed on a

different scene. During the user study, tasks are in a

fixed order and each task is performed for one scene

and one transparency assignment method. For example,

one participant receives the first task on scene “Pretzel”

rendered with alpha blending, the second task on the

scene “Bubble” with normal variation, and the third task

on the scene “Toroid” with illustrative transparency. The

order of the factors “rendering method” and “scene” are

counterbalanced [41] between the subjects. Renderings of

the scenes based on alpha blending and normal variation

can be found in the supplementary material. Since time

consumed to understand a complex surface is an important

factor, the time for solving each task was strictly limited to

two minutes. Additionally, the number of points in each task

was chosen so that it is realistically impossible to answer

all of them within the given time limit. Missing answers

were treated the same as wrong answers.

Normal Variation Alpha Blending

average 0.234 0.264
variance 0.035 0.051

degrees of freedom 68
t-Statistics 0.62
P(T < t) one-sided 0.270

Alpha Blending Illustrative Transparency

average 0.264 0.382
variance 0.051 0.077

degrees of freedom 67
t-Statistics -1.98
P(T < t) one-sided 0.026

Normal Variation Illustrative Transparency

average 0.234 0.382
variance 0.035 0.077

degrees of freedom 61
t-Statistics -2.66
P(T < t) one-sided 0.005

TABLE 1: Comparison of the percentage of correct answers for illustrative
transparency, normal variation and alpha blending using paired samples
t-tests.

8.2 Study Results

The total sample includes 36 students (4 female, 32 male)

from the ETH Zürich, aged between 19 and 42. The most

important question for the user study is the difference in

the task performance that is attributable to the different

transparency assignment methods. Our starting hypothesis

is that illustrative transparency allows participants to per-

form better than normal variation and alpha transparency.

In a first step, we check the data for outliers, but all scores

are within the acceptable range.

The data was analyzed using paired samples t-tests com-

paring the percentage of correct answers. Results of paired

samples t-tests [41] show that performance of subjects that

were presented with alpha blending is comparable to the

performance of subjects that were presented with normal

variation (p = 0.54). In other words, the user study does

not find a significant difference between alpha blending and

normal variation. On the other hand, the difference between

subjects that were presented with illustrative transparency

compared to normal variation is highly significant (p =
0.005). The performance difference between illustrative

transparency and alpha blending (p = 0.026) is significant

as well. Table 1 gives an overview of these results, together

with the average percentage of correct answers and its vari-

ation. We repeated the analysis of group differences using

non-parametrical tests and obtained comparable results.

9 CONCLUSION

In this paper we have presented an illustrative transparency

assignment method which is motivated from two directions.

Perception research suggests that X- and T-junctions are the

most important clue for the understanding of transparent

surfaces. Therefore we suggest a hybrid cue which we

call XT-junction. This approach is also motivated by a

traditional drawing method of scientific illustrators, who

also use halos and non-local transparency modulation in
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their illustrations. In a user study we have shown that

this approach significantly improves the understanding of

surfaces.

Since our method uses a non-local enhancement of

surface silhouettes, it is not suitable for highly fragmented

objects or surfaces with a dense set of silhouettes. In

the future, we wish to address this issue by applying an

anisotropic diffusion model that takes the local feature size

into account. Another limitation is the use of a heuristic

error measure to find geodesically neighboring fragments.

Although we found it to be robust, it is possible to think of

cases where it would not work. A surface parametrization

could be used in this case to compute the geodesic distance

between fragments in parameter space. We employ an

iterative method to obtain the non-local distribution of

transparency. While this method is quite simple to imple-

ment, faster convergence could be achieved with a more

sophisticated multi-scale method which takes the geometry

topology and texture coordinates into account.

This paper focuses on transparency while keeping other

important cues such as texture, lighting or color fixed in

order to allow a meaningful evaluation of transparency.

We believe a decoupling of these parameters is necessary

to develop a novel framework for transparency in this

paper. On the other hand, this also forces us to limit the

conclusions to the importance of transparency alone; we

cannot make any speculations on the relative importance

in relation to other properties such as surface texture for

example. In future work we plan to extend our approach

to a framework which takes multiple cues into account and

to perform a user study which can provide insight into the

relative importance of the different cues.

Even though the user study used a small number of

difficult tasks, we have obtained significant results. This

was possible since we expected a large difference between

the methods, especially for surfaces that are complex and

difficult to understand. Using such surfaces is also appro-

priate since we suggest our method specifically for the

visualization of complex surfaces. In future work we would

like to address the issues of task difficulty and study a wider

range of tasks to measure the effectiveness of illustrative

visualization methods. Additionally, our paper-based study

and the choice of tasks was very general, and we do

not claim that it is an optimal operationalization of the

problem of understanding complex surfaces. For practical

evaluations, an interactive study with application-specific

tasks might be more appropriate.

Our understanding of how to best visualize a complex

surface is by no means complete yet, and we can expect

important research in this direction in the future.
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[5] S. Bruckner and E. Gröller, “Enhancing depth-perception with
flexible volumetric halos,” IEEE Transactions on Visualization and

Computer Graphics, vol. 13, no. 6, pp. 1344–1351, 2007.

[6] M. Hummel, C. Garth, B. Hamann, H. Hagen, and K. I. Joy, “IRIS:
illustrative rendering for integral surfaces.” IEEE Transactions on

Visualization and Computer Graphics, vol. 16, no. 6, pp. 1319–28,
2010.

[7] S. Born, A. Wiebel, J. Friedrich, G. Scheuermann, and D. Bartz,
“Illustrative stream surfaces.” IEEE Transactions on Visualization

and Computer Graphics, vol. 16, no. 6, pp. 1329–38, 2010.

[8] V. Interrante, H. Fuchs, and S. Pizer, “Enhancing transparent skin
surfaces with ridge and valley lines,” in Proceedings of IEEE

Visualization 1995, 1995, pp. 52–60.

[9] ——, “Illustrating transparent surfaces with curvature-directed
strokes,” in Proceedings of IEEE Visualization 1996, 1996, pp. 211–
219.

[10] E. B. Lum, A. Stompel, and K.-L. Ma, “Using motion to illustrate
static 3d shape–kinetic visualization,” IEEE Transactions on Visual-

ization and Computer Graphics, vol. 9, no. 2, pp. 115–126, 2003.

[11] C. Weigle and R. M. Taylor, “Visualizing intersecting surfaces with
nested-surface techniques,” in Proceedings of IEEE Visualization

2005, 2005, pp. 503–510.

[12] M.-Y. Chan, Y. Wu, W.-H. Mak, W. Chen, and H. Qu, “Perception-
based transparency optimization for direct volume rendering,” IEEE

Transactions on Visualization and Computer Graphics, vol. 15, pp.
1283–1290, 2009.

[13] M. Luboschik, A. Radloff, and H. Schumann, “A new weaving
technique for handling overlapping regions,” in Proceedings of the

International Conference on Advanced Visual Interfaces, 2010, pp.
25–32.

[14] S. Busking, C. Botha, L. Ferrarini, J. Milles, and F. Post, “Image-
based rendering of intersecting surfaces for dynamic comparative
visualization,” The Visual Computer, vol. 27, no. 5, pp. 347–363,
2011.

[15] T. Saito and T. Takahashi, “Comprehensible rendering of 3-d
shapes,” in Proceedings of the 17th annual Conference on Computer

Graphics and Interactive Techniques, 1990, pp. 197–206.
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