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Abstract Presently, in several parts of the world,

water consumption is not measured or visualized in

real time, in addition, water leaks are not detected

in time and with high precision, generating unneces-

sary waste of water. That is why this article presents

the implementation of a smart water measurement

consumption system under an architecture design,

with high decoupling and integration of various tech-

nologies, which allows real-time visualizing the con-

sumptions, in addition, a leak detection algorithm is

proposed based on rules, historical context, and user

location that manages to cover 10 possible water con-

sumption scenarios between normal and anomalous

consumption. The system allows data to be collected

by a smart meter, which is preprocessed by a local

server (Gateway) and sent to the Cloud from time to

time to be analyzed by the leak detection algorithm

and, simultaneously, be viewed on a web interface.

The results show that the algorithm has 100% Accu-

racy, Recall, Precision, and F1 score to detect leaks,

far better than other procedures, and a margin of error

of 4.63% recorded by the amount of water consumed.
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Introduction

Water is the most important natural resource for

humans, so the World Health Organization (WHO)

recommends that a person should consume an aver-

age of 100 L per day to meet all their needs (United

Nations 2014), but in the main capitals of South

America it exceeds what is recommended, for exam-

ple, La Paz consumes 120 L, followed by Bogotá

with 168 L, then Santiago with 200 L, Quito with

220 L and, finally, Lima with 250 L, whose surplus

is equivalent to more than 77 thousand Olympic water

pools per year (SUNASS 2017). On the other hand,

in the USA inside a house, the daily consumption of

water is approximately 138 gallons (522 L), being

the flush of the toilet where water is used the most

(24%), followed by the faucets (20%), showers (20%),

clothes washer (16%), leaks (13%), bathtubs (3%),

dishwasher (2%), and others (3%) (DeOreo et al.

2016). Due to this excessive water consumption, water

treatment supply companies are aiming to raise public

awareness about the responsible use of water.

One of the functions of companies that supply

water is to identify how and where waste is gen-

erated, which, in general, can be due to people’s

neglect or leakage. Studies reveal that the amount of
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water wasted by leaks varies widely between differ-

ent countries. In developed countries in Europe, it is

approximately 15% (France: 27%, UK: 21%, Nether-

lands: 5%) (Growing Blue 2011) and in the USA 13%

is estimated (DeOreo et al. 2016); on the other hand,

some sub-developing countries have a high index that

ranges from 20 to 70% (Sharma and Vairavamoorthy

2009). Other ways these companies use are the con-

trol and monthly billing of the consumption of this

resource.

In several countries, water consumption is not mea-

sured in real time, so the consumer must wait until

the following month to receive the status of their

consumption, which is generally obtained through

“manual” measurements made at each house meter.

This generates a daily lack of knowledge of water

consumption and the inability to detect in time a non-

visible leak that results in a waste of this resource

and economic losses even for the supplier when this

resource is subsidized. An alternative to this problem

is the use of smart systems that can save to gen-

erate water from 2.8 to 10.0% (Liu and Mukheibir

2018); this avoids wrong measurements generated by

human error, and it creates the trust in consumers in

terms of receipts and water consumption payments

(Joo et al. 2015), also it allows to report water leakage,

which reduces the probability of reoccurrence by 50%

(Schultz et al. 2018).

Currently, there are several smart measurement sys-

tems that also help detect, predict, and alert in time

any leakage or excess of water. Through the use

of the rules, Water Balance, Minimum Night Flow

(MNF), and statistical methods have come to pre-

dict 97% accuracy water leakage (Farah and Shahrour

2017), on the other hand, with machine learning meth-

ods reached 74% of accuracy (Patabendige et al.

2018). Also, through an algorithm that integrates rules

MNF and Continuous Non-Zero Water Consumption

(CNZ), achieved 98% accuracy (Luciani et al. 2019).

However, none of these studies integrates at the same

time the location, historical data, and rules such as

MNF and CNZ, to detect possible water leaks, in

addition, even the rate accuracy can be improved.

The integration of various aspects developed to

detect water leaks are complemented in many situa-

tions, for example, the detection based on historical

data is oriented by the consumption behavior and does

not contemplate particular scenarios that can only be

detected through rules, such as CNZ. Therefore, we

are proposing a consumption measurement system and

detection of water leakage integrating user location,

historical data, and rules, as well, is based on an IoT

architecture and cloud computing. The location allows

to identify a possible leak if the user is not at home,

the historical data of the user’s water consumption

allows to find a pattern of daily consumption, the IoT

architecture allows the capture and preprocessing of

the consumption data of water obtained through smart

meters, and finally, the analysis and visualization of

this data is carried out in the Cloud.

The rest of the article is organized as follows. In

“Literature review”, a full architecture review, wire-

less technology, security, and water leak detection

algorithms. Subsequently, in “Smart water consump-

tion measurement system”, the system architecture

with its main components is described together with

the algorithm used to detect water leaks. Validation

through numerical experiments and discussions are

presented in “Results and discussions”. Finally, in

“Conclusions”, conclusions are mentioned.

Literature review

Water leak detection

Farah and Shahrour (2017) conducted a study, where

an intelligent measurement system is implemented to

detect possible leaks in a university campus, and it

is proposed to combine the Water Balance rules with

Minimum Night Flow (MNF), which results in 97%

accuracy, thus, is achieved to reduce the waste of

water by leakage. In the research article by Schultz

et al. (2018), a portal is implemented in a city of

California where residents can monitor their water

consumption; thus, for leak detection, it is proposed to

establish based on an average (AVG) a limit (7.5 gph)

of continuous water consumed during a 24-h period;

likewise, its results show that users who used the sys-

tem came to reduce by 50% the chances of having a

leak again, but highlights that their methodology does

not detect leaks less than the established limit. On

the other hand, Farah and Shahrour (2018) demon-

strated that using an automatic measurement system

(AMR) for monitoring water been consumed, some

water leakage can be detected quickly, for this they
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use a density probability function in order to iden-

tify regions of more or less probabilities of leakage

based on data that was consumed before, during work-

days, weekends, holidays, in this way, resulted they

were able to detect 3 leaks in the Scientific Cam-

pus of the University of Lilledurante during 2015. In

addition, Patabendige et al. (2018) observed that most

commercial water consumption systems only provide

basic statistics; however, they do not detect complex

patterns of behavior of anomalous water consump-

tion; therefore, they propose the use of the K-Nearest

Neighbors (K-NN) algorithm to calculate the score

anomaly for each day, and the results show that dur-

ing one year they detected 31 days of leaks, where

it was achieved and reached an accuracy of 74%.

Finally, with the aim that people avoid wasting water

due to leaks, an algorithm is proposed by Luciani et al.

(2019) that detects leaks using the rules MNF and

CNZ, which they reach a 98% accuracy.

IoT architecture

The technological solutions for the measurement of

water consumption are supported on an IoT architec-

ture, and this refers to the design of the layers of the

system that will allow communication between smart

devices, together with analysis and decision-making

based on the data collected of these devices (Lloret

et al. 2016), for these reasons we review some of these

architectures. In a study conducted by Lloret et al.

(2016), an integrated IoT architecture is proposed that

includes a review of the main features of smart meters

and the existing communication protocols for smart

measurement of electricity, water, and gas between

different systems for a smart city. In a research article

by Horsburgh et al. (2017), an open-source IoT archi-

tecture, which includes local processing and low-cost

hardware, is proposed to measure and record water

consumption in a university. Similarly, a low-cost IoT

architecture is presented by Zafar et al. (2018), which

in addition to its simplicity allows real-time moni-

toring of the temperature and humidity environment.

Unlike the previous jobs consider one IoT device, in

a study conducted by Stewart et al. (2018), an archi-

tecture is presented that includes water, electricity,

and gas meters, which, through an information sys-

tem, it shows the multi-dimensional behavior of the

user. In relation to existing communication protocols,

an architecture is presented by Alvisi et al. (2019)

that includes an additional layer (Edge Gateway ) that

allows interaction between them, which the user can

select from the variety of smart meters without having

to feel tied to a supplier (vendor lock-in).

Some work on IoT architectures for intelligent

water measurement has focused on quality. Dong et al.

(2015) explore three major subsystems for smart water

quality monitoring system, namely the data collec-

tion subsystem, data transmission subsystem, and data

management subsystem. Saravanan et al. (2018) pro-

posed a SCADA system that uses IoT to perform

real-time monitoring, where temperature, color, flow,

PH, and pressure are measured. Chen and Han (2018)

desired to show the feasibility of collecting real-time

data with high frequencies and instantly display them

online within a smart city, for this they build a water

monitoring system based on the platform “Bristol Is

Open” and conclude that its architecture is easily

scalable for a larger network of sensors.

Wireless technology

Technological solutions based on IoT require wire-

less communication technologies, through which the

devices can receive and send data effectively (Marais

et al. 2016), so their review is necessary. In a research

article by Joo et al. (2015), several intercom tests

between IoT devices were performed, where it was

determined that using UHF and the internet (TCP/IP)

the signal is more stable compared with UHF, DCU,

and Wibro, in addition, their results show that the aver-

age reception of the packages was 94.1%. On the other

hand, to monitor and collect information (pH, temper-

ature, etc.) of a river’s flow over a large area, in a study

conducted by Chung and Yoo (2015), it is proposed to

use a low-cost wireless sensor network (WSN) whose

results show that data loss is below 1% and network

traffic is reduced to 1/5. In addition, Marais et al.

(2016) proposed to use ZigBee technology with mesh

topology to build an extensive network of intercom-

municated devices that allow maximum effectiveness

when receiving and sending data and, based on their

simulations, data loss resulted less than 0.14%. A

water monitoring system is built by Chen and Han

(2018) in a city based on the “Bristol Is Open” plat-

form; likewise, Wi-Fi is used due to its long range (up

to 100m) and a transmission packaged of up to 7Gbps.
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Fig. 1 High-level diagram of the intelligent water system consumption measurement

Smart water consumption measurement system

The smart measurement system is based on the devel-

opment of an architecture for IoT that covers 5 impor-

tant aspects. First, the capture of water consumption,

which for security must have a data encryption mech-

anism (Zhu et al. 2018). Then, the local preprocessing

of the consumption received. Third, the physical secu-

rity of electronic devices. Then, the storage and visu-

alization of the water consumption obtained. Finally,

the analysis of consumption through the leak detection

algorithm.

Figure 1 shows the five main components of the

system, which allow the collection, storage, analysis,

and visualization of water consumption. In the “House

Data Collection” component, each time period t1 (can

be 1 min), the value of water consumption is obtained

through a smart meter, which is sent to the “Edge

Gateway” component for storage. Within this compo-

nent there is an installed “Anti-Tampering” security

Fig. 2 Physical view of the smart measurement of water consumption
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Fig. 3 Technological view of the smart measurement of water consumption

mechanism that alerts the user and administrator in

case of manipulation of the device. Then, each time

period t2 (t2 > t1, it can be 1 h), the accumulated

consumption is sent to the “Cloud” server so that this

value is stored together with the user’s location, which

is obtained through the cell phone’s GPS, and both

are analyzed by the leak detection algorithm “Water

leak Algorithm,” which alerts to the user and admin-

istrator if there is a possible water leak. Also, within

the “Cloud” there is a web portal that allows the user

to visualize, in real time, the history of their water

consumption.

On the other hand, in Figs. 2 and 3, the physical

and technological view of the proposed architecture

that connects the five components already mentioned

can be appreciated. In the physical view, the physi-

cal devices used in each component together with the

main services that are installed in them are shown in

a high level. And in the technological view, it shows

the name of the software, programming language,

database, platform, and operating system used in each

component.

Fig. 4 Smart water meter
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Fig. 5 Raspberry Pi (Edge Gateway)

House data collection

Through this component, each time t1 captures water

consumption, which is sent to the local server (Edge

Gateway) digitally for storage and processing. The

consumption is obtained through a sensor of water

pulses (Seeed n.d.-a) , where approximately for every

367 pulses they are equivalent to the pass of 1 L of

water. Then, the NodeMCU ESP8266 module (Hand-

son Technology n.d.) is responsible for transforming

these pulses to digital values with JSON format,

which are sent to the Gateway via Wi-Fi and using a

lightweight protocol called MQTT. Figure 4 shows the

smart water meter used.

Edge gateway

This component receives the data obtained from the

“House Data Collection” component, which are stored

and processed to be subsequently sent in a single

frame the accumulated in time t2 to the “Cloud” com-

ponent. This local server is mounted on a small, low-

cost computer with Wi-Fi connection called “Rasp-

berry Pi” (Raspberry Pi n.d.), which is shown in

Fig. 5. On the other hand, the processing is done using

the “Node-Red” software, which, through a flowchart

interface, adds logic that allows the transformation

and storage of the data in a NoSQL database called

CouchDB, as shown in Fig. 6, which contains a pro-

cess that is executed every time t2, and which is

responsible for obtaining the accumulated consump-

tion within that period and sending it to the “Cloud”

component for later storage and analysis (see Fig. 7,

when t2=1 h).

Anti-tampering mechanism

This component seeks to ensure that, in case of any

physical manipulation of the “Rasperry Pi” device, an

alert is issued to the user and administrator in order to

guarantee its proper functioning. This can be achieved

through a vibration sensor such as SW-420 (Seeed

n.d.-b), which also allows the sensitivity level to be

calibrated. This component was not implemented in

the prototype; however, Abreu et al. (2018) consider

physical protection is a requirement of almost every

IoT device that is physically accessible by anyone.

Cloud

This component receives the data obtained from the

“Edge Gateway” component and the user’s location

through the cell phone’s GPS, which is sent every time

t3 (t1 < t3 < t2), so that they are jointly stored, ana-

lyzed, and displayed in a Cloud platform. Storage is

done in a NoSQL database called “Cloudant” from

IBM Cloud (IBM n.d.-b). Then, the analysis is per-

formed on the IBM Stream Flow Analysis platform

(IBM n.d.-a), which allows analyzing and acting in

real time on massive amounts of data (structured or

unstructured) that may come from different sources

and that are constantly sent, such as shown in Fig. 8,

and under an algorithm made in Python, it instantly

evaluates each record that arrives to see if there is a

possible leak. In addition, in this component “Cloud”

there is a web portal, which is deployed in Azure

Cloud (Microsoft n.d.), so that users can see, in real

time, the location of their smart meters, which are

obtained by GPS from the users’ cell phone at the

time of installation, and their water consumption (in

real and historical time), as shown in Figs. 9 and

10, respectively, through an interface made in Angu-

lar, which obtains the data from an API programmed

in .NetCore that connects to the “Cloudant” database

through the http protocol.

Water leak detection algorithm

The algorithm shown in Fig. 12 detects the possible

existence of a water leak considering four scenarios,

for this it takes the input parameters: device ID, user
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Fig. 6 Node-Red—Flowchart of the data transformation and storage process

ID, time t2, consumption in t2, and the location, the

latest was used in the article conducted by Pan et al.

(2015) to reduce consumption in smart homes. Each

iteration of the algorithm is executed at the end of t2,

and it checks whether the water consumption matches

any of the four leak scenarios: “negative trend” (A),

“24-hour consumption” (B), “similar consumptions”

(C), and anomalous high consumptions” (D). This ver-

ification of scenarios is carried out sequentially A, B,

C, D, and if at least one of them is verified, a leak

detection alert is sent to the user and the administrator,

who can confirm or reject the alert through the mobile

Fig. 7 Flowchart of the data send process from the “Edge Gateway” component
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Fig. 8 IBM stream flow analysis

application (see Fig. 11), and thus improves the preci-

sion of the algorithm in a subsequent iteration. Each

scenario is explained below:

– Scenario A verifies if the consumption received

has a negative value or the total consumption

accumulated in the last 24 h has a negative trend;

this could be due to failures in the smart meters

when capturing consumption (Alvisi et al. 2019).

– Scenario B verifies if there is a continuous flow

of water consumption in the last 24 h, since there

was no consumption at any zero time, which is

Fig. 9 Device location

view
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Fig. 10 Consumption

views
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Fig. 11 Alert and confirmation message

highly unlikely for normal consumption; this rule

is known as CNZ.

– Scenario C verifies if the consumption received

coincides with the last two registered consump-

tions, since it is highly unlikely that consecutively

there will be very similar consumptions; we call

this rule C3S (three similar consumptions in a

row).

– Scenario D verifies if there is a high consump-

tion outside its historical behavior. To do this, first

all historical consumption that resembles this is

obtained, both in the quarter, day of the week, and

after, all those that have been marked as anoma-

lous. Afterwards, these consumptions are indexed

by days, and each day follows four characteristics

that are obtained: average consumption, mini-

mum consumption, maximum consumption, and

the average hour range to which the consump-

tion being evaluated belongs; this range can be

between 0 h to 6 h, 6 h to 12 h, 12 h to 18h

and from 18 h to 24 h. Next, for each of the four

characteristics, the K-NN algorithm is applied in

order to obtain a list of the consumptions that are

closest (K = 4) to the input consumption. Next,

the Tchebysheff theorem (Barnes 1994) is used

to construct a confidence interval, which guaran-

tees that at least 75% of the list of consumption

obtained previously is within 2 standard devia-

tions of the mean, if the value of consumption

received is outside this range, it is considered a

“possible leak” of water. Finally, if there is “pos-

sible leakage” and the person is not at home,

consumption is considered high outside of their

historical behavior. This entire sequence of steps

has been denoted as the CHA (historical anoma-

lous consumption) rule.

Results and discussions

The proposed solution was installed in the depart-

ment of the city of Lima, and was evaluated in two

different aspects. First, the error rate of the water con-

sumption record reported by the system was evaluated.

Secondly, the leak detection algorithm accuracy was

measured where a data set was used and the consump-

tions were simulated to see if the application detected

or not a possible leak (Fig. 12).

To evaluate the margin of error of the smart meter

on water consumption in liters, a model had to be

assembled and the water flow measurement algorithm

was gradually calibrated. Figure 13 shows the design

of the model, where the water flow is measured by

a flow sensor that records the pulsations generated

by the passage of water. Then, through a bucket with

marks (0.5 L, 1 L, 1.5 L, 2 L, 2.5 L, 3 L, 3.5 L, 4

L, 4.5 L, and 5 L), the liters registered by the system

were corroborated against the actual liters that have

passed through the pipe. It is worth mentioning that

the calibration started with the factor recommended

by the sensor documentation (Chung and Yoo 2015),

which details that 330 pulses/min equivalent to 1 L,

but, because the margin of error was very high with

that factor, it continued calibrating until reaching 372

pulses/min.

The margin of error is calculated with the following

metric:

Error = |(real value − value)/real value ∗ 100)|

(1)

Table 1 shows the ten tests carried out with the

last mentioned factor and reached a percentage of

4.63% error margin, for 10 random values from 0.5 to

5 L.

On the other hand, to measure the precision of the

leak detection algorithm, 10 different scenarios were

simulated, this being compared with other existing

algorithms. In first place, the test data was obtained

(DAIAD 2019) that serves to obtain a history of con-

sumption, and it consists of 674,020 records of 92

consumers, in 1 year of consumption, with hourly

consumption records, and in many cases less than 24

records per day; because the data is desired to be

the most recent, the measurement dates were updated

to the years 2018–2019 and only 9 consumers were

randomly selected, generating a dataset of 69,194
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Fig. 12 Flowchart of the leak detection algorithm

records. Subsequently, the following scenarios were

defined:

– Normal Consume Week (NCW): These are the

hourly consumptions between Monday and Fri-

day where there is a normal consumption of water

without the presence of a leak.

– Normal Consume Weekend (NCWD): These

are the hourly consumptions between Saturday

and Sunday where there is normal water con-

sumption without the presence of a leak.

– Normal Consume Night Work (NCNW): These

are the hourly consumption on the days where a

person usually does work at dawn and his water

consumption is considered normal.

– Normal Consume First Day (NCFD): Refers to

hourly consumption on the first day of system use,

where there should be normal consumption.
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Fig. 13 Smart meter model

– Normal High Consume Is at Home (NHCIAH):

Consumption per hour on days where there was a

high increase in water consumption, but the user

is at home and is not considered an anomaly or

water leak.

– Anomalous High Consume Week (AHCW):

These are the hourly consumptions between Mon-

day and Friday where there is the presence of

leakage due to high anomalous consumption.

– Anomalous High Consume Weekend

(AHCWD): These are the hourly consumptions

between Saturday and Sunday where there is

the presence of leakage due to high anomalous

consumption.

– Anomalous Consume Non-Zero (ACNZ):

These are the hourly consumptions in which dur-

ing the last 24 h in a row water consumption has

not stopped registering and there is not at least

1 h where consumption is zero.

– Anomalous Consume Similar (ACS): These are

the hourly consumptions where there are three

consecutive consumptions with very similar val-

ues (+ -1 L), which is considered anomalous.

– Anomalous Consume Negative (ACN): These

are the hourly consumptions in which during the

last 24 h there has been a negative trend in the

accumulated consumption of water or a negative

consumption has been registered.

The algorithms applied are the Minimum Night

Flow (MNF), Continuous Flow (CF), and Average

per Hour (AVG). The MNF assumes that any existing

water consumption between 2:00 a.m. and 4:00 a.m.

they are indications of a possible leak. Then, the CF

says that if there is no zero consumption within a 24-

h range, it is considered a possible leak. Finally, the

AVG is an average of consumption per hour made and

if that average is passed it is an indication of leakage.

To simulate anomalous consumption, consumption

had to be updated at certain times after 2019, but the

data for 2018 were not altered in order to have a his-

torical pattern of behavior that would help us detect

any anomalous behavior in 2019. The alterations were

made to generate records for the anomalous scenarios

and the NHCIAH scenario, for example, for the ACNZ

scenario, a random value was added to consumption

that had zero, and for NHCIAH it was established that

the user was within their home having a high con-

sumption. The data set and test scenarios are available

at https://github.com/henrygustavo/data set, with the

test distribution by scenario of NCFD with 48, NCNW

Table 1 Comparison of actual water consumption vs. consumption recorded by the system

Pulses Real value (liters) Value (liters) Error

1 367 1.00 0.99 1.00%

2 546 1.50 1.50 0.00%

3 794 2.00 2.14 7.00%

4 1153 3.00 3.10 3.33%

5 1197 3.00 3.22 7.33%

7 1504 4.00 4.04 1.00%

8 1606 4.00 4.32 8.00%

9 1812 4.50 4.87 8.22%

10 1967 5.00 5.29 5.80%

Avg. 4.63%
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Table 2 Confusion matrix

Benchmark

Presence of water loss Absence of water loss

Algorithm Presence of water loss TP FP

Absence of water loss FN TN

with 32, NCW with 120, NCWD with 46, NHCIAH

with 29, ACN with 68, ACNZ with 96, ACS with 32,

AHCW with 85, and AHCWD with 48, making a total

of 275 tests for scenarios of normal consumption and

329 for anomalous consumption. In addition, each test

has a field called “isAnomalous” with a value of 1 or

0 that indicates whether or not to issue a leak alert for

a specific consumption.

The measurement of the algorithm is carried out

through the confusion matrix that allows measuring

the performance of the algorithms against the refer-

ence or expected consumption (Benchmark), which

is appreciated in Table 2, where its main values

are:

– True Positive (TP): Water leak identified by the

algorithm.

– False Positive (FP): Non-existent water leak,

incorrectly identified by the algorithm (false

alarm).

– False Negative (FN): Water leak not identified by

the algorithm.

– True Negative (TN): Real absence of water leak-

age (most cases).

The following metrics were calculated based on the

results provided by the confusion matrix:

Accuracy =
T P + T N

T P + T N + FP + FN
(2)

Recall =
T P

T P + FN
(3)

Precision =
T P

T P + FP
(4)

F1 score = 2 ×
Precision × Recall

P recision + Recall
(5)

Accuracy indicates the percentage of leak and non-

leak scenarios correctly identified by the algorithm.

Recall quantifies the algorithm’s ability to identify

alarms, measured by the ratio, correctly identified

alarms to the numerical total of true alarms. Preci-

sion measures the algorithm’s ability to avoid false

alarms, based on the ratio between the number of

Table 3 Scenarios of normal water consumption

Scenario UserId Date # Tests Leakage/day MNF CF AVG Proposed algorithm

NCFD 2 2018-03-01 24 0 0 0 0 0

NCFD 3 2018-03-01 24 0 2 0 0 0

NCNW 1 2019-02-25 16 0 3 0 1 0

NCNW 1 2019-02-27 16 0 3 0 1 0

NCW 2 2019-01-07 24 0 0 0 5 0

NCW 2 2019-01-22 24 0 1 0 4 0

NCW 2 2019-01-23 24 0 0 0 5 0

NCW 3 2019-01-24 24 0 2 0 3 0

NCW 3 2019-02-08 24 0 4 0 1 0

NCWD 4 2019-02-02 24 0 1 0 1 0

NCWD 4 2019-02-24 22 0 1 0 2 0

NHCIAH 1 2019-02-01 9 0 0 0 6 0

NHCIAH 4 2019-01-07 20 0 0 0 1 0

Total 275 0 17 0 30 0
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Table 4 Scenarios of anomalous water consumption

Scenario UserId Date # Tests Leakage/day MNF CF AVG Proposed algorithm

ACN 7 2019-02-28 22 1 0 0 5 1

ACN 8 2019-02-28 23 1 1 0 1 1

ACN 9 2019-02-28 23 2 1 0 2 2

ACNZ 3 2019-01-02 24 1 5 1 4 1

ACNZ 3 2019-01-18 24 1 5 1 5 1

ACNZ 7 2019-01-17 24 1 5 1 6 1

ACNZ 9 2019-01-15 24 1 5 1 6 1

ACS 1 2019-01-04 4 1 3 0 0 1

ACS 1 2019-02-02 20 1 0 0 5 1

ACS 8 2019-01-03 8 1 0 0 3 1

AHCW 1 2019-02-21 8 1 0 0 1 1

AHCW 5 2019-02-27 16 1 3 0 7 1

AHCW 5 2019-02-28 22 2 3 0 12 2

AHCW 6 2019-01-15 20 1 0 0 3 1

AHCW 6 2019-02-18 19 1 0 0 6 1

AHCWD 8 2019-02-23 24 1 0 0 1 1

AHCWD 8 2019-02-24 24 1 0 0 1 1

Total 329 19 31 4 68 19

identified true alarms and the total number of alarms

identified by it. Finally, the F1 score allows evaluating

the algorithm’s ability, in a single metric, to distin-

guish between hours with and without water loss and

is calculated as the Recall and Precision harmonic

mean.

Tables 3 and 4 show the results obtained from the

tests carried out in the different scenarios of nor-

mal and anomalous consumption, respectively. The “#

Tests” column is the amount of consumption per hour

that has been tested by the different algorithms on a

given day. Then, the “Leakage / day” column is the

number of leaks to be detected on a given day. Sub-

sequently, the columns “MNF”, “CF”, “AVG”, and

“Proposed Algorithm” show the number of leaks that

have been detected during the day.

Table 5 shows the result of the confusion matrix,

where it can be seen that the proposed algorithm has

an Accuracy, Recall, Precision, and F1 score of 100%

that are superior to the other algorithms.

Table 5 Results of the confusion matrix by the algorithm

Metric Metric name MNF CF AVG Proposed algorithm

Population Population 604 604 604 604

P Condition positive 19 19 19 19

N Condition negative 585 585 585 585

TP True Positive 1 4 10 19

TN True Negative 538 585 497 585

FP False Positive 47 0 88 0

FN False Negative 18 15 9 0

ACC Accuracy 0.89 0.98 0.84 1.00

TPR Recall 0.05 0.21 0.53 1.00

PPV Precision 0.02 1.00 0.10 1.00

F1 score F1 score 0.03 0.98 0.17 1.00
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Conclusions

This work has proposed an architecture for a water

consumption measurement system that covers five

important aspects, which are the measurement of

water consumption, local record consumption pro-

cess, physical security of the electronic device, storage

and visualization of the consumption obtained, and

leak detection. The proposed architecture is func-

tional, integral because it covers various aspects of

measurement and leak detection, and is maintainable

due to its high level of decoupling. In addition, a

system based on the proposed architecture has been

implemented which shows that the architecture allows

the integration of various technologies and program-

ming languages, the communication between different

Cloud services, the use of low-cost hardware, the use

of free software, and also covering various aspects of

the problem of water consumption measurement and

leak detection.

For the leak detection, an algorithm was introduced

that considers the location of the user, the historical

data, and the rules MNF and CNZ of the literature

and C3S and CHA are the proposed rules that manage

to cover 10 possible scenarios of water consumption

between normal and anomalous consumption.

Numerical tests on 10 records of water consump-

tion show that the system has a margin of error of

4.63% with low-cost equipment. Also, the leak detec-

tion algorithm for 604 test cases between normal and

anomalous detects all leak situations, and presents an

Accuracy, Recall, Precision, and F1 score of 100%,

surpassing the rest of the leak detection algorithms.

Finally, future work will be focused on two impor-

tant areas such as device security and the architecture

scaling for microservices, which we consider feasible

given the high decoupling of the components.
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