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Abstract: Water management is one of the crucial topics discussed in most of the international
forums. Water harvesting and recycling are the major requirements to meet the global upcoming
demand of the water crisis, which is prevalent. To achieve this, we need more emphasis on water
management techniques that are applied across various categories of the applications. Keeping in
mind the population density index, there is a dire need to implement intelligent water management
mechanisms for effective distribution, conservation and to maintain the water quality standards
for various purposes. The prescribed work discusses about few major areas of applications that
are required for efficient water management. Those are recent trends in wastewater recycle, water
distribution, rainwater harvesting and irrigation management using various Artificial Intelligence
(AI) models. The data acquired for these applications are purely unique and also differs by type.
Hence, there is a dire need to use a model or algorithm that can be applied to provide solutions across
all these applications. Artificial Intelligence (AI) and Deep Learning (DL) techniques along with the
Internet of things (IoT) framework can facilitate in designing a smart water management system
for sustainable water usage from natural resources. This work surveys various water management
techniques and the use of AI/DL along with the IoT network and case studies, sample statistical
analysis to develop an efficient water management framework.

Keywords: internet of things (IoT); deep learning (DL); artificial intelligence (AI); water distribution;
water quality; waste water management; water conservation

1. Introduction

Water management involves the tasks of conserving the water resources, harvesting
the water, planning the available net water resources, and distributing it very appropriately
to the consumers. It also involves setting up of policies and practices to execute the tasks
under fragmented controls. The conventional methods and practices were found to be
inadequate in executing the tasks effectively. Water management practices need to take
full account so as to maintain the water resource sustainable over the long term. Nearly
97% of water is salty and not suited for drinking. The pollution also affects the available
water. Several sectors like intensive agriculture [1], wastewater (UN-Water, 2011), mining,
industrial production and untreated urban runoff are the major causes of water pollution.
Water from various sources needs to be utilized in an efficient manner which lacks in
traditional water management methods. The existing methods for water usage are not
so cost-effective [2], and there is also a disinclination towards implementing the latest
information and communication technologies (ICT). The machine learning algorithms have
the potential to expand the learning process in an exponential manner with a specific target.
Standard algorithms would not scale exponentially to cover undiscovered patterns in the
new data sets. Water management is required in the areas such as agriculture, public supply,
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industry, mining, generating hydro power, aqua culture and livestock hood. In agriculture,
the key challenges are with respect to water access methods, efficient use of water and
sustainable practices to conserve and harvest water. In India, industries are the second
highest consumers of water as well as one of the highest source of pollutants. The industries
take the water from ground water or surface water. The choice of the selection depends
upon various factors like ground water availability, surface water availability, cost and
demand of the fresh water from the municipal corporation. The demand for the water by
the industries/factories/mining keeps growing on par with the increase in urbanization.
Simultaneously, there is an increase in wastewater disposal without treating it appropriately
into the natural sources, which is again also polluting the unpolluted water. Due to the lack
of adequate water management policies, effective monitoring methodologies need to be
devised for the industries to maintain a storage treatment plant (STP) and use this treated
water for their purpose. Prolonged drought is also a major issue faced by the general
public in the metropolitan cities. Managing the water supply during water shortage
season is one of the demanding tasks by the officials of the metropolitan water board.
This is the challenge that paved the way for the intervention of intelligent techniques.
The water distribution infrastructure modelled by the smart algorithms supports efficient
distribution of safe and sustainable water supply to the general public. The model built
with intelligent techniques would recommend smart appliances which would utilize less
water, impose restriction towards the amount of water usage at homes and apply tariffs for
water usage. The quality of the water is assessed by three classes of attributes: physical,
biological and chemical. Some of the quality indicators (pollutants) of water include
chlorophyll, pH, dissolved oxygen, heavy metal contents, chloride and lead. There are
a few researchers who use location and elevation of water bodies as inputs into various
machine-learning approaches to forecast pollution [3]. The intelligent systems such as
IoT, deep learning [4] and machine learning algorithms could be harnessed towards the
process like leak management, flow monitoring, overuse, contamination and devising
strategies towards acceptable water use (Figure 1). This paper aims to bring to the forefront
compelling new opportunities for intelligent techniques intervening to address the major
challenges faced in water management.
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Figure 1. Harnessing intelligent systems for water management.

1.1. Contributions of the Work

• This prescribed work analyzes various water management techniques that provide
solution for the harvesting, recycling and conservation of the water resource (Figure 2);
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• This work also signifies various water management techniques with detailed analysis
and case studies;

• The work uses the contribution of Artificial Intelligence through applications that are
supported by the Deep and Machine learning techniques;

• The work also researches various challenges in the deployment of efficient water
management system with future directions.

Water Management

Irrigation

Water 
Re-use

Water 
Sustainability

Waste Water 
Management

Rain Water 
Harvesting

Figure 2. Water management and its parameters.

1.2. Organization of the Work

The organization of rest of the paper is as follows: Section 2 discusses about the
background of the water management which includes the techniques and applications
using IoT and AI. Section 3 discusses about sample statistical analysis. Section 4 discusses
various case studies pertaining to deployment of intelligent techniques in water manage-
ment. Section 5 highlights the challenges and future directions. Section 6 gives an insight
about how this study can be useful for researchers working on deploying smart water
management systems. Finally, we conclude by listing AI methods and challenges in water
management systems.

2. Background

This section discusses about the existing water management using IoT and AI
techniques.

Measuring the water quality is a crucial task for effective water distribution for smart
cities. Detecting the pollutants in the water resource is one of the primary tasks to be
performed. There are various AI based methods used for treatment of wastewater. Zhao
et al. [5] surveyed different AI techniques pertaining to the wastewater treatment process.
The authors also discussed the applications of AI used for wastewater management, and
the cost and the logistics involved in the entire process. The authors concluded that Artifi-
cial Neural Network (ANN) and Federated Learning (FL) were the two major effective AI
methods used in the wastewater treatment process. In a similar survey, Malviya et al. [6]
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discussed about the major parameters to be measured in wastewater such as Chemical
Oxygen Demand (COD), pH levels, Biological Oxygen Demand (BOD), nitrogen, turbidity
and sulphur using Genetic Algorithms (GA). The authors also highlighted that the trace of
heavy metals and other effluents can be determined by implementing ANN combined with
other AI methods which can produce an accuracy of 85–90%. In another work, Nouran
et al. [7] highlighted the usage of the adaptive neuro-fuzzy inference system (ANFIS),
support vector regression (SVR) and feed forward neural network (FFNN) for determining
BOD and COD of the Tabriz wastewater treatment plant (WWTP). The author also imple-
mented the autoregressive integrated moving average (ARIMA) to predict the effluents
to differentiate the nonlinear and linear models capability in prediction. The major cause
of water pollution is due to the presence of heavy metals such as arsenic, chromium, lead,
mercury, etc. This might be due to the industrial effluent or agricultural runoff in surface
and groundwater. The use of AI models for heavy metal detection is an onerous process
due to the complexity involved in the choice of prediction method, adjusting the variables
and optimizing the training process. Bhagat et al. [8] reviewed different AI techniques
which might be suitable for heavy metal detection from the water source. The authors also
enlist the challenges of each method and possible solutions. Microfiltration is one of the
efficient biological wastewater treatment processes. Membrane Bioreactors (MBR) provide
an effective way for detection and removal of suspended/organic solids. Kamali et al. [9]
analyse the performance of membrane bioreactors by implementing AI techniques. Further-
more, the authors also suggest that the combination of AI prediction algorithms and MBR
would be an optimized way for mitigating the pollutants in the water source. In a similar
research survey, Viet et al. [10] reviewed the implementation of AI models along with MBR,
which is offering a better performance than the existing biological process of wastewater
treatment. The presence of organic nitrogen and ammonia adds to the effluent levels of
a water source. Manu et al. [11] deployed ANFIS and SVM to examine the accuracy ratio
in the mitigation process of Kjeldahl Nitrogen in the treatment of waste water. The input
parameters considered for AI modelling and training process were Kjeldahl Nitrogen, total
solids (TS), COD, ammonia and pH, which were recorded live from the treatment plant
of wastewater in Mangalore on a quarterly basis. The error rate for prediction of Kjeldahl
Nitrogen by SVM was better than the ANFIS model and thus the authors concluded by
suggesting the usage of SVM, which provides more efficacy in predicting the trace elements.
Water evaporation is one of the major parameters for water scarcity especially in tropical
regions. Soltani et al. [12] discussed how the surface evaporation impacts water loss by a
floating solar system in a wastewater pond using an artificial intelligence algorithm. All
independent variables are employed in the simulation as inputs for the neural network,
and the dependent variable is the size of the pond. The neural network proved to be
best topology for forecasting the level of water that is constructed with 35 neurons in the
hidden layer, and it had nine inputs and one output; it achieved a correlation coefficient
of 0.999 and a mean square error of 4.64658 × 1020, according to the results of sensitivity
analysis. The most current technique for the destruction and adsorption of a wide spectrum
of wastewater pollutants is nanotechnology, particularly green synthesis nanoparticles.
XRD, SEM, and EDAX analyses were used to characterise the Green Synthesis nano Zero
Valent Iron (GT-nZVI) which is extracted from soft black tea. Mahmoud et al. [13] studied
various nonlinear adsorption and kinetic models and are investigated to better understand
how organic matter, as represented by COD and BOD, adheres to GT-nZVI. According to
the data, GT-nZVI is successful at removing COD and BOD from wastewater, with removal
efficiencies of 87.9 and 100% for COD levels of 600 15.0 and 100 11.8 mg/L and 91.3 and
100% for BOD levels of 365 and 60 mg/L, respectively. The amount of effluents deposited
in the water source is majorly due to industrial waste being dumped. Organic pollutants
including lipids, sugars and starches raise the COD levels over what is acceptable for
release into sewage systems. Mahmoud et al. [14] analysed a drop-by-drop approach to suc-
cessfully synthesise Fe/Cu NPs, and they were then characterised by XRD, SEM, and EDAX
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analysis. For starting COD concentrations at pH 7, NP dose of 0.6 g/L, 15 min, and 150 rpm,
the removal efficiencies ranged from 100 to 69% and between 100 and 800 mg/L.

In the modern era, the use of AI in smart water management system has several
implications to improve the water supply and efficient service delivery [15]. Developing AI,
DL and ML with IoT technologies are expected to embed intelligent models to overcome
complexity and challenges in water management systems [16] and water supply and
distribution systems [17]. AI and Machine learning based models are demonstrated in
water management applications such as wastewater treatment, water pollution control,
smart agriculture, optimize water usage, automate critical water, water quality, water level
monitoring, and water based agriculture such as aquaponics and hydroponics [18–20]. Most
of the ML models used in water management domain are ANNs [21], ANFISs [22], recurrent
neural networks (RNNs) [23], random forest (RF) [24] and support vector regressions
(SVR) [25].

Water management in the agriculture sector is playing a vital role for the growth of
country economy. Liu et al. [26] built an IoT and a data analytic based intelligent water
management system by using the method of time series forecasting. Here, the authors
designed two models for performing water management system in an effective manner.
The first one is a hardware based ZigBee wireless sensor network monitoring model which
is embedded with software acquisition for measuring data in short-distance transmission
of the farmland environment, and the second one is an IoT based farmland irrigation
model for measuring real-time agricultural water quality. Finally, the author proved that
the proposed models produced accurate results by using different parameters. However,
the author used only 78 statistical data attributes for measuring quality of water, and this
could be enhanced in the future to obtain the result more accurately.

The integration of IoT techniques with the water management system has been render-
ing a wide range of benefits to reduce the critical challenges in a water supply chain system.
In this paper ([27]), the authors studied existing issues that were affected in the rural India
water supply management system, and anticipation of it through incorporation of IoT
techniques. In addition, the authors explored the water resource mismanagement system in
the Indian Government by using different use cases. Finally, the authors provided suitable
solutions to mitigate water resource wastage to Government organization by means of
formulating the IoT based water management system.

For a well organized city, the water dispersion network for a compact supply of water
is essential. The water conveyance framework guarantees that the water has been provided
from the distributed network to the households [28]. The water dissemination framework
is planned in such a way that, at a negligible expense, the demand is satisfied. Because of
urbanization, the water supply demand and the strain to convey them are increasing.
This prompts harm and spillages in the current pipelines and furthermore requires extra
pipelines to satisfy the need. This paper [29] provides a study on Bentley WATERGEMS
software to study the water distribution system in Narangi village, Maharashtra, India.
This software helped the users to examine the progression of water in each pipeline, level
of the water in each tank, and expansion of water stream speed. However, the authors have
a plan to carry forward this work as research to manage the water flow system currently
till 2050.

The thought behind smart city is significantly founded on enhancement of expenses,
better expectations for everyday comforts, water management system, combination of
innovation and quicker exchanges in all fields [30,31]. It consolidates all parts of innovation
in changing a confounded framework into a computerized, complex and a less difficult way
of life. Here, the authors discussed the benefits of integrating IoT and Artificial Intelligence
techniques in prominent needs of people’s daily life. Water source utilization plays a vital
role of defining the quality of the city. Using these information and communication oriented
techniques, it could be achieved to enhance the usage of water in an effective manner. How-
ever, the authors did not focus specifically on the water resource; instead, they concentrated
on the whole management system improvement with the help of current technologies.
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2.1. IoT in Water Management

In agriculture, smart water management for precision irrigation is critical for improv-
ing crop production and decreasing expenses while also contributing to the environmental
sustainability. Kamienski et al. [32] discusses the Smart Water Management Platform
(SWAMP) using IoT in Brazil. SWAMP, which is an IoT platform, builds precision irrigation
in agriculture that focuses on different challenges, like information model, complexity,
deployment, adaptability, and complexity. Four SWAMP models are used by adaptability
to provide enough diversity to understand the specificity and generality levels for several
components of software. Several components of wireless technologies and sensor formats
must be dealt with. In IoT systems, “one size fits all” is not applicable for precision agri-
culture that necessitates finding several ways to configure and connect components of
software in the deployments based on fog/cloud computing. The authors have identified
the necessity of an automated mechanism to deploy the system, given different constraints,
infrastructures and requirements. For the metric scalability, significant improvements
have to be made by FIWARE [33] to solve the issue scalability in case of scenarios that are
extreme. For data storage and distribution in the IoT platform, FIWARE was adopted. The
semantic engine framework and context broker are integrated for the metric complexity.

The authors in [34] proposed a system, namely, Smart AgroTech, which is based on the
IoT platform for urban farming, with soil moisture, temperature, and humidity considered
as very important parameters for farming. This system determines the starting and ending
parameters for identifying the condition of the farming land. The Smart AgroTech system
concept can be used in a smart city setting to improve irrigation management in farming.
Real-time field conditions can be monitored as it is based on IoT, and decisions can be made
based on data acquired from parameters such as humidity, soil moisture, and temperature.
However, the system has several limitations, such as coverage area of the sensors used in
the system, which causes incompetence and data transfer to a web server from the system,
which takes a significant amount of time. A comparison of observed data and actual data
of soil moisture, temperature and humidity yields an average percentage of the inaccuracy
of , 2.51, 2.93 and 1.12, respectively, and presents the concept of feasibility.

Martin et al. [35] discuss smart solutions for the decentralization of water infrastructure
using low-cost sensors in their study. A Smart Rain Barrel (SRB) concept for improved
rainwater gathering uses low-cost IoT sensors. The SRB is made up of a standard rain barrel
that has been enhanced with a a remotely controlled release valve and a water level sensor
device. The use of rain barrels with capacities ranging from 200 to 500 liters aids in the
retrofitting of infrastructure, that is, existing on a large-scale. Every SRB may be controlled
and monitored independently in real time; in addition, the urban water infrastructure can
be integrated into the broader management. To avoid system deterioration, large-scale
adoption of micro storage can benefit the entire urban water infrastructure.

The potential of the IoT framework for management of water supply in a smart city
is exemplified in [36]. Efficient management of a water supply through the use of an IoT
application to automate the operation of a motor in each house is discussed. In comparison
to earlier smart meters, the technology utilizes a waterproof ultrasonic sensor. It also
incorporates cloud-based technology into IoT to make the system scalable.

Peace et al. [37] utilized Internet, sensor technologies to improve irrigation equipment
to enable reasonably precise agricultural irrigation control and to efficiently use water for
irrigation. In Rwanda, the benefits of efficient water usage from the deployment of IoT
technology necessitates overcoming obstacles such as individual farmers’ lack of access to
equipment, and also lack of irrigation management, improper Internet connectivity and
power. The proposed low-cost system will provide control of irrigation automatically based
on seasonal and daily needs when the system sensors are working properly. The authors
described adopting the low-cost MCP and SARSA for irrigation of rice based on IoT in
Rwanda [38].

The authors in [39] proposed a scheme for managing the water for smart cities through
big data analytics and IoT using the Supervisory Controller and Data Acquisition (SCADA)
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Approach. Big data analysis enables the collection of massive data from IoT sensors
deployed in several locations to track the quality, physical status, and use of the devices.
The research analyzed systemization and modern storage choices for Big Data and IoT,
as well as ways for analyzing and visualizing the data. The study shows that there is
a wealth of information on the wastewater and water supply. This means that more
technological resources are required to process these data in a timely and cost-effective
manner. The benefit of IoT and Big Data is that several models can be built for many
segments depending on the information that is available. These models are critical tools
for evaluating, running and scheduling current water distribution networks across time.
This improves prediction when using an appropriate model. Using big data spectral
analysis [40], the authors identified the greatest frequency of water loss cycles. Water
distribution entails collecting, storing, analyzing and visualizing IoT sensors and Big data
to manage and improve their development processes. The implementation intends to
produce better levels of sustainable water supply by proactively controlling water usage to
both companies and customers.

Gonçalves et al. [41] proposes an architecture for managing the water independently,
which is called a REFlex Water. This system uses declarative business processes, Complex
Event Processing (CEP), and IoT to regulate water supply. IoT devices provide low-cost
and efficient solutions for controlling distribution of water and also in monitoring the
same in real time. Declarative business process languages [42] give the flexibility and rigor
needed to design systems with unpredictable behavior. Complex Event Processing (CEP)
technology [43] is capable of handling enormous data streams generated by the sensors
in IoT; additionally, all rules stated in a declarative business process language may be
expressed by CEP languages. REFlex Water is built on FIWARE, which is an open-source
platform. A broad set of APIs for the development of smart city applications is provided by
REFlex. The authors have also presented a practical use of REFlex Water by using a realistic
water distribution system established in a city in Brazil. This scenario is now being applied
throughout the Brazilian water supply system.

Nations are working to make agriculture more sustainable by integrating diverse
technologies to enhance its operation. The Sustainable Development Goals (SDGs) are
addressed via SMART irrigation, which makes use of IoT and sensory systems [44]. IoT
and automation are integrated with farming methods to increase the efficiency of the entire
process. Irrigation systems are an important factor in the creation of optimum irrigation
systems, which could improve the utilization of ongoing research and development efforts
aimed at improving the sustainability of operations. According to a study, sensory systems
improved farmers’ understanding of their crops, reduced environmental consequences,
and helped farmers preserve resources. Water scarcity involves a deficit of water, shortage
of water and also the water crisis. IoT brings down technology’s overall cost, opening up
the possibility of managing the irrigation process monitoring system. Real-time monitoring
for irrigation activations and precision farming is also facilitated by using wireless sensor
networks (WSN).

For all urban systems, groundwater management is crucial. Data must therefore
be made available to different decision-makers and stakeholders upon request. In order
to gather, analyse and share groundwater data for a variety of purposes, this research
work [45] proposes a conceptual framework that has been put into practise. Data gathered
continuously from several sources and processed into a common format are made available
under controlled access. The four primary components of the system are the Retriever,
Collector, API Management Service, and Watchdog. This system’s key advantage is that
it permits the intake of any spatiotemporal data along with associated meta-data. This
system helps with consistency, standardisation and data sharing in the water management
sector, allowing stakeholders to focus more on data analysis rather than data retrieval and
manipulation. The technology has undergone rigorous testing and has been implemented
in numerous connected instances. With this method, the most recent data as well as past
records are constantly accessible for immediate inquiries and deeper analysis.
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Residential water supplies are subject to contamination from pipe residues and silt,
which causes cloudiness, a terrible taste, and an odor in the water. One of the key elements
for determining the quality of water is turbidity, a measurement of water cloudiness.
The study [46] suggests a cost efficient system based on a light detecting device to gauge
water cloudiness. The three components of the system architecture are the user interface,
gateway device and turbidity sensing. A microcontroller with digital outputs can control
larger loads. The system will start the process to filter and clean the water once the turbidity
level reaches a certain point. In two separate environments which are darkness and ambient
light, the voltage output recorded from the developed system versus the total suspended
solid (TSS) in a sample of water is graphed and examined. For both the 90° and 180°
detector, turbidimeters were installed, and it was discovered that the trends of the projected
graph fall as the total suspended solid increases, simulating the trends of a commercial
turbidimeter. Using a Thingspeak.io service [47], the data obtained from the board are
successfully logged to the cloud. With the foregoing findings taken into account, a design
for a real-time, low-cost web-based water quality monitoring system in an IoT environment
was suggested.

In a wide variety of ways, water is vital to our everyday routines. Technologies that
address water-related issues include adaptive management, remote sensing, global infor-
mation integration, and others. This research work [48] utilizes Dam Water Management
system (IoT-DWM) based on IoT to reduce water wastage. The IoT-DWM also includes
many elements, including an IoT network section, a field sensor section, and a dam control
section. The data could be monitored by several sensors set in the agriculture farm area,
and data will be transmitted to the server. The dam controller obtains the actual data for
the specific location and calculates the water demand. The water needs vary based upon
the crop planted in that location. When predicting water requirements, the controller takes
into account several data points, such as crop kinds in that location, temperature, humidity
and wind speed. Utilizing IoT-DWM to simulate water demand results in greater perfor-
mance, significant water savings and a decrease in water scarcity. A significant quantity
of dam water will be saved as a result of the controller’s automated adjustment of the
flow control lever dependent on the weather. Matlab is utilized for the simulation, and the
results reveal that the suggested system is employed for water management systems on a
large-scale.

Nandhini et al. [49] developed effective water management and intrusion detection
system using IoT. The automatic irrigation system has been utilized to measure soil param-
eters, including soil moisture, pH, and humidity. The pressure sensor’s detected values are
displayed on the dashboard. With the aid of a PIR sensor, the intruder detection system is
carried out, and birds are deterred from reaching the agriculture field. A communication
channel between the farmer and the agricultural field has been created using the GSM mod-
ule. The farmer gets updated about the current field state by SMS, and via the dashboard,
it helps farmers to reduce manpower and time.

To study the supply and demand of tap water in Taiwan, an Intelligent water manage-
ment (IWM) has been used. The research [50] objective is to enhance the management of
water in the country. Leveraging the SCADA technology that uses sensors in an infrastruc-
ture that is distributive, the system manages the assets, monitors discharge, assesses quality,
and detects leaks of water utility. The authors proposed a prototype for intelligent monitor-
ing of water utility in urban areas through installation of a smart water meter. However,
a higher water charge is not the motivating factor for its development. The country has
water distribution that is uneven and advanced ICT; hence, it is an ideal region for adapting
IoT technology. Smart cities are a growing issue, in which the application and analysis of
big data are the key success factors. Three steps are utilised to demonstrate intelligent water
management: (1) Selection of a data transmission method; (2) Installing communication
equipment and creating a cloud database; and (3) Implementation of value-added appli-
cations through big data. Water and energy can be saved by managing the water supply
system in a smart way that paves the way for utilization of water resources optimally.
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Water is a crucial component of life and for sustainability of living beings. The popula-
tion of cities is growing quickly in the modern era because more people are migrating from
rural to urban regions. Researchers [51] suggest an IoT-based strategy to address the need
for monitoring water quality. The data are gathered via sensors and made available in real
time through a cloud dashboard. The suggested system uses a variety of sensors, including
a water level sensor, a pH sensor, water flow sensor and a water control valve, in addition
to a Raspberry Pi that serves as the system’s prominent controller. A microcontroller
examines the sensor data before sending it to the cloud using a wireless communication
module. Providing good quality water to every home, business and other establishment
with an appropriate quantity are the advantages of this system, which can be used in smart
city implementation.

2.2. Usage of IoT and Artificial Intelligence for Effective Water Management

In [52], the authors have adopted Long Short-Term Memory (LSTM) embedded with
an ensemble deep learning model and a Convolutional Neural Network (CNN) to simulate
water quality and water levels in South Korea’s Nakdong river basin. The water quality
parameters considered were organic carbon, phosphorous and nitrogen contents. The CNN
produced an acceptable NSE value of 0.933, and the water levels are high in the rainy
season and low in other seasons. LSTM produced a value of 0.75, which is in the “very
good performance” range. Furthermore, the authors applied this technique to simulate the
quality parameters such as dissolved oxygen, chlorophyll, fecal bacteria and algae.

In [53], the authors have deployed an IoT based model to simulate the water level
and water quality. In this system, the LV-MAXSONAR-EZ1 sensor is used to monitor
the water quality, DS18B20, SKU SEN0219 is used to monitor CO2, temperature and KE
SEN0189 sensor is used for turbidity. The proposed model is deployed on the E1-SoC
FPGA Development Kit. The performance output parameters such as turbidity, CO2 and
temperature were monitored. However, this model has not specified the pH levels.

In [54], the authors developed a hydro informatics integration platform (IHIP) based
on a machine learning model, which is used for online flood forecasting and inundation
in regional flood depth. The proposed model disseminates alarms of flash floods and
inundation in regional threats’ areas. The system contains five modules such as data access,
servicer, functional subsystem, data integration and end-user application. The Google
Maps were fused with a proposed model to enhance the advance decision on predication
of floods and alerts to the communities.

In [55], the authors have proposed an ensemble AI based system which includes SVR,
ANFIS, Multivariate Linear Regression (MLR), Group Method of Data Handling (GMDH)
and ANN for foreseeing the infiltrated water irrigation system. The proposed Firefly
Algorithm (FA) optimizer model uses the input parameters such as advance time at the end
of the furrow (AT), inflow rate (IQ), furrow length (FL), infiltration opportunity time (IT)
and cross-sectional area of inflow (CI). The proposed system performance was evaluated
based on the correlation coefficient (R2), root mean square (RMSE), the mean absolute
error (MAE), index of agreement (IA) and the Nash–Sutcliffe efficiency index (NSE). Firefly
Algorithm optimizer models improved the accuracy of RMSE by 1%, 4%, 5%, and 47% in
the GMDH, MLPNN, ANFIS and SVR, respectively.

In [56], the authors have introduced automatic water quality prediction model based
on a framework consisting of PIC micro controller, sensors, monitoring server system and
base station. The proposed model uses the parameters such as temperature, turbidity and
pH for analysing the water quality. The Global System for Mobile Communications (GSM)
monitoring was used to collect the data from the base stations. The GSM system sends alert
signals via Short Message Service (SMS) to the management centre when water quality is
not present as the expected level. However, the proposed model is limited to measure the
water quality and not focused on other significant challenges like leakage of water and
water supply interruption.
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In [57], the authors have developed a smart IoT system which consist of various
sensors for water flow, water supply valve, pH and raspberry core controller. The proposed
model controls/monitors the water storage system by deploying a web interface. The web
interface ensures the uniform water supply management to all water supply points. How-
ever, this model is expensive to be deployed in the real time water supply system with
various characteristics.

In [58], the authors have proposed an intelligent model to anticipate risk in water sup-
ply management systems-based Complex Event Processing (CEP) technology. This model
also allows for controlling the device remotely for real-time water supply. However, it does
not provide the scalability and flexibility in a real-time scenario. In a similar work [41],
the authors presented ensemble model-based CEP, declarative processes and smart IoT
to develop an efficient, flexible and powerful model for water management supply in the
Brazilian municipality. This model uses the REFlex water model to demonstrate the context
of water supply. The REFlex was implemented by using a FIWARE platform which contains
powerful API’s to develop the smart IoT based water supply management systems.

In [59], the authors deployed WaterWise platform to manage and analyse the data col-
lected from the smart IoT system. The proposed platform supports various tasks including
online water leakage detection, pipe leaks, water demand and hydraulic water prediction
and water quality measurement. The developed platform is used to represent smart water
supply management. However, this model does not support dynamic anticipation in the
occurrence of any issues in the water management.

In [60], the authors developed a layered model that contains an application layer,
information communication layer and device perception layer. This model focuses on
developing effective water supply management system to automatize the water manage-
ment for domestic usage. The first layer stores the information about water such as quality,
leakage of water and amount of water consumed for various connection points. The second
layer is used to acquire the data, and the third layer is the sensor networks, which are
used to detect the leakage. In a similar work [61], the authors have implemented an IoT
based solution for automatic water pipe leakage detection. The proposed model contains
several IoT devices and cloud services for efficient detection of pipe leakage. This model
finds the amount of water leakage and wastage by the leakage by deploying sensors in
strategic locations.

In [62], the authors proposed integrated deep learning automatic detection models
with U-net and CNN. The main aim of the proposed system is to find the temporal resolu-
tion and high spatial imagery system that map center pivot irrigation systems. The pro-
posed system uses high spatial resolution Palnetscope satellite images on the modified
U-net system. U-Net uses TensorFlow library and Google cloud platform for training the
images. The parameters produced out of the proposed models are recall 88% and precision
99%. However, this model takes 24 h for training and segmentation.

In [63], the authors presented a model for monitoring and controlling a remote wa-
ter distribution system in a smart city by deploying a WaterWise digital water solution.
The proposed model consists of several phases ranging from acquiring the data and appli-
cation management. In the first phase, the data are collected through the sensors and are
sent to the next layer. In order to achieve the sending and receiving of the data, MOSCA,
Eclipse Ponte is used. The second phase is responsible for data integration which includes
third party data like weather information. Apache Flink is used to analyse the complex
data and detect the real time events. Cassandra and PostgreSQL are used to store the data.
Apache Spark stack is used to improve the water management.

This research work [64] was performed as part of a joint work with the Company of
Production and Management of Water in Tunisia. The integration of AI and IoT technologies
allowed for an increase in productivity by reducing wasteful consumption and enhancing
users’ access to information that is current and accurate. This work focuses on the Smart
City paradigms, Industry 4.0 and proposes a novel method to track and monitor water
consumption by making use of an optical character recognition (OCR) device, along with
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an artificial intelligence algorithm combined with the YoLo 4 machine learning model.
The training was performed on 10% for validation, test on 20% of the images and 70% of
the images. The purpose of this effort is to produce outcomes that are optimised as they are
being displayed in real time. The proposed algorithms yield a recognition rate of around
98% when applied to the data.

AI can anticipate agricultural energy output and environmental implications due to
its ease of use, adaptability, and utilisation of historical data to predict future energy usage
patterns under limits. This research work [65] predicts paddy production energy output
and environmental impact in Iran using ANNs and ANFIS. On-farm paddies, emissions
are a hotspot for global warming, acidification and eutrophication. In farm fertiliser,
emissions also pollute water. Compost is a recommended organic fertiliser. Compost
avoids leaching into groundwater or streams. Compost microorganisms can bind heavy
metals in soil, preventing leaching into water. The best energy prediction model is 12-6-8-1
ANN. The forecasted output energy was determined using a hybrid learning approach,
with R ranging between 0.860 to 0.997 for environmental implications. Results obtained
prove that multi-level ANFIS is a beneficial technique determining the energy output on a
large scale and to calculate efficiently the environmental indices of agricultural production.

There has been a significant role in forecasting suspended sediment yield (SSY) in
water resource management and design. Many intricate mechanisms make precise sediment
prediction extremely challenging using traditional models. Ref. [66] was carried out in
the Godavari River Basin, India which is a highly generalized, completely automated,
robust and accurate AI model to anticipate SSY. An artificial intelligence model well suited
for SSY prediction is the genetic algorithm (GA) combined with an ANN (GA-ANN).
The parameters of the ANN are streamlined all at once with the help of the GA. Daily
water discharge and water level are used to train the GA-ANN and to determine the SSY
at Polavaram, which is in the downstream section of the river. Analysis was performed
between the GA-ANN model, the multiple linear regression (MLR) model and the sediment
rating curve (SRC) model to see how well each model performed. The GA-ANN has the
least biased (0.020) and maximum correlation coefficient (0.927) values of all the compared
models. The root means that the square error is the lowest (0.053). Compared to more
conventional models, the GA-ANN model provided better prediction of SSY.

Due to high water leak and contamination rates, water pipe deterioration modelling
has been a popular topic for two decades. Since there is a time lag between failure occur-
rence and repercussions, failure processes are difficult to diagnose. In the last two decades,
AI techniques have gained popularity for predicting and assessing water distribution net-
work deterioration. Literature lacks a rigorous analysis of water infrastructure modelling
using AI and ML. This article [67] attempts to fill information gaps and overcome restric-
tions. This study makes two contributions. First, a systematic strategy for conducting a
comprehensive literature review is described. AI-based deterioration modelling for urban
water systems is reviewed, including approaches, contributions, drawbacks, comparisons
and critiques. Second, new research directions and problems are identified to help build a
vibrant agenda for the water pipe deterioration.

Water is important for socio-economic development and healthy environments to-
day. Water resources that are efficient and effective at lowering poverty and advancing
equity. In order to meet all competing demands, including on-site and groundwater, the
conventional water system management raises water flows. Climatic changes will exac-
erbate water resource management difficulties by increasing uncertainty. The future of
civilisation depends on the management of sustainable water resources. Hydraulic limita-
tions, stochastic dynamics and nonlinear effects make ecological water planning difficult.
Ref. [68] proposes Adaptive Intelligent Dynamic Water Resource Planning (AIDWRP) for
sustainable urban water environments. A sort of AI used to simulate sustainable water
development is adaptive intelligence. Data-driven decision-making and water efficiency
are increased when numerical AI techniques are combined with human intellectual abilities.
The Markov Decision Process (MDP) is used in the AIDWRP to optimise environmental
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planning and management methods for dynamic water resource management with annual
consumption and released locational limits. As a result, the local economy is made to
operate more effectively while the supply and demand for water resources are eased.

Ref. [69] investigates how AI might contribute to sustainability. One of the biggest
concerns right now is sustainable development. Sustainability and development are mu-
tually exclusive. The current initiatives to address the global crisis through individual
activities have less of an impact than anticipated. Underutilized is the potential of currently
existing technology, particularly artificial intelligence. Eco-innovation initiatives mostly
centre on intelligent mobility, efficient energy and water use, and trash recycling, but they
fail to take into account the need for behavioral and cognitive evolution. The IT market is
changing as a result of ideas such as smart, intelligent, innovative, green and wise cities,
which were developed to support existing technologies. The majority of services include
data processing using statistical and optimization techniques. This article shows how using
AI approaches and techniques along with good reasoning could help come up with ways
to solve the Planet Crisis.

Ref. [70] deployed the Omni IoT system, which is a smart cage culture management
system, an artificial intelligence feeding system and underwater image analysis. The Omni
IoT system consists of a cloud system, sensors, autogiros, ROVs, an underwater and
waterproof platform, and a communications system which allows for the rapid collection of
massive amounts of data on fish and feeding in a cage environment. Administrators can use
big data to keep an eye on the environment and the fish’s food intake. In the framework of
AI computation, massive amounts of data can also be used to examine images of marine life
and AI feeding system modules. The non-intrusive, real-time photo analysis and up-to-date
creature status that underwater image processing technology offers can be very helpful to
aquaculture firms. The AI’s feeding schedule is based on the volume of splashes made by
competing for fish. Based on the results, the authors highlight that the amount of wasted
food was cut in half after AI was added to the automatic feeding system. Cage culture
can be encouraged and professional aquaculture can be performed with the help of the
suggested AIoT culture technology.

For environmental monitoring, exploration, and defense, the Internet of Underwater
Things (IoUT) has gained popularity in the past decade. Traditional IoUT systems use
ML to ensure reliability, efficiency, and timeliness. This study [71] shows how important
privacy and security are for mission-critical IoUT frameworks. Federated learning (FL)
is a secure, decentralized machine learning system that will assist with IoUT difficulties.
This study describes FL’s applicability in IoUT, its problems, unresolved topics, and future
research directions. FL approaches in an IoUT setting are beneficial for the reasons indicated:
Device/Network Configuration, Data Transmission, Unreliable Channel Condition, System
Heterogeneity, Privacy and Real-time Generation of labels.

In [72], the authors have developed an IoT based sustainable irrigation water man-
agement for agricultural fields and gardens without human intervention. The proposed
system supports efficient water supply management by saving the water waste along with
other natural resources. This model uses real-time data to manage the water supply to
gardens. The results show that the proposed model save up to 26–30 percent of water using
the IoT network by analysing the parameters such as soil moisture levels, temperature and
humidity. Some of the significant research works are tabulated in Table 1.
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Table 1. Summary of the existing works.

References Method Advantages Disadvantages Outcomes

[73]

ANN- Artificial Neural Networks
RNN- Recurrent Neural Networks
Bi-LSTM- Bidirectional long short-
term memory
LSTM- Long short-term memory
GRU- Gated Recurrent Unit

Effective and efficient
model for stream flow

Low accuracy
Further to help experts,
mangers and officials

Correlation Coefficient
(CC): 0.85%
Mean Absolute Error
(MAE): 13.4%
Root Mean Square Error
(RMSE): 21.16%
Nash–Sutcliffe Efficiency
Coefficient (NS): 0.65

[52]
Hybrid model
Convolutional Neural Network (CNN)
Long Short-Term Memory (LSTM)

CNN for predicting the water level

LSTM for monitoring the water quality

Considered three water quality
parameters such as,
Total Nitrogen (TN),
Total Organic Carbon (TOC),
and Total Phosphorus (TP)

Used limited data set

Not concentrated on
parameters like
chlorophyll, algae,
dissolved oxygen,
and fecal bacteria

NS: 0.75

MSE: 0.055

TOC: 0.832

TN: 0.987

TP: 0.899

[62] U-Net, Tensor Flow Libraries
CNN

The proposed method determines the center pivot
irrigation systems efficiently

The proposed model
is deployed on short area
and consumes more
time

Accuracy: 99%
Precision: 99%
Recall: 88%

[74]

SVM (Support Vector Machine)
SVR (Support Vector Regression)
Radial Basis Function Kernel
Random Forest Regression

Proposed IoT smart system for
automating the agriculture industry

It does not support
dynamic systems
Limited Data set
Low Accuracy

Accuracy: 81.6%

[75] Deep learning neural network models
Belief Rule Based Model (BRDM)

low power consumption, low-cost
and high detection accuracy

It works for only small area
Not considered parameters such as
Dissolved Solid, Dissolved Oxygen
Chemical Oxygen Demand

Temperature: 46.19 celsius
Ph Value: 4.28
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Table 1. Cont.

References Method Advantages Disadvantages Outcomes

[76]

Deep Neural Networks (DNNs)

Feed-Forward Deep Neural Networks (FF-DNNs)

RMSprop optimization algorithm

Proposed real-time water quality
and monitoring model

Used limited data set
Need to improve the accuracy

NSE: 0.89
MSE: 0.52

[77] SVM, Long-Short Term Memory (LSTM) Efficient water quality monitor for
aquaculture and fisheries

Implemented on limited data set
Not dynamic systems
Simple LSTM Deployed

RMSE: 4.197

[78] K-Nearest Neighbour (KNN)
SVM

Proposed automated water quality
monitoring system

Uses different sensors such as pH,
temperature, turbidity,
and conductivity

Accuracy: 94%

[79] Principal Component Analysis (PCA)
Random forest

Efficient for Urban Water
Management

Limited data set
Quality Parameters not considered

MAE: 0.046
RMSE: 0.061
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2.3. Applications of IoT and DL in Various Aspects in Water Management
2.3.1. Recent Trends in Waste Water Recycle and Management by Deep Learning

Prediction of real-time water treatment parameters is a challenging task. The pre-
scribed work [80] provides a data-driven approach for prediction of the treatment process
of municipal wastewater by means of anaerobic membrane bioreactors (AnMBRs). They
operated two such AnMBRs for about one year under six metrics pertaining to the experi-
mental setup, like temperature of the reactor, environment, COD, flux and eight metrics
related to the wastewater treatment evaluation such as effluent COD, pH, COD removal effi-
ciency, biogas composition/production rate and oxidation-reduction potential. A few deep
learning structures were deployed to analyse and produce the input/output evaluation
parameters. The statistical study revealed a strong correlation between the deep learning
analysis and the actual measurements performed on AnMBR. The densely connected con-
volution neural networks’ (CNN) ability to predict outcomes with an accuracy rate of up
to 97.44 percent and, more significantly, their ability to complete a single calculation in
less than one second, both of which point to improved performance for AnMBR treatment
prediction using deep learning techniques.

Wastewater treatment facilities (WWTP) are made to get rid of contaminants and lessen
environmental pollution brought on by human activity. However, in fact, these facilities
produce a lot of sludge and emit a lot of greenhouse gases, necessitating additional optimiza-
tion [81]. This research [82] demonstrates how to simultaneously optimise the dissolved
oxygen and chemical dosage in a wastewater treatment plant (WWTP) using the unique
technique known as multi-agent deep reinforcement learning (MADRL). From a life-cycle
perspective, the incentive function was created to achieve sustainable optimization. The re-
sults show that optimization based life cycle assessment (LCA) has lower environmental
impacts compared to a baseline scenario as cost, energy and greenhouse gas consumption
reduced to 0.890 CNY/m3—ww, 0.530 kWh/m3—ww, 2.491 kg CO2-eq/m3—ww, respec-
tively. Compared to the LCA-driven plan, the cost-oriented strategy performs comparably
overall, but at the expense of environmental advantages. It is important to note that the
effect factor should be taken into account while retrofitting WWTPs based on resources.
The main indicators of this work demand a substantial amount of data, which requires
further investigation.

One major reason why facilities fail is the buildup of fat, oil, and grease (FOG) in the
sumps of the waste water pumping stations [83]. Individual particles from floating soils
can build up into thick, rigid FOG layers because floating soils are not always transferred
to the pump suction inlets. The main problem in addressing the mitigation process is
the lack of data pertinent to the FOG layer. This work [84] uses an automated system
based on cameras to observe the dynamics of the FOG layer in the water pumping stations
with high frequency and across long time frames (months). A deep learning computer
vision model with FOG layer dynamics and other hydraulic processes is used in the pump
sump to analyse optical imagery. Additionally, the system has the capability to process
camera images, enabling the transfer of compressed processed information when used in
remote places. This capability might be very helpful for the monitoring of hydro-ecological
measurements. At the waste water pumping station in the Dutch municipality of Rotterdam,
a six-month, two-minute instance data set was gathered for the study. This system manages
the water pumping station and makes it possible to gather standardised high-frequency
data on the dynamics of the FOG layer for a thorough explanation of the FOG build-up
and transit process. The camera-based detection system provided root-mean square error
of just 0.11 and Nash–Sutcliffe efficiency of 0.901. Thus, the various works on the waste
water treatment process enhance the recycle performance eliminate pollutants by reducing
the emission of gases, cost and energy.

This section also addressed FOG layer optimization which would also improve the
performance of the waste water recycle plants.
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Context aware data acquisition and quality of data are the major challenges of this
application. Because of the sedimentation of polluting factors like Fat, Oil and Gas. These
are context aware data, which need to be carefully measured. In addition, increase in the
sedimentation levels increase the attributes under measurement.

2.3.2. Recent Deep Learning Models for Water Quality Prediction

Various DL and ML models provide mechanisms for determining the quality of the
water used for diversified purposes. This section deals with various applications, infras-
tructures and models for determining the quality of the water that is to be used for various
purposes. The increasing water pollution around the world is an endangering factor for the
water quality. Measuring these pollutants with Machine Learning and Auto-ML models
are possible with the current applications. However, they require sound mathematical
background and modelling. Hence, deep learning models are more preferred for the mea-
surement of water quality, since the parameters involved with water quality measurements
are mostly time-series data. Recent research [85] on Deep Learning focuses on a technique
called “Bi-LSTM”. This model works with time-series data and hence is useful for the
periodic evaluation of the water quality. This work is done with monthly data collection of
quality report for about six years in Yamuna River, New Delhi (2013–2019). The Bi-LSTM
model not only focuses on training but also focuses mainly on missing value imputation.
This estimation is very important for minimizing the errors in the measurement. The first
step of the Bi-LSTM involves determining how to impute missing values. The second phase
involves creating feature maps from the input data. The third phase involves training.
The fourth phase involves providing an optimum loss function that minimises learning
errors. The experimental analysis is made on BOD and COD levels. COD levels provide
the MSE, RMSE, MAE, and MAPE results as, 0.015, 0.117, 0.115, and 20.32, respectively,
for the Palla region. BOD analysis shows that the MSE, RMSE, MAE, and MAPE values as
0.107, 0.108, 0.124, and 18.22, respectively. The proposed model exceeds all other models in
terms of the best predicting accuracy with the lowest error rates, according to a comparison
analysis. The usage of smart sensors in water quality measurements provides next-level
solutions for water quality measurement applications. Recent research [86] uses smart
sensors for collecting the water quality parameters. Then, the missing values and outliers
are removed in the sensor data with the data cleaning process. Later, features are extracted
to provide learning with G-SMOTE technique. This model employs hyper parameter tuning
technique with a multi class model of deep learning with an MDLNN neural network.
This model provides the incremental learning of the unseen data. The model provides
the validation loss of 0.0415% and accuracy of 99.34%. Recent research [87] proposes that
the usage of auto deep learning techniques for determination of the water quality gives
better results. Auto Deep Learning (Auto DL) is one of the most recent and promising
technologies. This technology involves simple interpretation and model creation possibly
with a minimal amount of coding. The time of execution is also less when compared with
the conventional deep learning techniques. The accuracy of the binary data measurements
in conventional models for deep learning is more than 1.8 percent of the Auto-DL model,
and the accuracy is about 1 percent more than the Auto-DL model in case of the multi class
data models. The accuracy of the conventional DL model is around 98–99 percent, and,
for the Auto DL model, it is around 96–98 percent. However, it provides ease in finding
the appropriate DL model automatically and reduces the time complexity in arriving such
models in real time. Thus, the Auto-DL provides more flexibility in practical application of
the problem in real time.

A major challenge in determining the water quality is the variation of pollutants in
water due to the sudden occurrences of flood, heavy rains, mixture of drainage water,
industrial wastage and sewage water. This affects the various attributes under measure-
ment by changing them abruptly. These sudden changes may reduce the quality of data
and measurement. If the change is experienced during the training, it also affects the
training efficiency.



Sustainability 2022, 14, 13384 17 of 28

2.3.3. Recent Trends of Deep Learning on Rainwater Management

Prediction of rainfall plays a vital role in water harvesting and management. The rain-
water is the primary source for agriculture as well as for the drinking water for the general
public. The prediction of rainfall becomes necessary and interesting for everyone around
the world. This prediction is also very important for government agencies, since they use
power plants during the rainy seasons through hydraulic converters, once the dams are
getting filled up with rainwater. The prescribed work [88] focuses on rainfall data provided
by the metrological department in Andhra Pradesh, India which was recorded over a year.
The features are divided using splitting to form both the training as well as the testing data.
This system is built around two ML models and one DL model. The ML models were the
Linear Regression model and SVM, and the DL model was CNN. Finally, when tested for
accuracy, the neural network had 77.17% followed by Linear model with 48.8% and by the
SVM 32.5%. These findings show that, even in an irregular data set like rainfall data, the
deep learning algorithms perform the prediction much better than the machine learning
algorithms with increased accuracy and seems to be better suited for this purpose.

Most rainwater collection systems are not designed for maximum water conservation.
It is challenging to obtain approval for such systems, but it is also crucial to construct such
shared rainwater harvesting storage facilities in metropolitan neighbourhoods. Due to
the complexity of the system’s viability, numerous manual inspections are required [89].
Due to the complexity of the system’s viability, numerous manual inspections are required.
The suggested work [90] supports this process by combining computer vision-based so-
lutions that automate the entire process by implementing rooftop picture segmentation,
depth estimation, rainfall forecast and optimal tank placement using machine learning and
deep learning algorithms. A rolling forecasting model based on seasonal autoregressive
moving averages (SARIMA) is used to predict rainfall. The Canny edge technique and con-
tour mapping are added to the mask R-CNN segmentation model to compute the rooftop
catchment volume. Thus, the system can predict the break-even point for the compound
metrics and offer the installation’s viability.

The rain water harvesting and measurement are time-series data, thus it subjected
to the time series analysis. These data are aggregated over a long period of time for
analysis. Since it involves a large volume of data, adequate training is required for the deep
learning models. Variation in climatic conditions would affect the measuring attributes,
thus challenge the quality of data.

2.3.4. Recent Trends in Irrigation Control Using Deep Learning

Excessive usage of groundwater for the agricultural purpose endangers the water
usage of other applications around the world. It also threatens the potable access of water
around the world [91]. The soil texture classes are diversified in order to identify the
irrigation requirements of them. Deep learning models play a vital role in bringing up this
classification process with practical solutions. This sophisticated classification of the soil
texture using various architectures and neural networks. The suggested study [92] deploys
a proximate sensing system that uses a colour camera in conjunction with a deep learning
and computer vision smart irrigation system to determine the water requirements of three
classes of soil texture under various lighting circumstances. An imaging system is also
deployed to reduce the workload of image training using the deep convolutional neural
networks. Five deep learning architectures are used in this study to identify classes of water
texture. They are AlexNet, Google Net, Res Net, VGG16 and Squeeze net. The best of all the
models is AlexNet which outperforms all other networks with F1 score of 0.9973. The fastest
detection is provided by Google Net and ResNet, processing in 16.92 ms. The results of this
study demonstrate that deep learning models have enormous promise for predicting the
producing field’s irrigation needs under various conditions.

Understanding how the irrigation control system works on a wide scale and how
quickly it reacts to different stresses is necessary for effective water management. Ref. [93]
deploys a deep learning model that classifies the irrigation control systems in a regional
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scale using the remote sensing imagery. The task at hand deploys a U-Net Architecture with
the use of Resnet-34 after experimenting with various model topologies, hyperparameters,
class weights and picture sizes. They applied transfer learning here to improve the training
efficiency and the performance of the model. This model is applied on a large scale across
urban and background areas with four irrigation systems. The National Agricultural
imaging programme of the US Department of Agriculture provides 8600 very high quality
photos labelled with ground-truth observations. An efficient performance in segmentation
process was achieved by the model with the different classes on validation data (72–86%),
training data (85–94%) and test data (70–86%). Because the deep learning approach is
transferable to other places worldwide, the model is flexible. This study provides fresh
insights into the effects of transfer learning, unbalanced training data and the effectiveness
of different model topologies for segmenting several irrigation types.

DL models not only determine the basic factors of irrigation but also helps in measur-
ing special quantifiers like surface flow velocity, through the ripples produced in the water.
To monitor the surface of huge rivers, a UAV Velocity measurement system [94] based on
the optical flow method and the YOLOV5 deep learning algorithm has been built. Using
the monocular range, this technique estimates the true velocity and transforms the pixel
distance to the actual distance. The river-loop irrigation area of Inner Mongolia saw the
successful application of this technique in the Yongji canal. The procedure produced high-
quality photos, and the measurements and results were in agreement. The decision-making
process in irrigation and agricultural systems depends on evaporation, a key process in
the worldwide hydrological cycle. The most crucial step in this technique is the precise
determination of the parameter pan evaporation Ep. Ref. [95] uses a hybrid LSTM model
embedded with the Component Analysis to predict Ep in regions in Queensland, Australia
using feature selection. They had time series evaluation on daily-scale data set (31 August
2002 to 22 September 2022). The results obtained in this work contain Root Means square
error <20% with the highest Kling–Gupta efficiency >87%. With an enhanced feature
selection procedure, an accurate estimation of Ep and future utility in the prediction of
daily value of Ep, the model outperformed its rivals, including standalone DL, hidden
layer neural networks and decision-tree based models. Thus, evaporation measurement
also becomes an important measure to manage and control the irrigation process.

Irrigation control is generally completed by a set of sensors and actuators. They are
randomly dropped on the soil, which later get connected with each other and establishes
communication. There are chances of node failure, and the quality of data being aggregated
from different sensors is reduced. The challenge of dimensionality reduction in the learning
process occurs, which also effects the data quality. These sensors can be manipulated by an
attacker in the absence of cyber security mechanisms. The attackers may gain access to the
agricultural area by intercepting these sensors. The sensors also provide real-time data, so
such large data sets would be involved with the training process.

This survey involves various applications such as recent trends in wastewater recy-
cling, water quality measurement, rainwater management and irrigation control. This
survey analyses the waster water recycling, quality measurement and rainwater harvesting
with almost equal proportionality (27–28%). The irrigation control which is comprised of
both machine and deep learning techniques is analyzed around 18% in this survey. This is
due to the real-time data analysis and multi-sensor data environments. The distribution
density of the analysis of the applications is represented in Figure 3.

The various Artificial Intelligence techniques surveyed in this proposed work are
presented in the below mentioned graph (Figure 4). This chart distribution shows that
the water management applications preferably use the deep learning techniques such
as CNN or LSTM (Long Short Term Memory). The reason behind this is that, in most
of the situations, the training data for a water based application are generally images.
The training of a system with various features relevant to an image data and building a
model for evaluation is a time-consuming and complex process. These processes can be



Sustainability 2022, 14, 13384 19 of 28

handled by deep learning techniques with a desired power of GPU (Graphical Processing
Units) and software. Various application with significant parameters are listed in Table 2

Table 2. Summary of applications and relevant techniques.
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Ref. Description

W
as

te
W

at
er

R
ec

yc
le

an
d

M
an

ag
em

en
t

R
ai

n
W

at
er

M
an

ag
em

en
t

Ir
ri

ga
ti

on
C

on
tr

ol

W
at

er
qu

al
it

y
M

ea
su

re
m

en
t

C
N

N

A
ut

o
D

L

LC
A

SV
M

LR

A
R

IM
A

V
is

ua
lD

L

LS
T

M

M
D

LN
N

[80] Application of CNN on anaerobic membrane bioreactors
(AnMBRs).

X X

[82] Application of multi-agent deep enforcement learning
(MADRL) with LCA optimization in waste water treat-
ment plants

X X

[83] FOG estimation on waste water pumping stations X X

[90] Seasonal auto regressive moving average (SARIMA) with
R-CNN enhanced with canny edge algorithm with con-
tour mapping

X X X

[92] Smart irrigation system based on computer vision and
deep learning. Alex Net, Google Net, Res Net, VGG16
and Squeeze net are the deep learning applications used.

X X

[93] Irrigation segmentation using U-Net and Resnet-34 ap-
plications.

X X

[94] UAV Velocity measurement system and YOLOV5 algo-
rithm in deep learning with a hybrid Long Short-Term
Memory (LSTM) model employed to monitor the Ep.

X X X

[85] Bi-LSTM with COD and BOD analysis. X X

[86] IoT based G-SMOTE technique with MDLNN X X

[87] Application of AutoDL in quality measurement X X
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Figure 3. Various applications analyzed for the water management techniques.

Figure 4. Various artificial intelligent techniques analyzed for the water management.

3. Case Studies

Real-time applications/projects on intelligent water management systems.

3.1. Using Artificial Intelligence for Smart Water Management Systems

The deployment of ICT has been emerged in every domain. Intelligent data analysis
can render an efficient water management for improvising the water distribution and to
curtail the cost. Artificial Intelligent (AI) techniques can be deployed for effective decision-
making for the usage of water for various purposes. The combination of ICT with AI would
facilitate achieving the Sustainable Development Goals [15] for water management and
sanitization. The use of AI in water management also would help in solving the water
scarcity keeping in mind the population density and to formulate policies in reducing the
water leakage.
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3.2. Smart Water Management—Case Study Report

Korea Water Resources Corporation made a joint venture with the International Water
Resources Association (IWRA) for implementing a smart water management system. This
system uses ICT for rendering real-time water data to IWRA for intelligently resolving water
issues globally. The smart water management system also provides solutions for monitoring
water quality, efficient irrigation, leak detection and intelligent water management during
floods using AI mechanisms. The system [96] consists of IoT devices, GIS monitoring
engines and real time satellite data. The system is also trained by AI to provide automated
services during various events which help in efficient decision making.

3.3. Grid Intelligence Water Case Study

Applying modern technologies for water management is a challenging task. Dur-
ing the water crisis, water distribution for various sectors involves usage of huge resources.
There is a dire need to deploy efficient and accurate water metering systems in the city.
Verizon Grid Wide Intelligent Water solutions [97] provided a smart water metering system
deployed in cloud for small cities in the southeastern U.S. This system contains water
meter sensors for managing and monitoring the water usage, and the IoT gateway provides
secure multi-point communication. The water leaks and the abnormal water usage are
completed using Machine Learning analysis.

3.4. Smart Water Management: The Way to (Artificially) Intelligent Water Management

Most of the countries developed a Smart Water Management system (SWM) which
contained various policies and technologies for dynamic water management for the new
age. A summarized report written by Nickum et al. [98] highlights the various SWMs
in different countries. Mexico, Korea and France developed a smart flood monitoring
system which uses the IoT network and AI for prediction analysis. A Mexican project
named “PUMAGUA” contained data monitors for improving water quality and reducing
the overall water consumption based on an intelligent water resource network. Researchers
in South Korea developed an intelligent SWM called a Hydro Intelligent Toolkit which
uses the parameters such as hydrological data, rainfall forecasting, flood analysis and
groundwater levels. These parameters are calculated from data analysis from the intelligent
IoT network.

3.5. Smart Water Management towards Future Water Sustainable Networks

The purpose of the case study [99] is to investigate and construct smart water grids
in Portugal. The water sector has faced significant challenges in recent years to improvise
efficiency and to render sustainable performance (e.g., social, technical and environmental).
Through effective smart water planning and management, the use of smart technology
contributes to the future of water-smart cities as well as to the energy nexus. As a result of
technological improvements, smart cities cut expenses, enhance service quality, and max-
imise system performance. In this case study, the use of monitoring and water loss control
technologies enabled a high level of efficiency, especially in terms of minimizing water
losses and, as a result, cutting associated costs. The implementation of these techniques
resulted in a shift in the category of the most efficient cities, moving it from 20th to 5th
place globally. The analysis reveals that the water sector has a tremendous potential for
technically and economically viable micro-hydropower projects, which could significantly
improve energy efficiency and lower CO2 emissions. In a twelve-year timeframe, the case
study reveals significant savings of 57 GWh and 100 Mm3. These cost savings enabled a
47,385 t CO2-eq reduction in CO2 emissions. There is also a forecast for energy production
in Portugal.

3.6. Moving towards Sustainable and Resilient Smart Water Management

In today’s world, water has become a valuable ‘asset’, requiring proactive manage-
ment. The major aim of Smart Water Management (SWM) [100] is to use strategies to
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manage water effectively. Adopting SWM as a growth strategy and engine will aid in
achieving water sustainability and resilience in underdeveloped nations. The considerable
potential for smart water technologies has been demonstrated in this work. Utilizing the
advantages of connecting water users, water facilities, sensors, and systems with intelligent
data analysis is gradually conceivable. Benefits include greater performance, increased
flexibility, and cost savings and operational efficiencies. Addressing global issues, including
climate change, population expansion, fast urbanisation, natural disasters and environmen-
tal degradation, will heavily rely on SWM. The water business is undergoing significant
structural changes, necessitating new work practises, technical expertise and water man-
agement regulations. All of this indicates that the water sector has a promising future, as a
new water paradigm is being built that makes use of SWM.

4. Challenges, Open Issues and Future Directions

The major challenges pertaining to deep learning in water management is broadly
classified into few major categories

4.1. Data Quality and Availability in Deep Learning Based Water Management Systems

Deep learning networks use a huge volume of data for training an intelligent system
that classifies huge test data or real-time data acquired from the sensors or images used in
the water management and conservation systems. The data requirement is also a major
area of concern. The restrictions are there for acquiring data from scientific and commercial
industries since they are highly sensitive for the area of application and can be exploited
with the competitive advantages. Certain data pertaining to government organisations are
critical which can hardly be acquired for the research and development due to the legal and
political restrictions. Data are also restricted because of the demographic constraints. When
there is a huge demand for the real-time big data for training the deep learning models,
the concern regarding the quality of the same arises in parallel. When a huge amount of
data is acquired for training, the quality of each piece of the data is hard to analyse and
evaluate. Hence, the trained model cannot be claimed to be a model that is built with
quality data. There are chances in case the pre-processing is not completed properly; there
could also be outliers or noisy data that may build the trained system as error prone.

4.2. Security in Deep-Learning Based Water Management Systems

Deep learning networks use a huge amount of data for training the water management
systems; data that are used are open-source or may be handled by different people around
the research or business. The changes in the input data reflect the behaviour of the system.
This is the interest of the potential attackers to compromise the system. For example,
because of the competitive advantage, an irrigation control system can be misled to dispense
excessive water by an attacker that may compromise the whole agricultural yield. The
purpose of embedding the AI based deep learning model for the water management, smart-
agriculture or smart-farming will be in vain if the final system is compromised with attacks.
Thus, like the smart systems, these deep learning based water management systems must
be incorporated with cyber security policies and integrity of data access.

4.3. Context Aware Data Analysis in Deep-Learning Based Water Management Systems

The deep learning speaks more about architecture or a model, but it does not speak
about an algorithm in reality. The algorithms in deed need revisions as the systems evolve
to the next generation. The amount of re-training required for a deep-learning network will
never be sufficient if the model goes with a major technical revision. For example, we can
deploy smart sensors for determining the water quality, with few parameters under study.
In the future, if this system is enhanced, we need to re-train the deep neural networks that
govern the smart sensors for new parameters introduced. This indeed is very difficult to
enhance and also unpredictable. For smart or IoT based systems which work with real-time
data, this re-training is highly complex to perform. This challenge is mainly due to the
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nature of non-context aware behaviour of the neural networks and the unpredictable nature
of the post training behaviour.

4.4. Training Efficiency

The real-time systems work with deep neural networks, basically getting updated for
the change of the algorithms that were previously deployed. However, due to the unpre-
dictable nature of this deep learning network, the revised algorithms does not guarantee
the accuracy or the optimization that was previously achieved by an existing algorithm
under the same environment. The change of the sensors may also influence the change of
the neurons in neural networks that may result in the change of the behaviour of the whole
model, which was previously deployed. Thus, the efficiency of training is very critical for
the deep neural networks to deliver optimal performance with a required level of accuracy
even if the system in total undergoes a major revision.

The futuristic systems would be automated, built across AI based smart technologies.
These systems are required to be built with context-awareness for the successful roll-out
of these technologies as commercial and technical solutions. These systems would be
requiring high data quality standards and exhaustive training with quality. The technically
and commercially viable systems should withstand all the above-mentioned challenges in
real-time environments.

5. Findings

This work has surveyed about closer to 90 papers connected with AI in water manage-
ment. The papers were taken from digital resources such as IEEE, Springer, Elsivier, MDPI,
Nature, Taylor and Francis, Chemical Engineering journal. The search criteria for these
digital resources were smart water management, AI methods in water management, smart
methods in mitigation of wastewater management and intelligent methods of harnessing
rainwater storage. The selected papers were chosen due to various parameters such as fea-
sibility analysis on the application domain, focus on the future implementations, accuracy
of the results obtained by the AI methods for different water management methods, clarity
on model deployment and clarity on the write-up.

Advantages of Artificial Intelligence in the Water Management Process

The advantages of the various AI technologies are listed below. They are the primary
source of the inspirations for implementing the same in the prescribed work [16]:

• Feature extraction and dimensionality reduction of the huge attributes;
• Finding the solution to a complex problem through parallel processing capabilities;
• Prediction of the target variables with a desired level of accuracy;
• Working with multiple data points in certain applications;
• Algorithms like RNN is useful for time-series prediction and analysis;
• Algorithms like DNN offers faster prediction and training;
• ANN is used for faster prediction, high arbitrary function and works with multi-

dimensional datasets.

This study focuses on surveying different intelligent water management mechanisms
and highlights the applications of AI in various areas of the water management such as
water quality, wastewater treatment process, recycling, effective water distribution and
rain water harvesting. This study also discusses the various challenges in AI deployment
and data analysis, thus providing valuable insights into the researchers while deploying
the water management systems in smart cities. The extensive study in the various aspects
of water life cycle management would render brainstorming an ideation process for ad-
dressing the current issue of the water crisis and to implement effective mechanisms to
distribute the better water quality to the consumers.
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6. Conclusions

The emerging technologies for water harvesting, management and recycling provide
positive reinforcement to the processes of the global water preservation and conservation.
The support of artificial intelligence techniques such as machine and deep learning provide
the road map for the future conservation of the water resources. With that approach, the
proposed study provides various insights regarding water management applications that
are built around the latest deep neural network models with their significance and their
relevance towards the different water management processes. This study also discusses var-
ious challenges and opportunities regarding implementation of the deep neural networks
for the water management process such as the data quality and availability in deep learning
based water management systems, security in deep-learning based water management
systems, context aware data analysis in deep-learning based water management systems
and the training efficiency. Thus, the proposed study provides future directions for the
upcoming research activities with the insight about the challenges and open issues of
implementing water management with deep neural networks.
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92. Kurtulmuş, E.; Arslan, B.; Kurtulmuş, F. Deep learning for proximal soil sensor development towards smart irri-gation. Expert
Syst. Appl. 2022, 198, 116812. [CrossRef]

93. Raei, E.; Asanjan, A.A.; Nikoo, M.R.; Sadegh, M.; Pourshahabi, S.; Adamowski, J.F. A deep learning image segmentation model
for agricultural irrigation system classification. Comput. Electron. Agric. 2022, 198, 106977. [CrossRef]

94. Li, S.; Liu, H.; Wang, S.; Zhou, Y.; Zhou, B.; Han, Y. Study on flow distribution of irrigation canal system based on image
velocimetry. Comput. Electron. Agric. 2022, 195, 106828. [CrossRef]

95. Jayasinghe, W.L.P.; Deo, R.C.; Ghahramani, A.; Ghimire, S.; Raj, N. Development and evaluation of hybrid deep learning long
short-term memory network model for pan evaporation estimation trained with satellite and ground-based data. J. Hydrol. 2022,
607, 127534. [CrossRef]

96. Rocher, V. Smart Water Management—Case Study Report; K-Water: Deajeon, Korea, 2018.

http://dx.doi.org/10.1007/s40846-021-00621-3
http://dx.doi.org/10.3390/s20051402
http://dx.doi.org/10.3390/w12051500
http://dx.doi.org/10.1016/j.procs.2020.03.440
http://dx.doi.org/10.1016/j.procs.2019.08.025
http://dx.doi.org/10.3390/w13233364
http://dx.doi.org/10.14569/IJACSA.2020.0110883
http://dx.doi.org/10.1080/09593330.2022.2034978
http://www.ncbi.nlm.nih.gov/pubmed/35083949
http://dx.doi.org/10.1155/2020/8848324
http://dx.doi.org/10.1016/j.scitotenv.2021.151920
http://dx.doi.org/10.1016/j.psep.2021.04.022
http://dx.doi.org/10.1016/j.watres.2021.117482
http://dx.doi.org/10.1016/j.watres.2018.02.026
http://dx.doi.org/10.1016/j.chemosphere.2021.130498
http://dx.doi.org/10.1007/s11356-021-13875-w
http://dx.doi.org/10.1016/j.jksuci.2022.01.009
http://dx.doi.org/10.1016/j.scitotenv.2022.153311
http://dx.doi.org/10.22270/jmpas.V10I4.1397
http://dx.doi.org/10.3390/w10040506
http://dx.doi.org/10.1007/s10653-019-00512-2
http://dx.doi.org/10.1016/j.eswa.2022.116812
http://dx.doi.org/10.1016/j.compag.2022.106977
http://dx.doi.org/10.1016/j.compag.2022.106828
http://dx.doi.org/10.1016/j.jhydrol.2022.127534


Sustainability 2022, 14, 13384 28 of 28

97. Grid Intelligence Water Case Study. 2018. Available online: https://www.verizon.com/business/resources/articles/grid-
intelligence-water-case-study/ (accessed on 5 September 2022).

98. Nickum, J.E.; Kuisma, S.; Bjornlund, H.; Stephan, R.M. Smart Water Management: The way to (artificially) intelligent water
management, or just another pretty name? Water Int. 2020, 45, 515–519. [CrossRef]

99. Ramos, H.M.; McNabola, A.; López-Jiménez, P.A.; Pérez-Sánchez, M. Smart Water Management towards Future Water Sustainable
Networks. Water 2020, 12, 58. [CrossRef]

100. Mutchek, M.; Williams, E. Moving towards sustainable and resilient smart water grids. Challenges 2014, 5, 123–137. [CrossRef]

https://www.verizon.com/business/resources/articles/grid-intelligence-water-case-study/
https://www.verizon.com/business/resources/articles/grid-intelligence-water-case-study/
http://dx.doi.org/10.1080/02508060.2020.1830581
http://dx.doi.org/10.3390/w12010058
http://dx.doi.org/10.3390/challe5010123

	Introduction
	Contributions of the Work
	Organization of the Work

	Background
	IoT in Water Management
	Usage of IoT and Artificial Intelligence for Effective Water Management
	Applications of IoT and DL in Various Aspects in Water Management
	Recent Trends in Waste Water Recycle and Management by Deep Learning
	Recent Deep Learning Models for Water Quality Prediction
	Recent Trends of Deep Learning on Rainwater Management
	Recent Trends in Irrigation Control Using Deep Learning


	Case Studies
	Using Artificial Intelligence for Smart Water Management Systems
	Smart Water Management—Case Study Report
	Grid Intelligence Water Case Study
	Smart Water Management: The Way to (Artificially) Intelligent Water Management
	Smart Water Management towards Future Water Sustainable Networks
	Moving towards Sustainable and Resilient Smart Water Management

	Challenges, Open Issues and Future Directions
	Data Quality and Availability in Deep Learning Based Water Management Systems
	Security in Deep-Learning Based Water Management Systems
	Context Aware Data Analysis in Deep-Learning Based Water Management Systems
	Training Efficiency

	Findings
	Conclusions
	References

