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Abstract: Background: The advancement of information and communication technologies and the
growing power of artificial intelligence are successfully transforming a number of concepts that are
important to our daily lives. Many sectors, including education, healthcare, industry, and others, are
benefiting greatly from the use of such resources. The healthcare sector, for example, was an early
adopter of smart wearables, which primarily serve as diagnostic tools. In this context, smart wearables
have demonstrated their effectiveness in detecting and predicting cardiovascular diseases (CVDs),
the leading cause of death worldwide. Objective: In this study, a systematic literature review of
smart wearable applications for cardiovascular disease detection and prediction is presented. After
conducting the required search, the documents that met the criteria were analyzed to extract key
criteria such as the publication year, vital signs recorded, diseases studied, hardware used, smart
models used, datasets used, and performance metrics. Methods: This study followed the PRISMA
guidelines by searching IEEE, PubMed, and Scopus for publications published between 2010 and
2022. Once records were located, they were reviewed to determine which ones should be included
in the analysis. Finally, the analysis was completed, and the relevant data were included in the
review along with the relevant articles. Results: As a result of the comprehensive search procedures,
87 papers were deemed relevant for further review. In addition, the results are discussed to evaluate
the development and use of smart wearable devices for cardiovascular disease management, and the
results demonstrate the high efficiency of such wearable devices. Conclusions: The results clearly
show that interest in this topic has increased. Although the results show that smart wearables are
quite accurate in detecting, predicting, and even treating cardiovascular disease, further research is
needed to improve their use.

Keywords: cardiovascular diseases; smart wearables; sensors; body sensor networks; machine
learning; smart health; wide body area networks

1. Introduction

Healthcare has always been one of the most important issues that people have cared
about. Given the prevalence of diseases and their impact on people’s lives, researchers
are always looking for methods to improve medical services and promote public health.
In addition, the aging population, shortage of medically trained personnel, lack of equity
in services, epidemic planning, and a host of other problems hinder the growth of public
health worldwide [1]. However, advances in information and communication technology
(ICT) offer effective answers to these challenges. In this context, artificial intelligence (AI)
is considered the most promising tool for improving healthcare, as it has the potential to
be used in virtually all areas of medicine [2] and will transform healthcare for patients
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and communities [3]. This enormous contribution is not due to magic, but to AI’s data-
processing capabilities, which surpass those of humans, especially when large computations
are performed in a short period of time. Even though the majority of AI applications in
healthcare were developed after 2008 [4], their importance is obvious. First, AI has im-
proved the learning capabilities of computers and humans, leading to improved diagnostic
and healthcare procedures [5]. In addition, AI technologies are able to accept common
sense, extract information from raw data, use human-like thought processes, deal with
inaccuracies, adapt to a rapidly changing environment, and even act on their knowledge [2].
These characteristics enable AI tools to think and behave similar to humans at a virtually
unparalleled level, allowing them to articulate clinical patterns and visions beyond human
capabilities [3]. Combining AI capabilities with human intelligence, sometimes referred
to as augmented intelligence, is probably the most effective way to improve healthcare
services [3].

1.1. Cardiovascular Diseases Latest Figures

Cardiovascular diseases (CVDs) are the leading cause of death and are hence recog-
nized as the most dangerous disease in the world. According to the most recent World
Health Organization (WHO) statistics on heart disease, the number of CVD patients world-
wide has increased from 271 million to 523 million between 1990 and 2019, and the number
of deaths caused by this disease has increased from 12.1 million to 18.6 million during
the same period, accounting for 32% of global mortality in 2019 [6]. For example, in the
United States, a person dies from heart disease at least every 34 s [7], and in Canada, a
person dies at least every 5 min [8]. Moreover, cardiovascular disease is a major cause of
both health conflict and economic suffering. According to the Medical Expenditure Panel
Survey, the total cost of CVDs in the United States between 2017 and 2018 was estimated at
USD 378.0 billion, including USD 226.0 billion in expenditures and USD 151.8 billion in
lost future productivity [9]. Figure 1 illustrates the increase in the number of patients and
deaths due to cardiovascular disease worldwide between 1990 and 2019.

Figure 1. Increase in number of patients and deaths due to CVDs.

1.2. CVDs Detection: From Classic to Technology-Assisted

Due to their potentially fatal nature, cardiovascular diseases need the development
of efficient solutions that allow early diagnosis and, ideally, prediction of their onset. The
predictive power of modern technologies could help reduce the global prevalence of CVDs.
Traditional methods for diagnosing these diseases include electrocardiogram, echocardiog-
raphy, coronary angiography, stress testing, magnetic resonance imaging, or intracoronary
ultrasonography. However, new technologies are improving health services and facilitat-
ing the detection of cardiovascular disease, particularly information and communication
technologies (ICTs) and the development of artificial intelligence (AI) and its derivatives.
The novel approaches of AI in cardiology have proven to be successful in providing fast,
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accurate, and less erroneous patient care, which has significant medical and financial impli-
cations. It is more effective and widely used, as the tools and applications offered are at the
level of an expert using real-world data. In general, AI has fantastic potential to transform
cardiology in the near future and is often seen as the next revolutionary step in the field due
to its potential to accelerate and improve patient care. Moreover, AI will soon revolutionize
cardiovascular health, as its tools have the potential to outperform experts in detecting and
predicting cardiovascular disease [10–12]. Therefore, smart wearables that combine AI and
ICT are expected to be very useful in cardiovascular disease detection and prediction.

1.3. Smart Wearables: Definitions and Overview

Smart wearables, also known as smart wearable technology or wearable gadgets,
are a new breed of compact, rugged, and efficient computing devices made possible by
the rapid growth of information and communication technologies and the advancement
of electronics, particularly microprocessors. These devices are being hailed as the next
generation of ubiquitous technology after smartphones, as they allow access to data at
any time and from any location. The topic of smart wearables has evolved rapidly in
recent years, and their technologies are now applicable in many other fields [13–16]. This
section provides a definition of “smart wearables” and a brief overview of the history of
wearable technology. In addition, various categories of smart wearables are discussed in
the upcoming sections.

1.3.1. Smart Wearables: Brief History

In 1950, Alan Turing asked the now famous question “Can machines think?” which
marked the beginning of the era of “Smart Machines” [17]. Since then, researchers around
the world have attempted to answer this question by turning computers into intelligent
devices. Despite its widespread use, the term “Smart” is not uniformly defined and is
presented in different ways by different scholars [18]. In [19], “Smart” devices are defined
as embedded sensors, processors, and network devices that give smart things the ability
to behave based on their own knowledge. In addition, Ref. [20] defines them as objects
that can learn from their environment and interact with humans. Different definitions
focus on the capabilities of the devices. For example, smart wearables are defined by the
authors in [21,22] as devices that can be worn by the user at all times to monitor factors
such as personal data, vital signs, locations, environment, movements, and more. In this
context, a shoe-sized computer developed by Edward Thorp and Claude Shannon in 1961
is widely considered to be the first ever wearable computing device [23,24]. In the 1980s,
Steve Mann developed EyeTap glasses that displayed computer-generated images in one
eye and added textual information to the user’s visual experience [25]. Subsequently, in
1996, the U.S. Department of Defense Navy funded a study to monitor the vital signs of
its troops [26,27], which is widely considered a defining moment in the history of smart
wearables. Since then, smart wearables have gradually evolved from invasive, heavy, and
huge technologies to more adaptable, compact, and lightweight devices. This is because
researchers have expanded their projects in this field to different areas of life such as health,
fitness, sports, fashion, and even other sectors.

1.3.2. Classification of Smart Wearables

Over the past few decades, there have been more than a thousand studies on smart
wearables. However, smart wearables cannot be classified into a specific category. Ac-
cordingly, smart wearables are divided into six groups, as described by the authors of
Ref. [28]:

• Medical;
• Industrial;
• Lifestyle;
• Fitness;
• Entertainment;
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• Gaming.

On the other hand, the smart wearables were categorized by the authors of Ref. [29]
according to their personal features rather than their function. They provided examples
of the three categories into which they fall:

• Watch-type;
• Necklace or wristband-type;
• Headmount display-type.

However, other technologies, such as electronic patches and health apparel, could not
fit within this classification. Therefore, a set of commonly known wearables are displayed
in Figure 2 below.

Figure 2. Set of commonly known wearables.

1.4. Role of Smart Wearables in CVDs

Over the past decade, smart wearables have been increasingly used as health solutions.
Their effectiveness and proliferation has been fueled by advances in performance, size,
style, and durability, among other factors. Examples of smart wearables used to diagnose,
track, and treat cardiovascular disease include wristbands, patches, headbands, eyeglasses,
and necklaces. The implications of CVD wearables are many. For example, they enable
continuous and long-term recording of functional or physiological data, leading to more
accurate diagnosis and better health outcomes for patients. In addition, they enable the col-
lection of necessary data in locations other than physicians’ offices or hospitals, expanding
the capacity of healthcare facilities to serve larger numbers of patients over longer periods
of time. More importantly, the continuous monitoring capabilities of smart wearables
enable more sophisticated knowledge of an individual patient’s physiological state and
ongoing activity, paving the way for more personalized healthcare and treatment. The
devices also became less bulky and aesthetically pleasing, making them less intrusive and
more suitable as everyday wearables. One way that smart wearables such as smartphones
are benefiting from the widespread use of other devices is through pairing [30–33]. Some
reasons for the success of smart wearables adoption and their success points are listed in
Table 1 below.

Table 1. Success reasons and success points of smart wearables.

Powered By Capabilities

Smart wearables

Low power consumption
Compact size

Adaptable styles
Robustness

Continuous functionality
Long-term Monitoring
Real-time data sensing

Communication with Internet
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1.5. Outline and Main Contributions of This Article

In this article, the use of smart wearables in the detection, prediction, and treatment of
cardiovascular disease was investigated. For this purpose, a systematic literature review
was conducted, following the methodology that is explained in Section 2. Subsequently,
in Section 3, the results of the performed search are presented. Later, the obtained results
are analyzed in Section 4 and discussed in Section 5. Then, the challenges hindering the
progress in the use of smart wearables are discussed, and future perspectives to solve these
challenges are presented. Finally, the article is concluded with a concluding section. To the
best of our knowledge, there are no systematic reviews addressing the potential of smart
wearables for early diagnosis of CVDs. For example, in [34], the authors investigated the
application of AI in smart wearables for cardiovascular disease detection. However, the
focus of their research was on smart models rather than hardware; the obstacles that have
slowed the development of this field are barely addressed, and the same is true for future
prospects. Furthermore, in [35,36], the authors explored the use of smart wearables in life
course research, but they did not systematically explore the field or provide a complete
vision of contextual implementations. Motivated by the large role that smart wearables play
in various aspects of daily life and by the lack of a systematic literature review discussing
their role in predicting cardiovascular disease, this article therefore attempts to answer the
following questions:

• What are the applications of using smart wearables to detect and predict cardiovascular
disease?

• What are the different aspects such as hardware and software used in these implemen-
tations?

• To what extent are these implementations feasible?
• What are the challenges and limitations in this area?
• What future perspectives can be pursued to improve the use of smart wearables in

CVDs management?

Therefore, this article answers the above questions and thus contributes to academic
knowledge by:

• Systematically reviewing the use of smart wearables in the treatment of cardiovascular
disease;

• Analyzing and discussing the reviewed implementations in a way that facilitates the
identification of opportunities for improvement in this area;

• Naming the barriers to progress in this area;
• Proposing solutions that can be used to address these barriers;
• Presenting a collection of research questions and findings that could serve as a starting

point for future research.

2. Research Methodology

This section details and explains the methodology used to conduct the systematic
review. The steps described here can be used to conduct the same search and review the
results or repeat the search in a different time period.

2.1. Eligibility Criteria

In conducting this review, PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses ) [37] was used as a guide for preparing a systematic literature review.
The structure of this review was based on the latest PRISMA checklist (PRISMA Checklist
2020) [38]. In accordance with PRISMA standards, multiple sources were searched for
papers that met the scope of this review. Four variables were used to select these materials.
To be considered reputable, a paper must address artificial intelligence or related fields,
present a smart wearable solution, address healthcare, and focus on cardiovascular diseases.
In addition, the material should have been published in a peer-reviewed journal or as a
conference proceedings. In addition, only documents published between January 2010 and
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October 2022 were considered. As a final eligibility criterion, an English language filter was
applied to eligible papers.

2.2. Information Sources

Several academic abstract and citation databases for peer-reviewed literature were
used, including IEEE, PubMed, and Scopus Elsevier, to ensure superior results and to cover
the largest number of documents possible. Each of these three databases provides access to
millions of documents and has powerful, sophisticated search tools to facilitate thorough
literature searches.

2.3. Search Strategy

In order to conduct a thorough search of the above materials, three queries were
formulated. While these queries all follow the same logical structure, they use different
syntaxes to comply with the different rules imposed by each data source. Targeted articles
are found at the intersection of four query blocks, each defining a different topic of interest.
AI, health, wearables, and CVDs (or related areas) are the four basic focus areas. The phrase
“AND” was used to combine areas for a more effective query, while the term “OR” was
used to combine different terms within each area. The three queries used to find what is
being searched for are as follows:

• IEEE: ((("ARTIFICIAL INTELLIGENCE" OR "SMART AGENTS" OR "SMART MA-
CHINES" OR "INTELLIGENT" OR "DEEP LEARNING" OR "MACHINE LEARNING"
OR "NEURAL NETWORK") AND ("HEALTH*" OR "DISEASE" OR "ILL*" OR"CARE")
AND ("WIRELESS SENSORS NETWORK" OR "SMART SENSORS" OR "BODY AREA
NETWORK" OR "WEARABLE" OR "SENSOR") AND ("CARDIOLOGY" OR "CAR-
DIOVASCULAR" OR "HEART" OR "CARDI*"))).

• PubMed: ((ARTIFICIAL INTELLIGENCE) OR (SMART AGENTS) OR (SMART MA-
CHINES) OR (INTELLIGENT) OR(DEEP LEARNING) OR (MACHINE LEARNING)
OR (NEURAL NETWORK)) AND ((HEALTH) OR (DISEASE) OR (ILL) OR(CARE) OR
(HEALTHCARE)) AND ((WIRELESS SENSORS NETWORK) OR (SMART SENSORS)
OR(BODY AREA NETWORK) OR (WEARABLE) OR (SENSOR)) AND ((CARDIOL-
OGY) OR (CARDIOVASCULAR) OR (HEART) OR(CARDIAC)).

• Scopus: TITLE-ABS-KEY(((artificial intelligence) OR (smart agents) OR (smart ma-
chines) OR (intelligent) OR (deep learning) OR (machine learning) OR (neural net-
work)) AND ((health*) OR (disease) OR (ill*) OR (care)) AND ((wireless sensors
network) OR (smart sensors) OR (body area network) OR (wearable) OR (sensor))
AND ((cardiology) OR (cardiovascular) OR (heart) OR (cardi*))) AND (LIMIT-TO
(SRCTYPE, “j”) OR LIMIT-TO (SRCTYPE, “p")) AND (LIMIT-TO(DOCTYPE, “cp”)
OR LIMIT-TO(DOCTYPE, “ar”)) AND (LIMIT-TO( LANGUAGE, “English”)) AND
(LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUB-
YEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUB-
YEAR, 2014) OR LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO (PUBYEAR, 2012) OR
LIMIT-TO (PUBYEAR, 2011) OR LIMIT-TO (PUBYEAR, 2010)).

In the case of Scopus, the query was used as described above to retrieve the results.
However, in IEEE and PubMed, additional filters were applied through the graphical user
interface. In both sources, a “Year” filter was added to limit the selection to articles between
2010 and 2021. However, in IEEE, articles with the types “Conferences” and “Journals”
were selected, whereas in PubMed, articles with the types “Clinical Trial” and “Journal
Article” were selected. Finally, a filter was performed in the PubMed interface to limit the
documents to those published in English. On the other hand, Scopus offers the possibility to
limit the search to the title, abstract, or keywords, while the other two sources perform the
search in the whole text of the document. It is worth noting that the search was performed
in October 2021.
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2.4. Selection Process

The data extracted from the records were selected in three steps to determine which
files were relevant to this analysis. The first step was to review the titles and abstracts of all
documents to determine if they were relevant to the topic of this study. The documents that
passed this step were then downloaded. In a second step, we reviewed the downloaded
files to quickly verify their content and determine if they were relevant to our evaluation.
The documents selected in this phase are the ones that are examined in detail. Finally, the
documents were researched and evaluated to extract the data needed to demonstrate the
development of smart wearables for CVDs.

3. Results

The steps mentioned in the previous section led to a systematic result. The results of
this search are listed in this section.

3.1. Study Selection

Initially, 4002 documents were identified from the three libraries based on the above
searches. The search on IEEE yielded 1013 documents, on PubMed 1020, and on Sco-
pus 1969, after which duplicate entries were excluded, removing 1021 and leaving 2981
documents. Then, the aforementioned selection procedure was applied, excluding 2382
documents on the basis of irrelevance and advancing 599 to the next stage. Documents
were classified as irrelevant if they met the search criteria or if they contained the search
terms specified in the search queries but did not deal with cardiovascular disease or were
not wearable systems. In the second phase, full-text screening, the 599 documents were
downloaded and skimmed to assess their suitability. In this phase, 512 documents were
excluded for various reasons, and 87 documents were deemed suitable for this review. All
these details are shown in Figure 3 below that matches the PRISMA diagram (information
flow through the different phases of a systematic review) [37].

Figure 3. Flow of information through the different phases of a systematic review.

3.2. Study Characteristics

Following the search described above, the 87 papers deemed appropriate were care-
fully reviewed and examined to extract all relevant information. From each paper, the year
of publication, disease(s) treated, vital signs recorded, hardware of the wearable device(s),
embedded intelligent models, dataset(s) used, and outcome metrics were extracted. Table 2
below shows all retrieved details from the eligible studies, thus forming one of the main
outcomes of this research, listing all implementations of smart wearables in cardiovascular
disease management between 2010 and 2022 along with their relevant details.
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Table 2. Implementations of smart wearables in detection of CVDs.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[39] 2010 Atrial Fibrillation Electrocardiogram A wearable vest including dry foam ECG acquisition device
A mobile phone (Nokia N85) Not Identified PhysioNet MIT-BIH dataset Sensitivity: 94.56%

Positive Predictive Value: 99.22%

[40] 2010

Right Bundle Branch Block Beats
Premature Ventricular Contraction
Paced Beats
Fusion of Paced and Normal Beats

Electrocardiogram

Plug-In-Based GUI Platform: An Alive Bluetooth ECG heart monitor and
Amoi E72 Microsoft Windows Mobile 5 Smartphone
Machine-Learning-Based Platform: An Alive Bluetooth ECG heart
monitor and an HTC Microsoft Windows Mobile 6 Smartphone

Multilayer Perceptron PhysioNet MIT-BIH dataset Accuracy > 90%

[41] 2010

Sinus Tachycardia
Sinus Bradycardia
Cardiac Asystole
Atrial Fibrillation
Wide QRS Complex

Electrocardiogram

A three-lead ECG device that contain two main parts: NCTU ECG
Aquisition tool as the data acquisition (DAQ) unit and a
wireless-transmission unit.
Medi-Trace 200, Kendall are also used to read the ECG from the body

Not Identified
Dataset collected at MUSE ECG system (GE
health care, USA) in China Medical
University (CMUH) database

Accuracy> 92%

[42] 2011 Premature Ventricular Contraction
Atrial Premature Contraction

Electrocardiogram
Electroencephalogram
Respiratory Rate
Skin Temperature

Wearable Sensor Node and it consists of seven modules: analog front-end
circuits for four physiological signals, a radio communication module, a
storage module, and MSP430F2618 as microcontroller unit (MCU)
Smartphone: HTC HD2 with a 1 GHz CPU and 448 MB RAM (can be
replaced with any android, Windows or IOS phone)

Hidden Markov Model
Layered Hidden Markov Model PhysioNet MIT-BIH dataset Sensitivity: 99.72%

Positive Predictive Value: 99.64%

[43] 2011
Congestive Heart Failure
Malignant Ventricular Ectopy
Ventricular Tachycardia

Electrocardiogram
A wireless ECG sensor
S3C6400 mobile phone
HBE-ZigbeX motes as a wireless sensor network

Multilayer Perceptron PhysioNet MIT-BIH dataset
BIDMC Congestive Heart Failure: 100%
Malignant Ventricular Ectopy: 90.9%
Ventricular Tachyarrhythmia: 83.3%

[44] 2015 Atrial Fibrillation Electrocardiogram Rejiva ECG wearable sensor
and a smartphone Support Vector Machines PhysioNet MIT-BIH dataset Specificity: 77.25%

Sensitivity: 93.13%

[45] 2016 Atrial Fibrillation Electrocardiogram
Photoplethysmogram Samsung Simband wrist band smart watch Elastic Net Logistic model Private Data

Accuracy: 95%
Sensitivity: 97%
Specificity: 94%
AUROC: 99%

[46] 2016 Myocardial Ischemia Electrocardiogram

A smart cloth composed of four units:
Smart cloth unit to measure physiological signal-ECG signal
Signal control unit to control and memorize the status of the device by an
ultra-low power MCU and SD card to save the signal data
Signal sensing unit that has a motion tracking sensor module to capture
the accelerometer signal
Wireless connection unit to transmit the data

A smartphone

Neural Network
PhysioNet MIT-BIH dataset
PhysioNet MIT-BIH Normal Sinus Rhythm
dataset

Accuracy > 76%

[47] 2017 Atrial Fibrillation Electrocardiogram
Photoplethysmogram Samsung Simband wrist band smart watch Convolutional Neural Network

Elastic Net Logistic model Private Data Accuracy: 91.8%

[48] 2017 Heart Attack Electrocardiogram
Body Temperature

Device composed of pulse sensor, a temperature sensor, an Arduino, and a
Low Energy (LE) Bluetooth
A smartphone

Not Identified Private Data

[49] 2017

Ventricular Premature Complex
Atrial Premature Complex
Ventricular Fibrillation
Atrial Fibrillation

Electrocardiogram Bio Clothing One, XYZ life BC1 Artificial Neural Networks

PhysioNet American Heart Association
database
PhysioNet Creighton University Ventricular
Tachyarrhythmia database
PhysioNet MIT-BIH dataset
PhysioNet MIT-BIH Noise Stress Test
database

Accuracy > 75%

[50] 2017 Atrial Fibrillation Electrocardiogram Wrist bracelet designed for the purpose: based on the ultra low power
series Microcontroller STM32L471RG Support Vector Machines Private Data Accuracy: 95%

[51] 2017 Atrial Fibrillation Audio Signal in Radial Artery

The PAG monitoring device consists of four components
audiogram sensor: Panasonic capacitive microphone
analog-digital converter: Embedded in Atmega328P
microprocessor: Atmega328P chip
data storage unit

A smartphone

Convolutional Neural Network
Dataset collected at National Cheng Kung
University Hospital (NCKUH), Tainan,
Taiwan.

Accuracy : 98.92%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[52] 2018 Myocardial Infarction Electrocardiogram ECG sensor using AD8232 and Espressif ESP-32 Wi-Fi + BLE module Convolutional Neural Network PhysioNet PTB Diagnostic ECG Database Accuracy: 84%

[53] 2018

Ventricular Arrhythmia
Junctional Arrhythmia
Supraventricular Arrhythmia
Arrhythmias

Electrocardiogram

a smart clothing consisting of cloth carrier, biosen sor platform, and smart
terminals. In biosensor platform, ADI ECG analog front-end (ADAS1001)
is used for obtaining the ECG signals, Microcontroller (STM32) is used to
realize the data processing and a Bluetooth module is available for data
transfer

Deep Neural Network with a Softmax
Regression model PhysioNet MIT-BIH dataset Accuracy > 94%

[54] 2018 Hypertension Heart Rate A waist belt comprised of three kinds of sensors: three dry electrodes, a
3-axis accelerometer and two pressure sensors with different sensitivities

Logistic Regression
Support Vector Machines Private Data Accuracy: 93.33%

[55] 2018 Atrial Fibrillation Electrocardiogram
Photoplethysmogram Samsung gear device wearable device Convolution–Recurrent Hybrid

Model (CRNN) Private Data Accuracy > 98%

[56] 2018 Atrial Fibrillation Electrocardiogram A smart shirt equipped with ECG sensors
A smartphone

Dataset collected at the Dongsan Medical
Center in South Korea Accuracy: 98.2%

[57] 2018

Ventricular Tachycardia
Ventricular Bradycardia
Premature Atrial Contractions
Premature Ventricular Contractions

Electrocardiogram

for ECG Sensing: ECG body sensor with analog conditioning circuit
(AD8232), Microcontroller unit (MCU) (PIC12F1822), Bluetooth module
(HC-06), and charging controller module
for analysis and display: processing and displaying unit of that process
the ECG signal and display it on thin film transistor (TFT) liquid crystal
display (LCD) consisting of Rpi computer, Bluetooth module, TFT screen,
and power supply

Support Vector Machines PhysioNet MIT-BIH dataset Accuracy: 96.2%

[58] 2019

Myocardial Infarction
Heart Failure
Arrhythmias
Fusion Beats
Supraventricular Ectopic Beats
Ventricular Ectopic Beats

Electrocardiogram
Heart Rate
Respiratory Rate

A patch with electronic circuit is built for the purpose and proposed in the
article and an Android smartphone and a cloud server for data storage
and further analysis

Convolutional Neural Network
PhysioNet PTB Diagnostic ECG Database
St Petersburg INCART 12-lead Arrhythmia
Database

Accuracy: 98.7%

[59] 2019 Atrial Fibrillation Electrocardiogram
A patch with electronic circuit is built for the purpose and proposed in the
article and an Android smartphone and a cloud server for data storage
and further analysis

Decision Tree PhysioNet MIT-BIH dataset Accuracy > 97.18%

[60] 2019
Atrial Fibrillation
Atrial Flutter
Ventricular Fibrillation

Electrocardiogram A wearable ECG sensing device and an Android smartphone and a cloud
server for data storage and further analysis Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy > 94%

[61] 2019 Atrial Fibrillation Electrocardiogram Smart vest equipped with two ECG sensing units Long Short-Term Memory PhysioNet dataset of the 2017 Computing in
Cardiology Challenge

Sensitivity: 83.82%
Specificity: 97.84%
F1-score: 81.43%

[62] 2019 Supraventricular Ectopic Beats
Ventricular Ectopic Beats Electrocardiogram ECG sensing device with a smartphone or tablet Long Short-Term Memory PhysioNet MIT-BIH dataset Accuracy > 79%

[63] 2019 Atrial Fibrillation Heart Rate Commercial HR Sensor Long Short-Term Memory PhysioNet Atrial Fibrillation Database
(AFDB) Accuracy: 98.51%

[64] 2019 Arrhythmias
Congestive Heart Failure Electrocardiogram One lead ECG sensor Convolutional Neural Network

PhysioNet MIT-BIH dataset
PhysioNet MIT-BIH Normal Sinus Rhythm
database

Accuracy: 93.75%

[65] 2019 Arrhythmias Electrocardiogram
A device composed of a single-lead heart rate monitor front end AD8232
chip, Atmel’s ATmega128 as a microcontroller and a BLE module
A smartphone is also used

Support Vector Machines
K-Nearest Neighbors
Logistic Regression
Random Forest
Decision Tree
Gradient Boosting Decision Tree

PhysioNet MIT-BIH dataset Accuracy > 77%

[66] 2019 Atrial Fibrillation Photoplethysmogram Wearable wristband device Support Vector Machines Private Data Accuracy: 90%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[67] 2020

Atrial Bigeminy
Atrial Fibrillation
Atrial Flutter
Ventricular Bigeminy
Heart Block
Ventricular Trigeminy
Ventricular Flutter
Ventricular Tachycardia
Supraventricular Tachyarrhythmia
Idioventricular Rhythm
Paced Beats
Nodal (A-V Junctional) Rhythm

Electrocardiogram
SparkFun Single Lead Heart Rate Monitor AD8232 as the data acquisition
device
Smartphone as a gateway to the server

Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy: 94:13%

[68] 2020 Atrial Fibrillation Electrocardiogram
Photoplethysmogram

Amazfit Healthband 1S for ECG and PPG sensing
smartphone for data reception and analysis Convolutional Neural Network Dataset collected at Peking University First

Hospital

Sensitivity: 80.00%
Specificity: 96.81%
Accuracy: 90.52%

[69] 2020

Left Bundle Branch Block Beats
Right Bundle Branch Block Beats
Atrial Premature Contraction
Ventricular Premature Contraction
Paced Beats
Ventricular Escape Beats

Electrocardiogram

A sensing device composed from a single lead heart rate monitor AD8232
and interfaced with NodeMCU development board having ESP8266
microcontroller capable of connecting to internet via WiFi
Smartphone for the analysis of the data

Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy > 90%

[70] 2020 Cardiovascular Risk

Electrocardiogram
Electroencephalogram
Electromyogram
Heart Rate
Blood Pressure
Respiratory Rate
Blood Sugar Level
Oxygen Saturation Level
Cholesterol Levels

Wearable medical sensors and a wearable smart watch Convolutional Neural Network UCI Cleveland Heart Diseases Dataset Accuracy: 98.5%

[71] 2020 Atrial Fibrillation

Electrocardiogram
Photoplethysmogram
Photoplethysmogram
Oxygen saturation Level
Body Temperature

The sensing device used is composed of three parts: AD8232r for ECG
detection, ADS1115 analog-to-digital converter and SX1276 LoRa chip that
transmits the data to the fog device

The fog device: a low-cost raspberry pi system integrated with Intel
Neural Compute Stick 2 (NCS 2) that is capable of handling deep learning
algorithms

Convolutional Neural Network PhysioNet dataset of the 2017 Computing in
Cardiology Challenge Accuracy: 90%

[72] 2020 Cardiovascular Risk Electrocardiogram
Blood Pressure

An ECG sensing device built with AD8232 unit
A smart watch
raspberry pi with SX1272 unit to transmit the data for LoRa gateway

Convolutional Neural Network UCI Cleveland Heart Diseases Dataset Accuracy: 98.2%

[73] 2020

Aortic Stenosis
Mitral Insufficiency
Mitral Stenosis
Tricuspid Regurgitation

Electrocardiogram
Photoplethysmogram
Gyrocardiography
Seismocardiogram

Shimmer 3 from Shimmer Sensing for ECG detection
A three-axis MEMS accelerometer: (Kionix KXRB5-2042, Kionix, Inc.) to
measure the SCG signal
A three-axis MEMS gyroscope (Invensense MPU9150, Invensense, Inc.) to
record the GCG signal
An ear-lobe photoplethysmography (PPG) sensor

Decision Tree
Random Forest
Neural Network

Dataset collected at Columbia University
Medical Center (CUMC) Accuracy > 90%

[74] 2020

Left Bundle Branch Block Beats
Right Bundle Branch Block Beats
Atrial Escape Beats
Nodal (Junctional) Escape Beats
Atrial Premature Beats
Aberrated Atrial Premature Beats
Nodal Premature Beats
Supraventricular Premature Beats
Premature Ventricular Contractions
Ventricular Escape Beats
Fusion of Ventricular and Normal Beats
Paced Beats
Fusion of Paced and Normal Beats

Electrocardiogram

A sensing device composed of AD8232 single-lead three-electrode ECG
Heart Rate monitor and a ESP8266 Wi-Fi module used to provide wireless
data transmission access to the Arduino Nano and is used to connect it to
the cloud

Convolutional Neural Network PhysioNet MIT-BIH dataset

Accuracy: 99.625%
Sensitivity: 97.736%
Specificity: 99.713%
Precision: 97.835%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[75] 2020 Ventricular Ectopic Beats
Arrhythmias Electrocardiogram Sensing device composed of Raspberry Pi for processing, ADS1115 as

Analog to Digital Converter and AD8232 as ECG sensor Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy: 95.76%

[76] 2020
Premature Atrial Contractions
Premature Ventricular Contractions
Atrial Fibrillation

Electrocardiogram
Photoplethysmogram

7-lead Holter monitor (Rozinn RZ153+ Series, Rozinn Electronics Inc.,
Glendale, NY, USA)
Smartwatch (Simband 2, Samsung Digital Health, San Jose, CA,USA)

Random Forest
Support Vector Machines

Dataset collected at the ambulatory
cardiovascular clinic at the University of
Massachusetts Medical Center (UMMC)

Best Model Accuracy: 94%

[77] 2020 Arrhythmias Electrocardiogram Sensing device built using Raspberry Pi 3 model B+ and two ECG sensors
AD8232 with a pulse sensor and an analog digital converter ADS1015

Support Vector Machines
Naïve Bayes
Artificial Neural Networks

PhysioNet MIT-BIH dataset Best Model Accuracy: 97.8%

[78] 2020 Atrial Fibrillation Electrocardiogram the wearable system is composed to work on a prototype developed by
Medicaltech srl (Rovereto, Italy)

A Custom model based on
Thresholding of Shannon Entropy
values

PhysioNet MIT-BIH dataset Sensitivity: 99.2%
Specificity: 97.3%

[79] 2020 Atrial Fibrillation Electrocardiogram
The sensing device is composed of Raspberry pi 3, Arduino UNO,
AD8232 single lead ECG sensor, HC-05 Bluetooth, biomedical sensor pad
and battery

Long Short-Term Memory PhysioNet MIT-BIH dataset Accuracy: 97.57%

[80] 2020

Atrial Escape Beats
Junctional Escape Beats
Left Bundle Branch Block Beats
Right Bundle Branch Block Beats
Atrial Premature Beats
Aberrated Atrial Premature Beats
Junctional Premature Beats
Supraventricular Premature Beats
Premature Ventricular Contractions
Ventricular Escape Beats
Fusion of Ventricular and Normal Beats
Paced Beats
Fusion of Paced and Normal Beats

Electrocardiogram
Moto 360
NanoPi Neo Plus2
Raspberry Pi Zero

Long Short-Term Memory PhysioNet MIT-BIH dataset Accuracy > 98.6 %

[81] 2020
Supraventricular Arrhythmia
Atrial Fibrillation
Arrhythmias

Electrocardiogram A wearable sensing device composed of AD8232 as an ECG sensor,
MCP3008 ias an ADC and Raspberry Pi as a computing unit Support Vector Machines UCI Cleveland Heart Diseases Dataset Accuracy: 72.41%

[82] 2020 Arrhythmias

Electrocardiogram
Body Temperature
Heart Rate
Blood Oxygen Level

A sensing device composed of:
Temperature sensor: MLX90614
Heart rate and blood oxygen sensors: MAX30100
ECG sensor: AD8232
Inter-Integrated Circuit (I2C) communication protocol
Microcontroller: Arduino UNO
Wireless transmission: Wi-Fi chip ESP8266

A smartphone

Long Short-Term Memory
Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy: 99.05%

[83] 2020 Premature Ventricular Contraction Electrocardiogram A wireless 3-lead ECG sensor from Shimmer Sensing Support Vector Machines PhysioNet MIT-BIH dataset Sensitivity: 96.51%
Predictive Value: 81.92%

[84] 2020 Atrial Fibrillation
Syncope Electrocardiogram

A sensing device composed of:
The SparkFun AD8232 ECG sensing unit
Arduino Mega 2560 microcontroller
Raspberry Pi 3 board
ADXL345 triple-axis accelerometer
HC-05 Bluetooth sensor

A smartphone

Long Short-Term Memory PhysioNet MIT-BIH dataset Accuracy: 97.61%

[85] 2021 Atrial Fibrillation Pulse Plethysmogram
Wrist-type pulse wave monitor
(type: Smart TCM-I, product by: Shanghai Asia & Pacific Computer
Information System CO, Ltd, Shanghai, China)

Time Synchronous Averaging Private Data Accuracy: 98.4%



Sensors 2023, 23, 828 12 of 36

Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[86] 2021 Cardiovascular Risk Photoplethysmogram Pulse rate sensor with ATmega32 microcontroller

Support Vector Machines
Naïve Bayes
Random Forest
Decision Tree
Logistic Regression
Artificial Neural Networks
Recurrent Neural Networks

Dataset collected at Framingham University Accuracy: 94.9%

[87] 2021 Ventricular Ectopic Beats
Supraventricular Ectopic Beats Electrocardiogram Ternary second-order delta modulator circuits Support Vector Machines PhysioNet MIT-BIH dataset Accuracy > 98%

[88] 2021

Premature Atrial Contractions
Premature Ventricular Contractions
Atrial Fibrillation
Ventricular Tachycardia
Sinus Bradycardia
Atrial Tachycardia

Electrocardiogram A custom-built ECG Signal acquisition circuit Gramian Angular Fields (GAFs)
Deep Residual Network (ResNet)

PhysioNet MIT-BIH dataset
LTAF database
Simulated Data (Prosim2 Vital Sign
Simulator)

Accuracy: 98.1%
Sensitivity: 97.6%
Specificity: 99.7%
F1 Score: 97.6%

[89] 2021 Arrhythmias
Congestive Heart Failure Electrocardiogram

ARDUINO UNO
ECG SENSOR AD8232
DISPOSABLE ECG ELECTRODES

Support Vector Machines PhysioNet dataset of the 2016 Computing in
Cardiology Challenge Accuracy: 98%

[90] 2021 Atrial Fibrillation Electrocardiogram A consumer-grade, single-lead heart belt (Suunto Movesense, Suunto,
Vantaa, Finland) Not Identified Private Data Accuracy 97.8%

[91] 2021

Atrial Fibrillation
Atrial Flutter
Supraventricular Tachycardia
Ventricular Tachycardia

Electrocardiogram ECG247 Smart Heart Sensor Not Identified Private Data Accuracy > 95%

[92] 2021 Heart Attack

Electrocardiogram
Heart Rate
Body Temperature
Blood Pressure

A device composed of ECG, heart rate, body temperature, and blood
pressure sensors Not Identified Private Data Accuracy: 83%

[93] 2021

Atrial Fibrillation
Ventricular Bradycardia
Ventricular Tachycardia
Bundle Branch Block

Electrocardiogram HealthyPiV3 biosensors Convolutional Neural Network

PhysioNet MIT-BIH dataset
PhysioNet PAF Prediction Challenge
Database for AF records
PhysioNet PTB Diagnostic ECG Database
PhysioNet dataset of the of 2015 bradycardia
Challenge
PhysioNet Fantasia Database and PAF
Prediction Challenge Database for healthy
signals

Accuracy > 98.75%

[94] 2021 Heart Attack Electrocardiogram AD8232 ECG sensor Sequential Covering Algorithm PhysioNet PTB-XL dataset F1 Score: 87.8%

[95] 2021 Heart Attack

Electrocardiogram
Body Temperature
Activity Parameters
Oxygen Saturation Level

Composed of different sensors to collect different vital signs which are:
LM35, MPU 6050, MAX30100 and AD8232 respectively

Support Vector Machines
Linear Regression
K-Nearest Neighbors
Naïve Bayes

Private Data Accuracy: 80%

[96] 2021
Ventricular Premature Beats
Supraventricular Premature Beats
Atrial Fibrillation

Electrocardiogram IREALCARE2.0 Wearable ECG Sensor
Time-Span Convolutional Neural
Network
Recurrent Neural Networks

Private Data
F1 Score: 86.5%
Precision: 87.7%
Recall: 86.8%

[97] 2021 Cardiovascular Risk Electrocardiogram
Oxygen Saturation Level Composed of AD8232 (ECG sensor) and MAX30102 (SPO2 sensor) Convolutional Neural Network

Convolutional Neural Network PhysioNet MIT-BIH dataset Shallow CNN Accuracy: 96.06%
Deep CNN Accuracy: 98.47%

[98] 2021

Heart Failure
Hypertension
Atrial Fibrillation
Peripheral Artery Disease
Myocardial Contraction

Heart Rate
Activity Parameters

GENEActiv and Activinsights Band (Activinsights Ltd.,
Kimbolton, UK) Not Identified To be collected To be provided

[99] 2021 Atrial Fibrillation Heart Rate
Respiratory Rate BioHarness 3.0 by Zephyr Support Vector Machines PhysioNet MIT-BIH dataset Sensitivity: 78%

Specificity: 66%

[100] 2021 Atrial Fibrillation
Bigeminy Arrhythmias Electrocardiogram AD8232 Decision Tree Private Data Accuracy > 95%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[101] 2021

Atrial Fibrillation
Atrial flutter
Left Bundle Branch Block Beats
Wolff-Parkinson-White Syndrome
Atrial Premature Contraction
Premature Ventricular Contraction

Electrocardiogram A smart vest equipped with AD8232 ECG Sensor Shallow Wavelet Scattering Network
(ScatNet) PhysioNet MIT-BIH dataset Accuracy > 96%

[102] 2021 Tachycardia
Heart Rate
Respiratory Rate
Blood Oxygen Level

Medical-grade wearable embedded system (SensEcho, Beijing SensEcho
Science & Technology Co Ltd) Long Short-Term Memory Medical Information Mart for Intensive Care

III (MIMIC-III)
Up to 80% accuracy 2 h before onset of
Tachycardia

[103] 2021 Atrial Fibrillation Photoplethysmogram Samsung Galaxy Active 2 Watch Convolutional Neural Network Private Data
Accuracy 91.6%
Specificity 93.0%
Sensitivity 90.8%

[104] 2021 Arrhythmias Electrocardiogram
A chest sticker that is composed from BMD101 ECG sensing device with
YJ33 power supply, BQ24072 as a power source and JDY-30 as a Bluetooth
module

Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy: 99.83%

[105] 2022
Supraventricular Ectopic Beats
Ventricular Ectopic Beats
Fusion Beats

Electrocardiogram Polar H10

Decision Tree
Gradient Boosting
k-Nearest Neighbors
Multilayer Perceptron
Random Forest
Support Vector Machines

PhysioNet MIT-BIH dataset Best Model Accuracy: 99.67%

[106] 2022
Supraventricular Ectopic Beats
Ventricular Ectopic Beats
Fusion Beats

Electrocardiogram Polar H10

Decision Tree
Gradient Boosting
k-Nearest Neighbors
Multilayer Perceptron
Random Forest
Support Vector Machines

PhysioNet MIT-BIH dataset Best Model Accuracy: 99%

[107] 2022 Heart Failure
Reduced Ejection Fraction Electrocardiogram Galaxy Watch Active & AppleWatch 6 Convolutional Neural Network Private Data Area Under Curve 93.4%

[108] 2022 Atrial Fibrillation Photoplethysmogram
Electrocardiogram

Samsung GalaxyWatch Active 2
Chest ECG Patch Hybrid Decision Model Private Data Average: 67.8%

[109] 2022 Atrial Fibrillation Photoplethysmogram Custom-built device that contains the PPG sensor MAX30102 Convolutional Neural Network Data obtained from Kaunas University of
Technology F1-score: 94%

[110] 2022 Atrial Fibrillation Electrocardiogram Firstbeat Bodyguard 2, Firstbeat Technologies Not Identified Private Data
Accuracy 98.7%
Sensitivity 99.6%,
Specificity 98.0%

[111] 2022 Supraventricular Ectopic Beats
Ventricular Ectopic Beats Electrocardiogram Custom-built device that contains the ECG AFE sensor

Artificial Neural Networks
Decision Tree
K-Nearest Neighbors

PhysioNet MIT-BIH dataset Accuracy: 98.7%

[112] 2022 Atrial Fibrillation Photoplethysmogram Apple Watch Gradient Boosting Decision Tree Private Data Accuracy: 94.16%

[113] 2022 Congestive Heart Failure
Atrial Fibrillation Electrocardiogram AD8232 sensor Random Forest PhysioNet MIT-BIH dataset Accuracy: 85%

[114] 2022 Cardiovascular Risk
Photoplethysmogram
Body Temperature
Activity Parameters

Custom-built device with Pulse Sensor, DS18B20 temperature sensor and
ADXL 1335 as accelerometer sensor

Naïve Bayes
Decision Tree
K-Nearest Neighbors
Support Vector Machines

Kaggle Human Gait Dataset
Kaggle Heart Disease Prediction Dataset Accuracy: 82%

[115] 2022 Cardiovascular Risk
Heart Rate
Respiratory Rate
Blood Oxygen Level

Not identified (WBAN) Enhanced version of Recurrent
Neural Network named ERNN Private Data Accuracy: 96%

[116] 2022 Cardiovascular Risk

Electrocardiogram
Electroencephalogram
Body Temperature
Blood Oxygen Level
Respiratory Rate
Blood Sugar Level

A custom-built device equipped with electrocardiogram sensor,
electroencephalogram sensor, an electro-mammography sensor, an
oxygen level sensor, a temperature sensor, a respiration rate sensor, and a
glucose level sensor

Long Short-Term Memory UCI Cardiac Arrhythmia Dataset
Average Positive Predictive Value: 96.77%
Average Negative Predictive Value: 95.12%
Average Sensitivity: 95.30%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[117] 2022 ST Elevation Myocardial Infarction (STEMI) Electrocardiogram
Motion Data

Custom-built device with 3-axis accelerometer
(ADXL355), 3-axis gyroscope (LSM6DS3) and single-lead ECG sensors Logistic Regression Private Data Sensitivity: 73.9%

Specificity: 85.7%

[118] 2022 Cardiovascular Risk Electrocardiogram
Motion Data

A custom-built device with accelerometers,
Galvanic Skin Response (GSR) and electrocardiograms (ECG) sensors

Mixed Kernel Based Extreme
Learning Machine (MKELM) Private Data Accuracy: 99.5%

[119] 2022 Cardiovascular Risk Heart Rate Wrist Strap & Rohm BH1790GLC-EVK-001 Development board
BH1790GLC Optical heart rate sensor Convolutional Neural Network Simulated Data F1-Score: Up to 99%

[120] 2022
Myocardial Infarction
Dilated Cardiomyopathy
Hypertension

Pulse Plethysmogram PTN-104 PPG sensor
Support Vector Machines
K-Nearest Neighbors
Decision Tree

Private Data
Accuracy: 98.4%
Sensitivity: 96.7%
Specificity: 99.6%

[121] 2022 Cardiovascular Risk Heart Rate
Blood Sugar Level

Heart rate sensor by Sunrom Electronics
Glucose monitor by Medtonic

Naïve Bayes
K-Nearest Neighbors
Support Vector Machines
Random Forest
Artificial Neural Networks

Private Data

Accuracy: 97.32%
Recall: 97.58%
Precision: 97.16%
F1-Measure: 97.37%
Specificity: 96.87%
G-Mean: 97.22%

[122] 2022 Cardiovascular Risk Electrocardiogram A custom-built device composed of ECG sensor (AD8232) and other
components Random Forest UCI Cleveland Heart Diseases Dataset Accuracy: 88%

[123] 2022 Cardiovascular Risk

Heart Rate
Oxygen Saturation Level
Systolic Pressure
Diastolic Pressure

Custom-built soft transducer equipped with MAX30100 SpO2 and HR
monitor sensor Long Short-Term Memory Kaggle dataset (Not Specified) Accuracy > 93%

[124] 2022 Cardiovascular Risk

Electrocardiogram
Blood Pressure
Pulse Plethysmogram
Body Temperature

Custom-built device equipped with ECG sensor, TMP117 temperature
sensor, Honeywell’s 26 PC SMT blood pressure sensor, and a pulse
oximeter

Recurrent Neural Networks UCI Cleveland Heart Diseases Dataset

Accuracy: 99.15%
Precision: 98.06%
Recall: 98.95%
Specificity: 96.32%
F1-Score: 99.02%

[125] 2022 Congenital Heart Disease Electrocardiogram
Seismocardiogram

Custom-built chest wearable sensor equipped with ECG sensor (ADS1291;
Texas Instruments, Dallas, TX) and seismocardiogram sensor (ADXL355;
Analog Devices, Norwood, MA)

Ridge Regression Private Data -
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3.3. Results of Individual Studies

The systems presented in the eligible studies share common features that allow for
easy classification. Contextually, the studies can be divided into three categories, for
example, according to whether the measuring devices used are commercially available or
not. Systems in the first group use components that are not commonly available; these
components were custom-made by the researchers for the study. Systems that use readily
available technology and commercially available devices comprise the second category.
The final category includes studies that used unspecified devices, making it impossible to
determine whether or not they are now available for purchase. The following categories of
systems were formed according to the devices used.

3.3.1. Studies Using Custom-Built Devices

Throughout the analysis of the eligible documents, it was shown that 55 studies built
their own devices using various vital sign sensors, power resources, storage resources,
communications, and other technical components. Within this group, two subgroups
stood out, the first of which did not name all the components used, particularly the sensor
devices, but, rather, stated that they composed their own wearables from sensor devices.
Thus, in [39,41–43,46,48,50,51,54,56,58–62,66,86,88,92,116,118,123], the authors proposed
custom-built wearables with unspecified components. These studies were able to detect
various cardiovascular diseases such as atrial fibrillation, atrial flutter, atrial premature
contraction, atrial tachycardia, cardiac asystole, cardiovascular risk, fusion beats, heart
attack, heart failure, hypertension, myocardial infarction, myocardial ischemia, premature
atrial contractions, and premature ventricular contractions. Vital signs obtained for this
purpose were radial artery audio signal, blood oxygen level, blood pressure, blood sugar
level, body temperature, diastolic pressure, electrocardiogram, electroencephalogram, heart
rate, motion data, oxygen saturation level, photoplethysmogram, respiratory rate, and skin
temperature. In addition, the databases used for training and the performance metrics are
detailed in Table 2.

On the other hand, several studies used commercially available sensors to develop
their wearable devices. In this context, various sensors such as ECG, accelerometer, and
other sensors were used. For example, in [53,73,104,117,125], the ECG sensors ADAS1001,
Shimmer 3, BMD101, ADXL355, and ADS1291 were used in combination with other
materials to build a wearable device that collects records used to detect or predict cardio-
vascular disease. In contrast, the authors in [114] used the DS18B20 temperature sensor and
ADXL1335 accelerometer to develop the desired wearable system. In addition, the authors
in [52,57,65,67,69,71,72,74,75,77,79,81,89,94,100,101,113,122] used the AD8232 ECG sensor
to collect vital signs data. In these studies, as discussed in Table 2, different processing
units, connector modules, and power sources were used to build the wearable device.
Alternatively, in [82,84,95,97], the authors combined different sensor materials with the
AD8232 ECG sensor in their wearable device. Specifically, the authors in [82,95] used the
MAX30100 blood oxygen sensor in addition to the ECG sensor, whereas the authors in [84]
used the ADXL345 triaxial accelerometer, and the authors in [97] used the MAX30102 pulse
oximeter sensor. Other studies also used different ECG sensors, with the authors in [87]
building their portable devices using the “Ternary Second-Order Delta Modulator Circuits”
to acquire ECG data. In the same context, the authors in [111,124] used the sensor ECG
AFE and other tools to build a wearable device capable of acquiring the necessary vital
signs data. Finally, the authors of [109,119] used MAX30102 photoplethysmography and
BH1790GLC optical heart rate sensors in their wearable devices, respectively.

3.3.2. Studies Using Commercially Available Wearable Devices

The other group of studies consists of studies that used commercially available de-
vices. These devices were capable of recording various vital signs such as activity param-
eters, blood oxygen level, blood pressure, blood glucose level, cholesterol level, electro-
cardiogram, electroencephalogram, electromyogram, heart rate, oxygen saturation level,
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photoplethysmogram, pulse plethysmogram, and respiratory rate. Depending on the
type of device used, three categories can be distinguished, namely, wristband devices,
belts, and others. For example, in [45,47,55,68,70,80,85,98,103,107,108,112], the authors
used smartwatches and smart wristbands to record vital signs. In addition, the authors
in [40,44,49,63,64,76,78,83,91,93,96,102,110,120,121] used various wearable ECG devices
such as smart vests and patches. In addition, the authors in [90,99,105,106] used smart belts
to collect ECG data. Overall, the devices used in all the studies mentioned in this section
can be summarized in the following list:

• Alive ECG Heart Monitor;
• Amazfit Health band 1S;
• Apple Smart Watch;
• Bio Clothing One, XYZ life BC1;
• BioHarness 3.0 by Zephyr;
• ECG247 Smart Heart Sensor;
• Firstbeat Bodyguard Chest Patch 2 by Firstbeat Technologies;
• GENEActiv and Activinsights Band by Activinsights Ltd.;
• Glucose Monitor by Medtonic;
• HealthyPiV3 biosensors;
• Heart Rate sensor by Sunrom Electronics;
• IREALCARE2.0 Wearable ECG Sensor;
• Kimbolton, UK;
• Medical-Grade Wearable Embedded System Beijing Sensecho Science & Tech.;
• Wearable device provided by Medicaltech SRL;
• Moto 360;
• NanoPi Neo Plus2;
• Polar H10;
• PTN-104 PPG Sensor;
• Raspberry Pi Zero;
• Rejiva ECG Wearable Sensor;
• Rozinn RZ153+ ECG Monitor;
• Samsung Galaxy Active 2 Smart Watch;
• Samsung Galaxy Active Smart Watch;
• Samsung Gear Wearable Device;
• Samsung Simband 2 Wrist Band Smart Watch;
• Samsung Simband Wrist Band Smart Watch;
• Shimmer ECG Monitor;
• Single-Lead Heart Belt by Suunto Movesense, Suunto, Vantaa, Finland;
• Wrist-Type Pulse Wave Monitor by: Shanghai Asia & Pacific Computer Info. System.

3.3.3. Studies That Did Not Specify the Devices Used

Finally, in a single study, the device used was not specified. The authors in [115]
mentioned only that they used a wide body area network (WBAN) to record respiratory rate
and blood oxygen levels to detect the presence of cardiovascular risk. Their study achieved
96% accuracy in the classification algorithm, demonstrating high feasibility in detecting
CVDs. Unlike some of the studies excluded in the screening phases (see Section 2.4),
this study mentioned that a wearable device was used, but did not specify which device
was used.

4. Results Analysis

Studies that met the criteria for inclusion in this review, or those that specifically ad-
dress the use of smart wearables for the diagnosis, prognosis, or treatment of cardiovascular
disease, contain a wealth of information worthy of further investigation. In the previous
section, the devices used were mentioned. However, to better understand the field, this
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part examines factors such as the year of publication, vital signs collected, diseases treated,
smart models used, datasets used for training, etc.

4.1. Progress with Years

Once the data are extracted from the papers, it is clear that there has been significant
progress in the field of wearables for CVD research over the past four years, with 78% of
the publications published in 2019 or later. During those years, a total of 68 studies were
published (compared to only 19 in 2010–2018). There are nine in 2019, eighteen in 2020,
twenty-one in 2021, and twenty-one in 2022. The number of publications addressing the
use of smart wearables for cardiovascular disease management has jumped, reflecting both
the growing interest in this area and the widespread acceptance of such devices. The data
from this section are shown as a pie chart in Figure 4 below.

Figure 4. Distribution of studies per year.

4.2. Vital Signs in Use

The electrocardiogram (ECG) is used in 69 of the systems described in the articles
to diagnose disease and identify cardiac abnormalities, although many other methods
have been offered. Electrocardiograms are routinely performed to check the health of
the heart and quickly identify potential problems. An electrocardiogram (ECG) shows
the development of the heart’s electrical activity over time. When the heart muscle cells
are electrically depolarized, the heart muscle contracts. An electrocardiogram records
and amplifies this electrical activity over a period of time. Studies have shown that
smart watches such as the Samsung Active and Apple Watch have significant efficiency
in capturing ECG signals, complementing the accuracy of ECGs performed in a doctor’s
office, clinic, or hospital room. In addition, the P wave, the QRS complex, and the T wave
are the three components of the ECG signal. Figure 3 shows the ECG signal in terms of
these components. In a normal electrocardiogram, the heartbeat is detected by [126]:

• PR interval: measured from the beginning of the P wave to the first deflection of the
QRS complex with a normal range of 120–200 ms;

• QRS complex: measured from first deflection of QRS complex to end of QRS complex
at isoelectric line with a normal range of up to 120 ms;

• QT interval: measured from first deflection of QRS complex to end of T wave at
isoelectric line with a normal range of up to 440 ms (though it varies with heart rate
and may be slightly longer in females).

Twenty more measures, including photoplethysmogram, heart rate, and others, were
also employed in addition to ECG in order to identify CVDs. Table 3 below details the
frequency and utilization of these parameters across studies.
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Table 3. Vital signs used in studies with count and percentages.

Vital Sign Count Percentage

Electrocardiogram 69 79.31%
Photoplethysmogram 15 17.24%

Heart rate 13 14.94%
Body temperature 8 9.20%
Respiratory rate 7 8.05%

Oxygen saturation level 5 5.75%
Blood oxygen level 4 4.60%

Blood pressure 4 4.60%
Activity parameters 3 3.45%

Blood sugar level 3 3.45%
Electroencephalogram 3 3.45%
Pulse plethysmogram 3 3.45%

Motion data 2 2.30%
Seismocardiogram 2 2.30%

Audio signal in radial artery 1 1.15%
Cholesterol levels 1 1.15%
Diastolic pressure 1 1.15%
Electromyogram 1 1.15%

Gyrocardiography 1 1.15%
Skin temperature 1 1.15%
Systolic pressure 1 1.15%

4.3. Diseases Targeted

Because a single document may focus on a single disease or multiple diseases, the
number of diseases studied in these publications exceeds 70. Atrial fibrillation (AFib) is the
most commonly studied disease, with 39 of 87 studies addressing it. AFib is the leading
cause of death and morbidity due to stroke, heart failure, thromboembolism, and reduced
quality of life, and accounts for the majority of these cases [127]. Other conditions are also
being studied, including premature ventricular contractions (PVCs), ventricular ectopic
beats, bradycardia, paced beat (PACE), and many others. Figure 5 is a bar graph showing
the number of diseases found in the 87 papers.

Figure 5. Diseases distribution per studies.

4.4. Smart Models in Use

It is well known that several subfields of artificial intelligence are widely used in
different fields. Two of the best-known subfields of AI are machine learning (ML) and
deep learning (DL); the former is described as a set of techniques that allow a machine to
acquire new information and skills through learning, and the latter is a branch of machine
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learning that focuses on algorithms inspired by the structure and function of the brain,
called artificial neural networks [128,129]. The relationship between AI, ML, and DL is
illustrated in Figure 6. However, in the studies analyzed in this review, many machine
learning and deep learning models were used to detect cardiovascular disease. Although
each publication proposes a different method to detect the disease(s), all agree that some
type of algorithm should be used to classify cardiac abnormalities. Convolutional neural
networks, support vector machines, long short-term memories, and decision trees are the
most commonly used algorithms.

Figure 6. Artificial intelligence, machine learning, and deep learning relation.

The intelligent models of machine learning and deep learning are attracting much
attention and are proving to be very practical [130,131] in the healthcare industry. With this
in mind, it is of great interest to analyze the efficiency of these models in detecting CVDs.
However, this task requires separate studies, as this research focuses on smart wearables as
a whole system. This article aims to fill this gap by discussing the four most commonly
used smart models, namely:

• Convolutional Neural Network (CNN): CNN is a kind of deep neural network used to
analyze visual images. These neural networks are modeled after the neural networks
of the human visual system. Neurons are the basic computational unit of a neural
network, just as they are the basic functional unit of the human nervous system. In
the case of convolutional neural networks, instead of normal matrix multiplication,
convolution is used, a special form of mathematical operation. In addition to the
input and output layers, a convolutional neural network has numerous hidden layers
(a neural layer is a stack of neurons in a single row). A neuron in the input layer
receives an input, analyzes it, and performs computations on it, and then transmits
a nonlinear function called an activation function to produce the final output of a
neuron [132];

• Support Vector Machines (SVMs): SVM is a supervised machine learning model for
two-group classification problems that employs classification techniques. An SVM
model is able to classify new data after receiving a set of labeled training data for each
category [133];

• Long Short-Term Memory (LSTM): LSTM networks are a type of recurrent neural
network (RNN) that can learn sequence dependence in sequence predictions. RNNs
contain cycles that use network activations from a previous time step as inputs to
influence predictions at the current time step. These activations are stored in the
internal states of the network, theoretically preserving long-term contextual timing
information. This method allows RNNs to use a contextual window that changes
dynamically over the course of the input sequence. Complex problem domains such
as machine translation, speech recognition, and others require this behavior [134];

• Decision Trees (DTs): A decision tree is a type of supervised machine learning used to
make classifications or predictions based on answers to a prior set of questions. The
model is a type of supervised learning, meaning that it is trained and evaluated on a
dataset that contains the desired classification. Occasionally, the decision tree may not
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provide a definitive answer or conclusion. Instead, it may suggest possibilities from
which the data scientist can make an informed choice. Because decision trees replicate
human thought processes, it is often easy for data scientists to understand and explain
the results [135].

The machine learning and deep learning models utilized in the studies analyzed in
this review were assessed with different performance metrics such as accuracy, specificity,
sensitivity, precision, recall and F1-score. These parameters are explained in detail in the
literature, with the authors in [129] providing a detailed explanation in this regard, for
example. These parameters can be summarized as follows [129]:

• Accuracy: the fraction of predictions that the model predicted right and is calculated
by dividing the number of correct predictions by the total number of predictions.

• Specificity: is the parameter used to calculate model’s ability to predict a true negative
(no cardiovascular diseases in our case) of each category available.

• Sensitivity: is the parameter used to calculate model’s ability to predict the true
positives (existence of CVDs in our case) of each category available.

• Precision: is the parameter used to calculate what proportion of positive identifications
(existence of CVDs in our case) was actually correct.

• Recall: is the parameter used to calculate what proportion of actual positives (existence
of CVDs in our case) was identified correctly.

The performance of models used by each study is detailed in Table 2. Furthermore, the
list of smart models used in smart wearables for the detection of cardiovascular diseases
is mentioned in Table 4 below, along with the count of use of each model. In this context,
and for more details on the potential of machine learning and deep learning models in
predicting CVDs, readers are advised to refer the work of Solam Lee and his colleagues [34],
which targets these models and discusses their feasibility in this domain.

Table 4. Smart Models Used in Studies.

Smart Model Count

Convolutional neural network 23
Support vector machines 20

Decision tree 10
Long short-term memory 10

Random forest 9
K-nearest neighbors 8

Artificial neural networks 5
Naïve Bayes 5

Not identified 5
Logistic regression 4

Multilayer perceptron 4
Recurrent neural networks 3
Elastic net logistic model 2

Gradient boosting 2
Gradient boosting decision tree 2

Neural network 2
A custom model based on thresholding of Shannon entropy 1

Convolution–recurrent hybrid model (CRNN) 1
Deep neural network with a softmax regression model 1

Deep residual network (ResNet) 1
Enhanced version of recurrent neural network named ERNN 1

Gramian angular fields (GAFs) 1
Hidden Markov model 1
Hybrid decision model 1

Layered hidden Markov model 1
Linear regression 1

Mixed-kernel-based extreme learning machine (MKELM) 1
Ridge regression 1

Sequential covering algorithm 1
Shallow wavelet scattering network (ScatNet) 1

Time-synchronous averaging 1
Time-span convolutional neural network 1
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4.5. Datasets in Use

In all 87 publications examined, at least one dataset was used to train the AI model,
and this is consistently the case. In addition, it was noted that certain sources advocate the
use of multiple datasets in the development and evaluation of a model. The PhysioNet
MIT-BIH dataset, accessible through the PhysioNet library of publicly available medical
research data, is the most popular. Of the 87 total studies, 36 used it. Another 25 studies also
used researchers’ private data. Figure 7 below shows a graphical statistical representation
of the frequency of use of datasets. The MIT-BIH Arrhythmia database is the first publicly
available collection of standardized test material for the evaluation of arrhythmia detectors.
The BIH Arrhythmia Laboratory collected these ambulatory two-channel ECG recordings
from 47 patients between 1975 and 1979 and included 48 30-minute samples [136]. The
PhysioNet MIT-BIH Atrial Fibrillation Database, the PhysioNet MIT-BIH Noise Stress Test
Database (NSTDB), and the PhysioNet MIT-BIH Normal Sinus Rhythm Database were
also consulted.

Figure 7. Training datasets in use.

5. Results Discussion

This study systematically collects and analyzes the literature on the use of smart
wearables for cardiovascular disease diagnosis and prognosis. However, there is more
to be said about the studies discussed so far, especially in terms of their effectiveness
and conformity with the latest research areas in artificial intelligence. This topic will be
elaborated and explored in this section.

5.1. Performance, Usability, and Feasibility

To predict CVDs, many tools have been used. The wide range of research is due to
the wide range of vital signs and devices used to achieve this goal. ECG, BP, HR, and
temperature were all reliable predictors of cardiovascular disease. This is evidenced by the
fact that the results of several studies (described in Table 2) showing the use of different
implementations yielded an accuracy rate of over 99%. However, there are several things
to consider when making a final decision on a wearable gadget. The following is a list of
features that would make a smart wearable more practical:

• Noninvasive: the gadget should not penetrate or pierce the skin to collect data;
• Compact: the wearable device should not be bulky or large, as its main purpose is to

monitor health symptoms without interfering with one’s life activities;
• Affordable: the affordability of the device plays a role in how well it fits into every-

day life;
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• Robust: the device should be durable enough to handle cold, hot, humid, or dry
weather, as well as harsh operating conditions such as light scratches or bumps;

• Ease of use: if the hardware used requires little human input, it should have an
intuitive interface;

• Durable power source: the portable device must be powered reliably enough to collect
meaningful data over an extended period of time.

On the other hand, the electrocardiogram (ECG) is considered the most effective
indicator of cardiovascular disease due to its high accuracy in recording the presence of
such disease and its practicality and reliability in detecting it. Conventional ECG signal
acquisition relies on electrodes, which can be uncomfortable to wear during normal daily
activities. Smart watches and wristbands, on the other hand, are quite effective at capturing
ECG signals and are also convenient for a number of other reasons. They are available to
everyone and are the best option as they combine a variety of useful features with accurate
monitoring of heart rate and other vital signs. Commercially available smart watches and
wristbands are cheap and have simple user interfaces. They are small, are not in the way,
and do not limit people’s options. In addition, they are equipped with reliable power
sources that allow them to last for a long time. Finally, their ability to record a wide range
of biometric data makes them an excellent, if not ideal, option for ECG capture devices and
thus for predicting CVD parameters.

5.2. Latest Tech-Trends and Wearables in CVDs

Alternatively, it is interesting to examine whether or not smart wearables used to
control CVD are consistent with current machine learning practices. Several subfields of
machine learning were identified as current research areas, but “Explainable AI”, “Fed-
erated Machine Learning”, and “Multimodal Machine Learning” were most frequently
mentioned. The compliance of smart wearables used to detect CVDs to those topics is
discussed in the following sections.

5.2.1. Explainable AI

The more complex AI becomes, the more difficult it becomes for humans to understand
and reconstruct the thought process of the algorithm. The entire computational process
becomes a so-called “black box”, something that cannot be understood by humans. These
black box models are created from scratch using nothing but the raw data. They are so
complicated that not even the engineers or data scientists who create them can explain
how their artificial intelligence algorithms arrive at their conclusions. Insight into the
reasoning behind an AI system’s results can be very helpful. Being able to explain a
decision can be critical in allowing stakeholders to challenge or change the conclusion,
in meeting regulatory criteria, or in ensuring that the system works as intended by its
creators [137–139].

In this context, and to address the challenges posed by the black-box nature of AI, ML,
and DL models, explainable AI (XAI) is proposed as a viable solution. The goal of XAI is to
make the results and outputs generated by machine learning algorithms understandable
and reliable to human users. The term refers to a method for describing an AI model
along with its intended effects and possible biases. In AI-driven decision-making, it helps
describe the precision, fairness, transparency, and outcomes of the model. When it comes
to bringing AI models into production, a company’s ability to explain the rationale behind
its decisions is critical to building trust with employees and customers. Companies may
take a more ethical approach to AI development if AI can be explained [137–139].

However, it was found that not a single study mentioned above implemented the
explainable AI. While the aforementioned studies were able to achieve high accuracy
in diagnosing cardiovascular disease, it may be difficult to implement such wearable
technologies into the healthcare cycle if people do not know how the models arrive at
such results. In other words, if the results are not explained, the medical community and
patients will not have confidence in them, or at least be wary of adopting them.
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5.2.2. Federated Machine Learning

The importance of protecting sensitive information has been studied for some time,
leading to the development of a variety of protocols for encrypting communications be-
tween participants. Differential privacy [140], k-order anonymity [141], homomorphic
encryption [142], and other approaches have been developed to protect data before they are
transmitted. While several attacks have been uncovered in ML, such as the model inversion
attack [143] and the affiliation attack [144], none of them are foolproof, as they can infer
raw data by accessing the model.

Federated machine learning, often referred to as federated learning (FL), is a novel idea
recently introduced by Google in the machine learning field [145]. The main concept behind
FL is to eliminate the exchange of user data between peripherals. FL is a collaborative,
distributed/decentralized ML privacy-preserving technology that eliminates the need to
transfer data from peripherals to a central server in order to train a model. Instead, the
models are sent to the peripheral nodes, where they are trained on the local data, and then
sent back to the central aggregation node, where the global model is created without the
nodes ever seeing the embedded data. Fortunately, federated learning has emerged as a
powerful response to user privacy concerns, paving the way for the collection of additional
data to train ML models to improve their accuracy and efficiency.

Furthermore, FL enables training models using data from multiple locations that have
data with different structure and composition, also known as data islands, and integrating
the information into a global trained model, improving the efficiency of the models. In
addition, FL enabled “Learning Transfer”, where models can share their knowledge without
having to transfer users’ private data, and made it possible to deal with heterogeneous
data scattered in multiple data spaces containing different attributes. The main concept of
federated learning is explained in Figure 8 below.

Figure 8. Federated machine learning classical structure.

Federated machine learning has shown promising results in the healthcare industry,
as indicated in [146,147]. However, none of the studies included in this review addressed
the integration of federated learning into wearable devices to make accurate predictions of
cardiovascular disease while maintaining privacy. There could be a few reasons for this.
For example, FL is still in its infancy and is still vulnerable to various challenges [148,149].
As a result, these factors may slow down the widespread use of FL in smart wearables in
cardiology. However, integrating federated learning into smart wearables may lead to the
following outcomes:

• Preserving users’ private data, especially health-related data;
• Enabling analysis of data from multiple sources in addition to the vital signs captured

by the wearables, such as the patient’s medical history derived from electronic health
records and the ECG recorded in real time, to provide more accurate results;
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• Building users’ confidence in smart wearables for cardiovascular disease management
and subsequent product adoption.

5.2.3. Multimodal Machine Learning

Multimodal machine learning is concerned with integrating different and divergent
data sources to benefit from complementary information in a single computational frame-
work that takes care of a single task, and follows this rule in the context of machine
learning (ML), a branch of AI. When it comes to predictive capability, the ability to explore
many datasets simultaneously leads to more trustworthy and accurate results, making
multimodal machine learning an area of high efficiency and amazing potential. To de-
termine a single goal, multimodal machine learning combines information from many
modalities [150].

In this context, data fusion is the process of combining information from many
databases. “The process of merging data to improve state estimates and projections” [151]
is a more precise definition of data fusion. The Joint Directors of Laboratories (JDL) Data
Fusion Subpanel concludes that the method of “data fusion” is essential for dealing with
many types of data. This description is supported by the authors in [152], who state that any
process that deals with linking, correlating, or combining data retrieved from one or more
sources to generate improved information is considered a process that employs data fusion.
Because the literature on data fusion is still relatively young, there is no general agreement
on the optimal way to merge disparate datasets. This is especially true considering that
there are four different methods for performing this [151,152]:

• Early fusion: disparate data sources are merged into a single feature vector before
being used by a single machine learning algorithm.

• Intermediate fusion: takes place in the intermediate phase between input and output
of a ML architecture, when all data sources have the same representation format.

• Late fusion: defines the aggregation of decisions from multiple ML algorithms, each
trained with different data sources.

• Hybrid fusion: defines the use of more than one fusion discipline in a single deep
algorithm.

The approaches to data fusion defined above are illustrated in Figure 9 below. In
addition, none of the smart wearable CVD detection studies reviewed here explored the
use of multimodal ML in their algorithms. However, by using this technology, researchers
can evaluate many datasets simultaneously, which greatly improves the accuracy of their
results. Multimodal ML allows researchers to analyze medical imaging data such as MRIs,
ECGs, and EHR data, giving the public more confidence in the accuracy of our AI models.

Figure 9. Data fusion different approaches.
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6. Challenges and Future Perspectives

Despite the significant role that smart wearables play in the detection of cardiovascular
disease, several issues may arise with their use. In addition, the introduction of new
artificial intelligence tools and concepts presents many new opportunities to improve the
management of heart disease. In this section, challenges and future prospects are discussed
to help future studies select starting points for future investigations.

6.1. Challenges

The following are the most common challenges faced by smart wearables in detecting
cardiovascular disease. These challenges were identified by analyzing the studies listed in
Table 2 and reviewing the literature on smart wearables. Additional information can be
obtained from a variety of sources, including, but not limited to [153–157].

6.1.1. Data Privacy and Confidentiality

AI models built into smart wearable technologies work only as well as the information
they have access to. While the technical structure of the models themselves—including the
cleanliness and suitability of the data—can affect how much data can be used to train AI
models, it is generally accepted that more data can lead to more accurate models. In practice,
however, there are several obstacles that make data collection the most difficult part of
developing AI models. First and foremost is privacy and confidentiality. The security and
privacy of personal data are not only strengthened by people, but also by society in general,
governments, and companies. Numerous laws and regulations have been enacted to
protect personal data, including the European Union’s General Data Protection Regulation
(GDPR) [158], the Chinese People’s Republic of China’s Cybersecurity Law [159], the
People’s Republic of China’s General Principles of Civil Law [160], Singapore’s PDPA [161],
and hundreds of other principles around the world. Although these regulations help
protect private information, they pose new challenges to the traditional AI data processing
model to varying degrees by making it more difficult to collect data to train models, which
in turn makes it more difficult to improve the accuracy of model performance.

6.1.2. Noise and Artifacts

The noninvasive nature of vital signs collection by smart wearables leaves the record-
ings open to a greater amount of background noise, known as “artifacts”. Artifacts are
unwanted signals or signal distributions that distort the actual signal and contribute to
the noise in the data, degrading the quality of the data and reducing the performance and
accuracy of the smart models. Artifacts can be divided into two categories, depending on
where they originate: intrinsic artifacts, which come from the monitored body itself, and
extrinsic artifacts, which are caused by the monitored person’s external environment. The
origin of artifacts can be divided into many categories [162,163]:

• Intrinsic artifacts (also known as physiological or internal artifacts):

– Ocular artifacts: created by ocular motions including blinking, horizontal and
vertical eye movement, fluttering of the eyes, etc.;

– Muscle artifacts: caused by things such as sneezing, swallowing, clenching,
talking, lifting the eyebrows, chewing, contracting the scalp, etc.;

– Respiratory artifacts: resulting from an electrode’s movement while breathing,
which might manifest as slow, repetitive EEG activity;

– Sweat artifacts: result of sweat’s electrolyte concentration shifts on the electrode’s
surface after contact with the scalp and are obtained in wearables that collect vital
signs that are related to skin.

• Extrinsic artifacts (also known as extra-physiological/external artifacts):

– Motion artifacts: EEG monitoring systems are susceptible to motion artifacts due
to the subject’s physical movement;
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– Environmental artifacts: these include, but are not limited to, loss of electrode-to-
scalp contact, electrode rupture, electromagnetic wave interference from nearby
electrical or electronic equipment, etc.

6.1.3. Data Diversity and Heterogeneity

Research in the field of medicine has shown that the use of multiple vital signs
may be more helpful in detecting a disease than the use of a single vital sign. Therefore,
combining multiple vital signs in the analysis process could allow for more accurate
prediction of cardiovascular disease. Combining ECG signals with medical history data
from the electronic health record (EHR) and medical images such as magnetic resonance
imaging (MRI) is a robust example of multiple vital signs that can be analyzed together to
predict cardiovascular disease. However, these data differ in their nature and structure, or
even in the devices used to acquire them. More specifically, ECG data are usually stored
in the form of real numbers, while EHR data may be in the form of clinical reports, health
tests, or other forms, and MRI images are usually stored in different image formats. In this
context, classical machine learning models such as support vector machines are usually
well suited for linear data, but it is well known that images can be analyzed with deep
learning algorithms such as convolutional neural networks. Therefore, it is a difficult task
to analyze these data together given their different formats and structures, even if it is more
practical for disease detection.

6.1.4. User Technology Adoption and Engagement

One of the major barriers to the use of smart wearables to detect and predict cardio-
vascular disease is user acceptance, adoption, and participation. Wearing such sensors is
received differently by users due to concerns about privacy, discomfort, ethics, and other
contextual factors.

Therefore, we may characterize the difficulties as the following set of study questions.
In addition, those questions are illustrated in Figure 10 below (the symbol RQ in the list
below and in Figure 10 refers to the term “research question”):

• RQ1: Disclosure of subject data may be limited by law. If we utilize these records,
how can we ensure that no one’s privacy will be compromised?

• RQ2: There are several potential noise and interference contributors to CVDs detection
data. The question is, how should specialists deal with noisy data and artifacts?

• RQ3: The identification of CVDs may be enhanced by analyzing a variety of data. Can
AI models handle the analysis of diverse datasets?

• RQ4: Did smart wearables earn enough confidence in the field despite their excellent
accuracy in detecting CVDs, and how can this be improved?

Figure 10. Research questions arising from analysing usage of wearables in CVDs detection.
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6.2. Future Perspectives

Cardiovascular disease detection through smart wearables is now a reality. With
the global incidence of this disease and the deaths associated with it, there is a growing
need to improve the overall process and take more measures for proactive and preventive
methods. More research and development on smart wearables is needed to keep up with
the increasing demand.

6.2.1. Preserving Data Privacy and Confidentiality

Newer machine learning methods offer new opportunities to protect the privacy and
security of user data. One potential technique that can help solve privacy problems is
federated learning (FL). Federated learning, a type of collaborative decentralized machine
learning that protects user privacy, does not require data to be transported from edge
devices to a central server [149,164–167]. It is expected that using FL to identify CVDs will
make it easier to collect more data, which in turn will improve detection accuracy.

6.2.2. Artifacts Removal and Data Readiness

Before proceeding with signal processing, it is important to eliminate or reduce all artifacts,
both extrinsic and intrinsic, that might interfere with the signals. References [163,168–170]
detail some of the existing implementations that perform this function. In order to clean
and preprocess the data to improve the accuracy of cardiovascular disease detection, it is
necessary to investigate the automation of noise reduction.

6.2.3. Analysis of Heterogeneous and Diverse Data

Multimodal machine learning is a good solution that allows analyzing data with
alternative structures and formats. Since current cardiovascular disease detection and
prediction implementations usually analyze only one type of data structure (linear, im-
ages, etc.), multimodal machine learning allows analyzing multiple types of data simulta-
neously to improve the overall result of the intelligent model. Learning a complex task by
analyzing data from multiple sources and using complementary knowledge are examples
of what multimodal machine learning is capable of. In this context, multimodal datasets
are described as information with different structures and formats that come from a variety
of sources, each of which contributes a unique set of information (or “modality”) to the
overall dataset. Therefore, using the concept of multimodal ML to analyze different data
such as ECG, EHR recordings, and MRI images can help increase the accuracy of CVD
detection and prediction.

6.2.4. Raising Trust by Enhancing Accuracy, Privacy, and Explainability

Given the prevalence and devastating impact of cardiovascular disease, there is a
growing need for practical and viable solutions that can help detect and even predict the
onset of these conditions. Consequently, smart wearables have proven to be viable in this
area, providing both continuous and real-time monitoring without interfering with daily
life routines. However, there is a great need to improve the prediction of CVDs using smart
wearables, whether through increased accuracy, better explainability, or by addressing
other issues that hinder their adoption by users, such as privacy and ethical constraints.
This is a well-known fact that does not need further explanation, because when it comes to
health, users are only willing to use tools that are highly accurate, understandable, private,
and reliable. In other words, greater trust and wider use of smart wearables as tools for
predicting CVDs will result from improved accuracy, reliability, feasibility, privacy, and
explainability of such devices.

For this reason, we may summarize the outlook into the following trending research
topics. In addition, those research topics are illustrated in Figure 11 below (the symbol TR
in the list below and in Figure 11 refers to the term “trending research topic”):

• TR1: To protect user privacy, smart wearables should employ federated learning for
CVDs detection;
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• TR2: The use of automated artifact and noise removal methods to mitigate the effects
of interference and background noise;

• TR3: Improve the quality of recognition models by analyzing data from numerous
modalities and sources using multimodal ML techniques;

• TR4: Raising precision, explainability, and adaptability will help build users’ confi-
dence in smart wearables.

Figure 11. Research topics that may serve as solutions to the challenges in the domain.

Figure 12 below summarizes the challenges–future solutions relationship and illus-
trates how future views may act as potential solutions in the domain, all of which can assist
to enhance research into the use of smart wearables in the detection of CVDs.

Figure 12. Challenges–future solutions chart.

7. Conclusions

Recently, the use of smart wearables in the diagnosis and prediction of cardiovascular
disease has received increasing attention. This is partly due to the technological potential
of smart wearables and partly due to the data processing power of artificial intelligence
and its derivatives, machine learning and deep learning. In this research, we thoroughly
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investigated the use of smart wearables to treat fatal heart diseases. The review of the
research area showed the high practicality and effectiveness of such methods, reflecting
the growing interest that has surged in recent years. However, given the challenges and
limitations discussed in this review, there is a large window for improvement that smart
wearables should undergo to prove their feasibility and reliability. Increasing accuracy,
automating noise reduction, solving privacy issues, dealing with heterogeneity, and improv-
ing explainability are interesting topics that should be considered when trying to promote
the use of smart wearables in the management of CVDs. As a result, this review provides
a brief overview of a number of relevant topics that can be used as recommendations for
further research.
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