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Abstract: Today’s world is changing dramatically due to the influence of various factors. Whether
due to the rapid development of technological tools, advances in telecommunication methods, global
economic and social events, or other reasons, almost everything is changing. As a result, the concepts
of a “job” or work have changed as well, with new work shifts being introduced and the office
no longer being the only place where work is done. In addition, our non-stop active society has
increased the stress and pressure at work, causing fatigue to spread worldwide and becoming a
global problem. Moreover, it is medically proven that persistent fatigue is a cause of serious diseases
and health problems. Therefore, monitoring and detecting fatigue in the workplace is essential to
improve worker safety in the long term. In this paper, we provide an overview of the use of smart
wearable devices to monitor and detect occupational physical fatigue. In addition, we present and
discuss the challenges that hinder this field and highlight what can be done to advance the use of
smart wearables in workplace fatigue detection.

Keywords: smart wearables; occupational fatigue; fatigue detection; smart health; productivity
management; heart rate variability; diseases prediction

1. Introduction

Our world has recently been changing at a fast pace. Several global events have
clearly impacted many areas of our lives. For example, the improvement of information
and communication technologies (ICT) has changed many of our concepts, such as ed-
ucational habits, business processes, entertainment methods, health services, and much
more. Nevertheless, some events have had a negative impact on the global economy
and labour market, such as the 11 September attacks, the 2008 economic crisis, and more
recently, the COVID-19 pandemic. Whether it is due to technology having increased the
pace of work or economic stress forcing people to work more to adapt, or that working
life has changed, the pace of business has increased, or work has become more intense
and faster, is yet to be determined [1–8]. In addition, the concept of the “24/7 society”
has also increased time pressure. The need to increase productivity requires the working
hours to be extended, which has lengthened the average working day and shortened the
average recovery times [9]. In addition, the introduction of rotating shifts has contributed
to disrupting the biological clock and circadian rhythms of workers. Therefore, fatigue,
sleep deprivation, and psychosocial stress are considered the main consequences of this
increased work intensity and time pressure [10].
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1.1. Fatigue Definition(s)

Despite its severity and health significance, and although the term fatigue has been
extensively studied recently, it is used in many different meanings and there is currently no
single accepted definition [1]. For example, the authors of Ref. [11] defined it as “a reduction
in physical and/or mental performance as a result of physical, mental, or emotional exertion
that may affect virtually all physical abilities, including strength, speed, reaction time,
coordination, decision making, or balance”. However, Ref. [12] described it as a state that
fluctuates between alertness and drowsiness, whereas Ref. [13] defined it as a state of
the muscles and central nervous system in which prolonged physical activity or mental
processing, in the absence of adequate rest, results in insufficient capacity or energy to
maintain the initial level of activity and/or processing. In addition, Ref. [14] defines
fatigue as a decreased capacity or motivation to work that is accompanied by feelings
of tiredness and sleepiness. Despite the differences between definitions, all agree that
fatigue is associated with or is itself a lack of activity and motivation. Researchers often
distinguish between acute and chronic fatigue [15]. Acute fatigue is clearly due to a single
cause, occurs in healthy people, is considered normal, sets in quickly, and lasts only a short
time. Chronic fatigue, on the other hand, is known to have multiple, additive, or unknown
causes, occurs regardless of activity or exertion, and, according to the author, usually
cannot be eliminated by common means [16]. In addition, researchers distinguish between
different types of acute fatigue, such as: Occupational physical fatigue, occupational mental
fatigue, occupational heat stress, occupational noise stress, and others [17]. Occupational
physical fatigue, which is the subject of this article, is thus defined as the work-related
physical fatigue due to various causes that can be divided into two groups: work-related
and person-related causes and contributors [18].

1.2. Fatigue Is Silent—Never Underestimate It

Fatigue has become a commonplace and almost universal feature of our modern lives.
Increasing fatigue has led to sleep problems and has gradually entered standard disease
patterns [1]. Although acute fatigue has identifiable causes and is considered normal, it
can become pathological if it persists. The consequences of fatigue can range from mild,
infrequent symptoms to severe, disabling symptoms, and even lead to chronic fatigue
syndrome [19]. Consequently, it is important to track fatigue, not only because of its
potential consequences, but also because individuals may not accurately assess their fatigue
level, which requires immediate or real-time measurement [20]. Moreover, this real-time
measurement and assessment is necessary because physicians may erroneously conclude
during routine field examinations that fatigue measured in the field is not severe and will
not lead to certain illnesses [14].

1.2.1. Health Consequences

Studies and research have shown that fatigue is not only widespread in almost all
sectors of the economy, but that there is also a direct relationship between occupational
physical fatigue and various diseases. For example, it has been demonstrated in Refs. [21,22]
that prolonged physical fatigue can weaken the immune system and cause chronic fatigue
syndrome. In addition, studies have shown that 33% of all work-related musculoskeletal
injuries and illnesses in the construction industry in the United States are due to fatigue
and overexertion [23]. Similarly, Refs. [24–26] have also found that physical fatigue is
a leading cause of work-related injuries in the oil, gas, and construction industries. In
addition, fatigue is considered particularly dangerous where work safety is of outermost
importance, such as in public transportation, health care, and other fields. In addition,
numerous studies have found a direct relationship between occupational physical fatigue
and disease. For example, in Refs. [27,28], the authors mentioned that fatigue can lead
to one or more serious, critical, and fatal diseases. Figure 1 below shows some of the
diseases that can be caused by the accumulation and persistence of occupational physical
fatigue [10,14,24–31].
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Figure 1. Diseases caused by occupational physical fatigue.

1.2.2. Fatigue and Cardiovascular Diseases

The most critical concept lies in the fact that studies have proven that there is a direct
relationship between occupational physical fatigue and heart disease. This relationship
reaches a level of causality, as persistent fatigue is confirmed as a direct cause of future heart
diseases, or so-called Cardiovascular Diseases (CVDs) [29–31]. More disturbingly, CVDs
are considered the most deadly diseases, causing the most deaths and disability-adjusted
life years (DALYs) worldwide [32,33]. In this context, numerous studies have discussed
the relationship between fatigue and the cardiac system, showing that haemodynamic
correlates, decreased indices of stroke volume and cardiac output, hypertension, myocardial
infarction, cardiac arrest, and acute myocardial infarction are all consequences of prolonged
acute fatigue [10,14,28,34–52]. This causal relationship makes occupational physical fatigue
in the workplace intolerable as it causes one of the most dangerous diseases—cardiovascular
diseases. Therefore, solutions are needed to control fatigue and avoid deterioration of the
health of the workers.

1.3. Detection of Occupational Physical Fatigue

Fatigue is a health symptom to watch out for, and its presence should not be underes-
timated. As mentioned previously, the presence of fatigue can be considered normal, but
its persistence is a dangerous alarm signal for critical health situations. For this reason,
instruments for measuring fatigue are not new concepts, as numerous attempts to detect
fatigue have already been developed and used [53]. For example, subjective questionnaires
were developed in the early 1990s to quantify physical fatigue in the general population,
as proposed in Refs. [54,55], and, later, similar attempts were made with the same goal.
However, because no standardized scale was developed to assess physical fatigue, different
scales were used to measure fatigue, which made it impossible to compare the results of
different studies. In addition, the subjective questionnaire technique, although considered
a low-cost instrument, is subject to recall errors, is considered intrusive because it takes
up workers’ time and attention, and, most importantly, is unable to capture fatigue or
its consequences in real time. To overcome all the above limitations of the questionnaire,
researchers have attempted to collect and analyse various vital signs to detect the presence
of fatigue.
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Detection by Vital Signs

The need to accurately detect physical fatigue in real time requires monitoring and
tracking of some vital signs and biomarkers such as heart rate, heart rate variability (HRV),
skin temperature, electroencephalogram (EEG), electromyography (EMG), jerk metrics, and
others [17,18,53,56,57]. However, some studies have shown that fatigue has no significant
effects on simple measures such as heart rate or blood pressure [14]. Therefore, EEG
is the most commonly-used signal to analyse a person’s level of relaxation and fatigue.
However, EEG is measured with equipment that restricts the worker’s activity and is
therefore considered invasive. Accordingly, other alternatives are crucial to detect physical
fatigue using vital signs without restricting the worker’s activity and movement, such as
the nocturnal autonomic nervous system (ANS) activity. ANS activity is detected using
heart rate variability, motion, and sleep data [19,20,58–60]:

• Heart rate variability (HRV): is an analysis of milliseconds variations in the intervals
between heartbeats and reflects the build-up of self-regulatory forces in the body while
performing a stressful task [19];

• Motion data: consists of the number of steps, acceleration, rotation, and other parame-
ters and is necessary to improve the accuracy of fatigue detection [20];

• Sleep data: it is proved that there is a bidirectional relationship between fatigue and
sleep, where the lack of sleep increases the feeling of fatigue and increasing fatigue
leads to sleep problems [20].

In this context, analysis of heart rate variability data is an efficient method to detect
fatigue in different populations. In particular, low parasympathetic activity has been
associated with the diagnosis of fatigue and burnout [61]. This is possible because HRV
mimics the build-up of self-regulatory forces in the body during stressful activities with
high mental or physical workload. Parameters extracted from HRV data and analysed
to detect fatigue are divided into three main groups: time domain parameters, frequency
domain parameters, and non-linear parameters [19,62–71]. These parameters are presented
and explained in Table 1 below.

Time-domain parameters are used to calculate the amount of variance in measure-
ments of the interbeat interval (IBI), which is the period between successive heartbeats.
Time domain parameters can be expressed in original units, or as the natural logarithm (Ln)
of the original units. On the other hand, the frequency domain parameters evaluate the
absolute or relative power distribution in the frequency bands: very low frequency (VLF),
low frequency (LF), and high frequency (HF). Finally, the nonlinear parameters allow to
measure the unpredictability of a time series [19,71];

In addition, In Table 1, the two terms NN Intervals and RR Intervals are used. The
RR interval signifies the time between two successive heartbeats, measured from peak
(R) to peak (R) on the QRS complex, which is the combination that represents ventricular
depolarization of the heart and is composed of Q wave, R wave, and S wave. However, the
NN interval denotes the RR interval data but with added filtering to eliminate the artefacts
and noise that make some RR intervals unreliable [19,71].
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Table 1. Heart rate variability parameters.

Group Parameter Unit Description

Time domain
parameters

Mean NN (ms) Mean NN ms Mean of NN interval

SDNN (ms) Standard deviation of NN intervals

RMSSD (ms) Square root of the mean squared
differences of successive NN

intervals

pNN50 (ms) Proportion of interval differences of
successive NN intervals greater

than 50 ms

Frequency domain
parameters

VLF (ms2) Power in very low frequency range
(0–0.04 Hz)

LF (ms2) Power in low frequency range
(0.04–0.15 Hz)

HF (ms2) HF ms2 Power in high frequency
range (0.15–0.4 Hz)

LF/HF (ratio) Ratio of LF over HF

Non-linear
parameters

SD1 (ms) Standard deviation of points
perpendicular to the axis of line of

identity or standard deviation of the

successive intervals scaled by
√

1
2√

1
2 var(RRn − RRn+1)

SD2 (ms) Standard deviation of points along
the axis of line of identity, or√

2SDNN2 − 1
2 SD12

SD1/SD2 (ratio) Ratio of SD1 over SD2

1.4. Main Contributions of This Article

This article addresses the use of smart wearables in the detection of occupational
physical fatigue. Since there are already several reviews on the use of smart wearables for
fatigue detection, the topic presented here is a new one. To our knowledge, previous articles
either discussed the use of wearables to detect fatigue in general without distinguishing
between categories, or addressed other categories such as mental or cognitive fatigue, so
the topic of this review is new. Therefore, the main contributions in this article can be
summarized by:

• Discussing the use of smart wearables to detect and monitor occupational physical
fatigue, which is a new topic, as indicated by:

– Presentation of different devices/models used in this field;
– Listing the current state-of-the-art of implementation of smart wearables for

occupational physical fatigue detection, classified by the type of device used
(custom-built vs. commercially available devices), and the vital signs collected;

– Naming the artificial intelligence smart models that were embedded in the smart
wearable systems and that were used to analyse the subjects’ data;

• Investigating the use of smart wearables to predict cardiovascular diseases in the
workplace and how these devices can be used to help maintain both worker health
and company productivity;

• Comprehensively indicating the challenges that may hinder progress in the use of
smart wearables in the workplace and what future prospects can be targeted to
overcome these issues.
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Throughout the article, Section 2 discusses the definition, history, and classification of
smart wearables. Then, Section 3 explains the use of smart wearables to detect physical
fatigue in the workplace. Section 4 presents the challenges that hinder the progress of smart
wearables in this area and identifies future directions that can be pursued to overcome
these issues. A concluding section briefly summarizes the entire article.

2. Smart Wearables: A New Computing Concept

The rapid development of information and communication technologies along with the
improvement of electronics, especially microprocessors, has given rise to a new generation
of tiny, robust, and efficient computing devices, such as smart wearables, which can also
be referred to as smart wearable technology or wearable devices. These devices provide
access to data anytime and anywhere and are heralded as the next generation of ubiquitous
technologies after smartphones [72–75]. Smart wearables are a broad technological field
that now has applications in many areas of our lives. In the following, we define the term
“smart wearables” and provide an overview of the history of wearables. In addition, some
classifications of smart wearables are mentioned below.

2.1. Term Definition

The concept of “Smart Machines” was originally launched by Alan Turing in 1950
when he asked his famous question, “Can machines think?” [76]. This question inspired
the translation of the concept into reality, where researchers around the world worked to
turn computers into intelligent machines. However, the term “Smart” is not uniformly
defined in the literature and is introduced in various ways by different researchers [77].
For example, in Ref. [78], the authors define smart objects by their independence, with the
embedded sensors, processors, and network devices giving them the ability to act according
to their own knowledge. The tools embedded in the smart object allow it to collect data,
analyse it, make decisions based on the results, and even interact with humans. In this
sense, smart wearables can be defined as computers embedded in anything that covers the
human body [79]. Other definitions of smart wearables describe their functionality. The
authors in Refs. [80,81] define smart wearables as devices that are equipped with tools to
collect, store, and even analyse human data, and can be worn by the user at any time to
measure parameters such as personal data, vital signs, locations, environments, movements,
and more.

2.2. Smart Wearables; A Brief History

Smart wearables are defined as a subset of the Internet of Things. The term IoT was
coined in 1999 by Kevin Ashton, who proposed a vision of a fantasy world in which all
devices are equipped with sensors and actuators and connected via the Internet so that
they can interact with each other and with people [82]. However, the entire concept of
smart wearables was known decades before Ashton’s statement. In 1961, Edward Thorp
and Claude Shannon developed a small computer that fit inside a shoe and helped them
cheat at a roulette game. This is considered the first wearable computing device ever
known [83,84]. In the 1980s, Steve Mann designed and built the “EyeTap glasses”, a device
that could project computer-generated images onto one eye and support the user’s visual
perceptions with text information [85]. In addition, in 1996, the U.S. Navy Department
of Defense invested in a project to monitor the vital signs of its soldiers, which is also
considered an important milestone in the development of smart wearables [86,87]. Since
then, researchers have expanded their projects in this field to different areas of life such as
health, fitness, sports, fashion, and even other sectors, and smart wearables have gradually
evolved from invasive, heavy, and huge technologies to more adaptable, compact, and
weightless devices [77].
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2.3. Classification of Smart Wearables

Over the past few decades, more than a thousand smart wearables have been re-
searched. Nevertheless, there is no specific standard classification of smart wearables.
Therefore, the authors in Ref. [88], classified smart wearables into six categories, which are:

• Entertainment: used for Augmented Reality (AR), control devices, and smart gloves;
• Lifestyle: used for video and voice calls or gesture controls;
• Fitness: used for measuring step count, acceleration, heart rate, and body temperature;
• Medical: used for hearing aids, heart monitoring, remote patient monitoring, and

much more;
• Industrial: used for remote and hands-free operations related to industrial and busi-

ness goals;
• Gaming: used for gaming, such as AR devices.

In contrast, the authors in Ref. [89] classified smart wearables by their type rather
than functionality. They illustrated their classification in three groups, which are:

• Watch-type: devices that can receive notifications from smartphones such as text
messages and emails;

• Necklace or Wristband-type: devices that are used to monitor people’s health data in
real time;

• Headmount Display-type: devices that can be used for Virtual Reality (VR) and
three-dimensional gaming.

However, this classification may miss some devices such as electronic patches, health
clothing, and others. Figure 2 below shows some smart wearables that are currently in use
in different medical fields.

Figure 2. Some of the currently available smart wearables.

3. Smart Wearables and Occupational Physical Fatigue Detection

Given its serious consequences, occupational physical fatigue requires consistent and
effective medical intervention, regardless of its causes, burdens, costs, and effects. Artificial
intelligence (AI), such as machine learning (ML), the internet of things (IoT), and other vital
signs measurement and analysis tools promise to increase the effectiveness of occupational
physical fatigue detection devices. Improving the performance of microprocessors, com-
bined with their miniaturization, will help improve fatigue detection to enhance clinical
services and meet the growing demand for healthcare services. This is because, on the
one hand, patients demand faster and more personalized care, and, on the other hand,
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physicians are inundated with data that they need to interpret better, while at the same
time they are expected to be more efficient [90,91].

3.1. Smart Wearables and Fatigue: State of the Art

The growing need for real-time fatigue assessment tools has encouraged researchers to
work on the appropriate solutions. Over the past decade, several smart wearable systems
have been developed to detect occupational physical fatigue. These systems can be divided
into three groups in terms of the devices used. The first group includes implementations
that use purpose-built devices, the second group includes implementations that use com-
mercially available devices, and the third group consists of implementations where the
used devices are not specified.

In the first group, researchers built a variety of devices to monitor vital signs to detect
fatigue. The variety of devices stems from the variety of vital signs that can be tracked to
detect fatigue. For example, in Refs. [92–94], heart rate data were collected. In Ref. [92],
the authors developed a system that can detect different types and degrees of fatigue. The
proposed system consists of a smart vest with integrated textrodes, ECG and motion sensors,
and a real-time mobile application. The vest collected ECG and thoracic electroimpedance
data for this purpose. The system proved to be functional and user-friendly for fatigue
risk assessment. In addition, Ref. [93] presented the use of a smart vest with four inertial
measurement devices (IMU) and a Shimmer-3 ECG sensor was presented to detect physical
fatigue and estimate fatigue levels over time. Once the data were collected, they were
analysed using models based on penalized logistic regression and penalized regression,
respectively. Similarly, in Ref. [94], the authors proposed the development of a smart vest
equipped with a SparkFun heart rate monitor, a Grove Galvanic Skin Response (GSR)
sensor, and an MPU-6050 accelerometer/temperature sensor. The vest collects heart rate
data to detect workers’ level of physical fatigue.

In contrast, the authors in Refs. [95,96] used motion data, proposing a novel, non-
intrusive method for monitoring the physical fatigue of construction workers using com-
puter vision technology. Motion data were collected using a 3D motion capture algorithm
and IMU sensors. The sensors are attached to a smart vest worn by the test subjects and are
monitored by the 3D motion cameras placed in the work area. The captured data was then
analysed using Deep Learning algorithms to detect the presence of occupational physical
fatigue. In addition, Ref. [96] used time series methods to predict physical fatigue. To
achieve their goal, they used ratings of perceived exertion (RPE) and gait data. Data were
collected during simulated manual material handling in the laboratory (Lab Study 1) and
during a fatiguing squat with intermittent walking (Lab Study 2). The devices used for data
collection were IMU, which was strapped around the right ankle, and a smartphone-based
IMU sensor strapped around the left lower leg in each study. Data were then analysed using
five time series models: Naïve Method, Autoregression (AR), Autoregressive Integrated
Moving Average (ARIMA), Vector Autoregression (VAR), and the Vector Error Correction
Model (VECM). Those models are explained later in Section 3.3.

Moreover, eye blinks have also been used as a fatigue indicator. In Ref. [97], the
authors demonstrated an electronic patch consisting of a flexible strain sensor based on
a morphologically modulated laser-patterned film of reduced graphene oxide (LPG) fab-
ricated in a one-step process. The strain sensor was used to monitor human fatigue by
analysing the frequency and duration of eye blinks to determine the fatigue level. Similarly,
in Ref. [98], the authors proposed a system capable of assessing fatigue based on eye blinks.
The device used to monitor the eyes consists of two photovoltaic dye cells. The sensors
were attached to the temple of the glasses and positioned on the side of the eye so that they
do not interfere with the user’s vision. The device records several parameters, including
the frequency, duration, and speed of eye blinking, and then analyses the collected data to
detect fatigue.

Besides, in Ref. [99], the authors presented a custom-built Smart Safety Helmet (SSH)
that can track a worker’s head movements and brain activity to detect abnormal behaviour.
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The helmet consists of an inertial measurement unit and dry EEG electrodes, and is capable
of tracking and analysing a worker’s movements to detect fatigue, high stress, or errors to
prevent and reduce workplace injuries and accidents. In addition, the helmet is equipped
with a small motor that vibrates when risk limits are reached.

In the second group, Ref. [100] offered a new application designed to work with data
collected by a Samsung Gear S smartwatch to detect drowsiness in drivers. The smartwatch
collects ECG data and analyses it using an intelligent fast Fourier transform (FFT) model to
detect drowsiness. The application has two main functions: It reminds drivers to rest every
few hours, and it alerts them to nervousness, which can lead to a risky condition.

Finally, in the third group, the authors proposed in Ref. [101] a novel method for
detecting physical fatigue in the workplace using heart rate signals. The authors did not
specify which device was used to collect the subject’s vital signs. However, the model used
to analyse the data was built using the k-nearest neighbours (KNN) method. The proposed
model provided good results with accuracy, sensitivity, and specificity rates of 78.18%,
60.96%, and 82.15%, respectively.

Alternatively, the implementations of smart wearables for monitoring and detection of
occupational physical fatigue in the workplace can be classified based on the collected vital
signs. In this context, heart rate, motion, eye blinks, and electroencephalogram were the
main biometrics tracked by the existing implementations. Figure 3 shows a classification of
these implementations in terms of the vital signs captured and the devices used.

Figure 3. Occupational physical fatigue detection implementations in terms of the vital sign(s) tracked
and the device(s) used [92–100].

3.2. Smart Wearables in Fatigue; A Brief Discussion

Several devices have been used in the literature to determine physical fatigue in the
workplace. The variety of devices stems from the variety of health biomarkers recorded.
Electroencephalogram, electrocardiogram, exercise, eye blinks, and others are good indica-
tors of the presence of fatigue. This is shown by the good results obtained with the different
implementations that use these indicators. However, there are some elements that should
be considered when selecting hardware for detecting fatigue in the workplace. Below is a
list of features that a smart wearable should have for better feasibility:

• Non-invasive: the device should collect data without breaking the subject’s skin or
invading the body;

• Compact: the wearable should be lightweight and small so that it can be used in the
workplace without obstructing the user’s activities and movements;

• Affordable: the price of the device affects its adaptation at the workplace;
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• Robust: the device should be robust to endure mild, hot, wet, or dry environments and
must even withstand harsh working conditions such as minimal scratches or shocks;

• Ease of use: the hardware used should include an easy-to-use interface if it requires
minimal user intervention;

• Durable power source: the wearable should have a durable power source to ensure
usability for at least one complete work shift to collect significant data.

Knowing that EEG signals are collected by placing small metal discs, also known as
EEG electrodes, on the scalp of the subject, devices that use EEG as a vital sign to detect
occupational physical fatigue are the least practical among the other devices. The device
worn on the head may be heavier, immobilizing, and even more expensive compared
to other devices. On the other hand, eyeglasses that record the blinking of the eyes are
considered to be lighter and more comfortable in terms of movement and activity of the
worker. Moreover, devices that are attached to the body, such as vests, smartwatches,
wristbands, ankle bands, or even electronic patches, are considered the most convenient,
portable, compact, and lightweight devices that can be used in the workplace to detect
physical fatigue.

However, it seems necessary to identify different physical activities associated with
the vital signs studied in order to improve the accuracy and robustness of fatigue detection.
The reviewed literature showed that the methods that examined motion with other vital
signs were promising in terms of accurate fatigue detection. However, it is worth noting
that motion data is best captured at the wrist, hip, or feet, while heart rate data is best
captured at the wrist or chest, as they are in close proximity to the major blood vessels to
check the pulse.

All in all, the smart wearable devices for the wrist, such as the smartbands or smart-
watches available on the market, are the best choice for combining the necessary functions
and efficiency in measuring the required vital parameters, such as HR and motion. Smart
watches and wristbands are commercially available at affordable prices and have easy-to-
use interfaces. They are also compact and non-invasive and do not restrict workers in their
activities. In addition, they come with acceptable power sources, so they can last for at least
an entire work shift. Finally, the ability to capture various vital signs provides them with
great efficiency to act as occupational physical fatigue detection devices in the workplace,
and they are even the best choice.

3.3. Artificial Intelligence and Fatigue: Smart Models and Data Analysis

Artificial intelligence has been widely used in health area recently [102]. The term AI
is explained as a technique that allows a machine to mimic human behaviour and design
a working model of the human brain that has the ability to make decisions based on its
learning [102–111]. In addition, machine learning (ML) is a subfield of AI that uses statistical
techniques to allow a machine to improve itself through learning and experience [102–111].
In addition, deep learning (DL) is a special class of machine learning that has led to the
idea of neural networks by simulating how our brain cells, or neurons, work [102–111].
Figure 4 below shows the logical relationship between deep learning, machine learning,
and artificial intelligence. It is worth noting that DL has recently attracted more and more
attention from health researchers due to its high accuracy, sometimes surpassing human
diagnoses [103–111]. The development of AI smart models has helped to develop accurate
and efficient systems that can detect fatigue in the workplace.
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Figure 4. The relationship between AI, ML, and DL.

The authors in Ref. [93] used penalized logistics and multiple linear regression models
to detect and estimate physical fatigue over time. In addition, they used least absolute
shrinkage and selection operator (LASSO) for the feature selection method. Furthermore, in
Ref. [96], the authors compared the use of five time series algorithms for detecting fatigue
at work. For this purpose, they applied naïve method, autoregression (AR), autoregressive
integrated moving average (ARIMA), vector autoregression (VAR), and vector error cor-
rection model (VECM). Similarly, in Ref. [100], the authors used the fast fourier transform
(FFT) time series algorithm for fatigue detection. However, in Ref. [101], the k-nearest
neighbours method was used as an intelligent model for physical fatigue detection. Table 2
below provides a brief definition of each model.

The information presented in Table 2 shows that it is possible to use vital signs not
only to detect occupational physical fatigue, but also to predict its occurrence and estimate
its magnitude in the near future. While the use of classification algorithms is suitable
for detecting physical fatigue, as in Refs. [93,100,101], the implementation of time series
algorithms is suitable for predicting the fatigue state of workers based on past fatigue data,
as the authors did in Refs. [93,96]. However, the information provided shows that robust
classical machine learning algorithms and the latest deep learning models such as support
vector machines (SVMs), deep convolutional neural networks (DCNNs), long short term
memory networks (LSTMs), and others that promise higher accuracy have not yet been
used for fatigue detection in the literature.

On the other hand, the capability of smart wearables may allow researchers to predict
the productivity of future companies or work trends based on current and past fatigue data
of their workers. Such an estimation requires that productivity data is collected along with
fatigue-related vital signs for further analysis and evaluation. To our knowledge, there are
no artificial intelligence or machine learning models that predict productivity based on
fatigue monitoring and detection.
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Table 2. Artificial intelligence models used in occupational physical fatigue detection.

Ref. Algorithm(s) Used Description Used For Performance

[93]

Penalized Logistic

Logistic regression is a predictive analysis used to
describe data and to explain the association among

one dependent binary variable and one or more
nominal, ordinal, interval, or ratio-level

independent variables. However, penalized
logistic regression requires a penalty to the logistic
model for having too many variables, which leads
to shrinking the coefficients of the less contributive

variables toward zero and is also recognized as
regularization [112,113]

Physical Fatigue
Detection:

Classification
Physical Fatigue

Estimation:
Forecasting

Best Model Results:
Sensitivity: 0.96
Specificity: 0.88

Multiple Linear
Regression Models

Multiple linear regression or known as multiple
regression is a method used in statistics to predict

the likely outcome based on several variables,
plotting the association between these multiple

independent variables and single dependent
variables [114]

[96]

Naïve Method

A method that involves using the previous
observation directly as the forecast without any

change and it can be adjusted slightly for seasonal
data [115,116]

Forecast Physical
Fatigue : Forecasting

Best model: VECM
Mean Absolute

Scaled Error (MASE):
0.43 for a 6-steps

ahead fatigue
forecasting

Autoregression (AR)

A time series model that uses observations from
previous time steps as input to a regression

equation to predict the value at the next time
step [116]

Autoregressive
Integrated Moving
Average (ARIMA)

A time series forecasting model that uses time
series data to either better understand the data set
or to predict future trends based on past values. It

is a form of regression analysis that gauges the
strength of one dependent variable relative to

other changing variables [116]

Vector
Autoregression

(VAR)

A time series multivariate forecasting algorithm
that is used when two or more time series

influence each other [116]

Vector Error
Correction Model

(VECM)

A restricted vector autoregression model intended
for usage with no stationary series that are to be

co-integrated [117]

[100] Fast Fourier
Transform

A computational tool that simplifies signal
analysis by computing the discrete Fourier

transform (DFT) and its inverse. It works by
sampling a signal over a period of time and

dividing it into its frequency components used to
improve the computational efficiency [118]

Detection of
Drowsiness:

Classification
-

[101] K-Nearest
Neighbours

A data classification method that guesses how
likely a data point relates to a group depending on
what group the data points nearest to it are [119]

Physical Fatigue
Detection:

Classification

Accuracy: 78.18%
Sensitivity: 60.96%
Specificity: 82.15%

3.4. Occupational Physical Fatigue as a CVD Prediction Parameter

Occupational physical fatigue at the workplace is a normal phenomenon. Its causes
are well known, such as repetitive movements and physical exertion. However, it can
become pathological when it becomes chronic and leads to various diseases, which in some
cases can lead to death [21–52]. However, since there are no static medical formulas that
link occupational physical fatigue to disease, there are no applications to date that can



Sensors 2022, 22, 7472 13 of 25

predict the future occurrence of disease due to the presence and persistence of fatigue
in the workplace. However, several attempts have been made by researchers to identify
cardiovascular risks based on heart rate variability analysis, using time domain, frequency
domain, and non-linear HRV parameters for this purpose. Those implementations are
discussed below and are also summarized in Table 3 below.

For example, the authors in Ref. [63] used multilayer perceptron (MLP), radial basis
function (RBF), and support vector machines (SVM) to analyse HRV series in conjunction
with classification schemes to predict cardiovascular risks. The created solution was trained
with data collected by the authors and achieved a maximum accuracy of 96.67%. In addition,
Ref. [65] proposed a solution to help physicians predict sudden cardiac death (SCD) using
smart models based on the k-nearest neighbour (k-NN) and multilayer perceptron neural
network algorithms. The models created were based on the PhysioNet databases “Sudden
Cardiac Death Holter” [120] and “MIT-BIH Normal Sinus Rhythm” databases [121]. The
proposed solution has a high accuracy of 99.73%, 96.52%, 90.37%, and 83.96% for the first,
second, third, and fourth one-minute intervals, respectively. Similarly, Ref. [66] proposed
an instrument to predict SCD two minutes before its occurrence. The smart models were
built using SVM and probabilistic neural network (PNN) and trained with PhysioNet
databases “Sudden Cardiac Death Holter” and “MIT-BIH Normal Sinus Rhythm”. The
presented solution proved its efficiency, with SVM and PNN, achieving a maximum mean
SCA prediction rate of 96.36% and 93.64%, respectively.

Table 3. Implementations of cardiovascular risk prediction using HRV.

Ref. Diseases(s) Detected Model(s) Used Dataset(s) Results

[63] Cardiovascular Risk
Multilayer Perceptron (MLP)
Radial Basis Function (RBF)

Support Vector Machines (SVM)
- Accuracy: 96.67%

[65] Sudden Cardiac Death
(SCD)

k-Nearest Neighbor (k-NN)
Multilayer Perceptron Neural

Network

“Sudden Cardiac Death
Holter” [120]

“MIT-BIH Normal Sinus
Rhythm” [121]

Accuracy: 99.73%

[66] Sudden Cardiac Death
(SCD)

Support Vector Machines
Probabilistic Neural Network

(PNN)

Sudden Cardiac Death
Holter“

”MIT-BIH Normal Sinus
Rhythm“

Mean SCA prediction
rate: 96.36%

[67] Cardiovascular Risk

Support Vector Machine (SVM)
Trees Based Classifier

Artificial Neural Networks (ANN)
Random Forest

”Smart Health for
Assessing the Risk of
Events via ECG“ [122]

Sensitivity: 71.4%
Specificity: 87.8%

[68] Ventricular Tachycardia
(VT) Artificial Neural Network (ANN) - Accuracy: 82%

[69] Hypertension Statistical model called MIL - Accuracy: 92.73%

[70] Arterial Hypertension
(AH) -

World Health
Organization’s (WHO)

MONICA project
data [123]

-

Moreover, in Ref. [67], the authors developed novel models to predict cardiovascular
risk in hypertensive patients. The models are based on data mining algorithms such as
Support Vector Machines, Trees Based Classifier, Artificial Neural Networks (ANN), and
Random Forest to provide an automated tool for risk stratification. The models were built
using the “Smart Health for Assessing the Risk of Events via ECG” database [122], available
on the PhysioNet data repository and achieved a sensitivity of 71.4% and a specificity of
87.8% in risk prediction. In addition, in Ref. [68], the authors proposed a solution to predict
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ventricular tachycardia (VT) one hour before its occurrence by using an artificial neural
network (ANN) created with 14 parameters from HRV and respiratory rate variability
(RRV) analysis. The solution created was trained using data collected by the authors and
was accurate in its results up to 82%. Besides, Ref. [69] used photoplethysmography (PPG)
to estimate HRV and predict the occurrence of hypertension in the studied subjects. A
statistical model called MIL was used for the solution, which was trained using the data
collected by the authors and achieved an accuracy of 92.73%. Finally, Ref. [70] further
provided a solution to determine the effects of workplace stress on the risk of developing
arterial hypertension (AH) in the population. The study used data from the World Health
Organization’s (WHO) MONICA project data [123] and was able to establish an association
between workplace stress and the development of AH.

3.4.1. Cvds Prediction: A Brief Discussion

The state of the art in using HRV to predict cardiovascular diseases or cardiovascular
risk is promising, as it serves as an obvious indication that HRV can be collected and
analysed in the workplace to detect not only the presence of fatigue but also the possibility
of risk for developing CVD in the future. However, because there is no clear formula
that can be relied upon to predict health risk due to fatigue, the relationship between
the prevalence of fatigue and the presence of cardiovascular risk is an area that requires
in-depth investigation. However, this area of investigation may be complicated by several
issues, such as the reliability of the results from a medical perspective. In addition, the
debate about the possibility of biased reasoning in predicting the ability of developing
a cardiovascular risk based on fatigue is a research question that should be studied and
analysed in depth to find an appropriate way to link fatigue and CVDs. However, the
question here is: why CVDs, when it has been proven that fatigue can cause many
other diseases?

3.4.2. Why to Predict CVDs at Workplace

Cardiovascular diseases are known as the most deadly diseases worldwide. The
number of deaths caused by these diseases is the highest in the world, and these numbers
are increasing rapidly. According to a study by the World Health Organization (WHO),
the number of deaths caused by CVDs have increased from 12.1 million to 18.6 million
between 1990 and 2019 [33]. In addition, the burden of CVDs are also being studied from
an economic perspective. For example, the “Medical Expenditure Panel Survey” noted
in a report that costs due to CVDs in the United States alone were an estimated USD
378.0 billion between 2017 and 2018. These costs are not limited to expenditures, which
were estimated at USD 226.0 billion, but also include an estimate of USD 151.8 billion in
lost future productivity, which is considered an extremely high number in governments
economics [124]. These facts encourage working on solutions to predict future CVDs in
the workplace, not only to protect workers’ lives, which are the most sacred, but also to
avoid future productivity losses that will impact the national economy and therefore, in
turn, have negative public health consequences.

4. Challenges and Future Limitations

Despite the large role smart wearables are expected to play in detecting occupational
physical fatigue, several challenges may arise during their implementation. In addition,
the emergence of new tools and concepts in artificial intelligence opens up many ideas that
can be used to improve fatigue monitoring and detection in the workplace.

4.1. Challenges

The following are the most common obstacles encountered when using smart wear-
ables to detect occupational physical fatigue [53,125].
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4.1.1. Data Privacy and Confidentiality

The performance of AI models embedded in smart wearable systems depends on the
availability of data. Although achieving highly accurate models depends on the technical
structure of the models themselves—the cleanliness and readiness of the data, and other
aspects—it is common that the availability of more data to train AI models increases
their accuracy. However, in the real world, collecting data is the biggest challenge in
developing AI models for several reasons: most importantly, privacy and confidentiality.
Not only individuals, but also society, governments, and organizations are strengthening
the protection of data privacy and security. In this regard, several regulations and laws
have been enacted, such as the European Union’s General Data Protection Regulation
(GDPR) [126], China’s Cyber Security Law of the People’s Republic of China [127], the
General Principles of the Civil Law of the People’s Republic of China [128], the PDPA in
Singapore [129], and hundreds of principles that have been legislated around the world.
Although these regulations help protect private information, they pose new challenges to
the traditional AI data processing model to varying degrees by making it more difficult to
collect data to train models, which in turn makes it more difficult to improve the accuracy
of model performance [130–134].

4.1.2. Noise and Artefacts

Smart wearables collect vital signs data in a non-invasive way, which makes the
records more susceptible to many external sources of noise. These noisy data are called
artefacts”, which are unwanted signals or signal distributions that interfere with the actual
signal. Artefacts are divided into two main groups depending on their origin: intrinsic
artefacts, which originate from the monitored body, and extrinsic artefacts, which are
caused by the monitored person’s environment. There are different sources of artefacts that
can be grouped according to their origin [135,136]:

• Intrinsic artefacts (also called physiological or internal artefacts)

– Ocular artefacts: any artefact caused by the movement of the eyeball that in-
terferes with EEG recording, such as eye blinks, horizontal and vertical eye
movements, eye flutter, etc.;

– Muscle artefacts: arise from activities such as sniffing, swallowing, clenching,
talking, eyebrow raising, chewing, scalp contraction, etc.;

– Cardiac artefacts: slow waves that are not recorded on the ECG and are due to
the electrical activity of the heart;

– Respiratory artefacts: caused by the movement of an electrode during inhalation
or exhalation and may take the form of slow, rhythmic EEG activity;

– Sweat artefacts: caused by changes in the electrolyte concentration of the elec-
trode due to sweat secretion on the scalp.

• Extrinsic artefacts (also called extra-physiological/external artefacts)

– Motion artefact: The motion of the monitored body in an EEG monitoring system
produces a lot of motion artefacts;

– Environmental artefact: These can occur when contact is lost between the elec-
trode and the scalp, when the electrode bursts, or when electrical or electronic
devices in the environment that generate electromagnetic waves cause interfer-
ence, etc.

Artefacts and noise affects the quality of data, which therefore reduces the performance
and precision of detecting and predicting occupational physical fatigue.

4.1.3. Data Heterogeneity

As mentioned earlier, fatigue in the workplace can be monitored and tracked with
smart wearables. However, accurate and reliable measurement of fatigue requires the
collection of more than one vital sign, such as heart rate and motion, as discussed in
Section 3.2. In addition, embedding other health data, such as some medical tests extracted
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from electronic health records (EHRs), can improve monitoring results. Nevertheless, it is
not easy to analyse data with heterogeneous structures, especially when they are scattered
in more than one data space. Therefore, integrating data from different modalities or
different measurement devices and merging them to monitor and detect occupational
physical fatigue in the workplace is a challenging task.

4.1.4. Some Vital Signs Limitations

Vital signs are considered the most important indicators for detecting physical fatigue.
However, some studies have shown that there is no significant effect of fatigue on simple
signs such as heart rate or blood pressure [14]. This limits the selection to EEG and HRV or
eye-blinks. Since EEG limits the activity of the worker and eye-blinks cannot be readily
detected in some work environments, HRV is considered to be almost the only biomarker
that can detect occupational physical fatigue without affecting the activity of the worker.

4.1.5. Lack of Standard and Unified Fatigue Classification Scale

Although the preliminary results of using smart wearables to detect work-related
physical fatigue are promising, there is no clear standard or unified scale to refer to when
classifying fatigue. Although some questionnaire-based assessment methods have suc-
ceeded in classifying fatigued individuals into different groups, as in Ref. [137], there is no
unified scale that can be used to measure fatigue when using smart wearables. Therefore,
almost all implementations that use smart wearables to detect fatigue look for a binary
result of whether fatigue is present or not. Furthermore, to our knowledge, no study has
validated the use of physiological measures versus the gold standard for assessing physical
fatigue (i.e., blood lactate levels).

4.1.6. Lack of Knowledge about Clear Thresholds of Vital Signs for Severe Physical Fatigue

One of the major challenges in analysing vital signs data obtained from smart wear-
ables is the lack of information on the unique thresholds of individual vital signs for severe
physical fatigue. Although it is clear that accumulation of physical fatigue over a long
period of time can lead to various health problems, there are no clear thresholds for various
vital signs that indicate extreme fatigue. Furthermore, to our knowledge, there are no
formulas that can be used to predict disease based on fatigue data.

4.1.7. Difficulty Going beyond Fatigue Detection toward Diseases Prediction

In the absence of a unified fatigue scale, clear thresholds for severe fatigue, and unam-
biguous formulas that can link accumulation of fatigue symptoms to disease, smart wear-
ables are being used almost as detectors of physical fatigue in the workplace. Researchers
are trying to explore what role smart wearables can play in predicting diseases caused
by persistent fatigue. However, as far as we know, there are no such implementations, as
most applications that predict diseases analyse HRV or other vital signs independent of
fatigue status.

4.1.8. User Technology Adoption and Engagement

One of the most common challenges hindering the use of smart wearables to detect
physical fatigue at work is user acceptance, adoption, and engagement. User acceptance of
wearing such sensors varies due to issues of privacy, comfort, or other social circumstances.

We can therefore summarize the challenges and obstacles as the research questions
mentioned in the following list. In addition, those questions are illustrated in Figure 5
below (the symbol RQ in the list below and in Figure 5 refers for the term research question):

• RQ1: Subject data are private, and laws may restrict their disclosure. How can these
data be used without violating privacy?

• RQ2: Data collected in the workplace are exposed to various sources of noise and
interference. How should noisy data and artefacts be handled?
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• RQ3: Analysing diverse data can improve fatigue detection. Is it possible to analyse
heterogeneous data with AI models?

• RQ4: There are several biometric parameters that can be used to detect occupational
physical fatigue in the workplace. Which one(s) is/are most appropriate and how can
health characteristics be associated with fatigue duration?

• RQ5: Proactive fatigue prediction can help maintain both worker health and orga-
nizational productivity. Is it possible to use smart wearables to predict illness in the
workplace?

Figure 5. Research questions arising from analysing usage of wearables in fatigue detection.

4.2. Future Perspectives and Research Trends

Smart wearables are already being used successfully to detect and monitor fatigue.
However, given the global prevalence of occupational physical fatigue due to changing
work patterns, such as varied and rotating shifts, there is a growing need to improve the
entire process and take further steps toward proactive and preventive approaches. This
growing need requires additional efforts in the development of smart wearables that go
beyond simple fatigue detection.

4.2.1. Preserving Data Privacy

Regulations, laws, user disapproval, and other factors limit the collection of worker
health data. Traditionally, data collected from subjects should be collected on a local
centralized server or distributed to various decentralized storage and processing devices
to create and train AI models that are then able to detect fatigue. Therefore, the model
created has full access to the subject’s data, whether anonymous or labelled by the subject.
Consequently, the data are not private. However, later machine learning approaches
propose new privacy alternatives. For example, federated learning (FL) is a promising
technology that can help solve privacy problems. Federated learning is defined as a type of
collaborative distributed/decentralized machine learning privacy-preserving technology
in which a model is trained without the need to transfer data from edge devices to a central
server. Instead, the trained models are shared between the edge devices and the central
server, which acts as an aggregation station to build the global model without knowing
the embedded data [130–134]. The use of FL in occupational physical fatigue detection
and monitoring is expected to help overcome the privacy issue and therefore facilitates the
collection of more data, which helps improve accuracy.
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4.2.2. Removing Artefacts and Noisy Data

Extrinsic and intrinsic signal artefacts that obscure the signals should be removed or
minimized before processing the signals. Several implementations have already been made
for this purpose, such as those mentioned in Refs. [136,138–140]. Therefore, automation of
noise reduction is an area that should be investigated to clean and preprocess the data to
improve the accuracy of physical fatigue detection in the workplace.

4.2.3. Analysing Diverse and Heterogeneous Data

Medical studies have shown that precise and accurate assessment of occupational
physical fatigue at work requires the use of multiple vital signs rather than a single indi-
cator. However, with the advent of multimodal machine learning technology, it becomes
possible to analyse data read from or collected by multiple devices. Multimodal machine
learning is defined as the ability to analyse data from multimodal datasets, observe a
common phenomenon, and use complementary information to learn a complex task. Here,
multimodal datasets are defined as data observed with multiple sensors, where the output
of each sensor is called a modality and can be associated with a dataset [141]. Multimodal
ML is based on the concept of “data fusion”, which is defined as “the process of combining
data to refine state estimates and predictions”. According to the Joint Directors of Laborato-
ries Data Fusion Subpanel (JDL), the technique referred to as “data fusion” is a must for
processing more than one type of data [142]. In this context, data fusion is divided into the
following three categories:

• Early fusion: can be referred to as a multiple data, single smart model;
• Intermediate fusion: occurs in the intermediate phase between input and output of

a ML architecture when all data sources have the same representation format. In
this phase, features are combined to perform various tasks such as feature selection,
decision making, or predictions based on historical data;

• Late fusion: defines the aggregation of decisions from multiple ML algorithms, each
of which has been trained with different data sources.

Therefore, embedding multimodal ML into smart wearables is crucial to analyse hetero-
geneous data and thus enhancing the accuracy and precision of detection and monitoring.

4.2.4. Raising Accuracy, Increasing Explainability, and Gaining Trust

In the workplace, it is becoming increasingly important to monitor the health of
workers, especially as work pressures increase due to the changing concepts of work
around the world. Given the need to keep an eye on health without hindering workers in
their work, smart wearables are considered as one of the most practical tools that can be
used. However, there is a need to increase the accuracy of fatigue detection with wearables,
improve the explainability of these tools, and eliminate the black box characteristics of the
models embedded in these smart wearables as much as possible. Increased accuracy and
better explainability will help these devices gain trust and, as a result, be used as health
monitoring devices in the workplace.

4.2.5. Using Smart Wearables as Predictive Tool

Smart wearables have demonstrated their high efficiency in monitoring workers’ vital
signs, such as heart rate and other metrics such as movement and activity data. The ability
to capture such parameters in the workplace and in real time, as well as the high accuracy
with which AI and ML models can analyse this data, opens the door to using all of these
capabilities in predicting health problems based on fatigue data. This will help maintain
the long-term health of the working population.

4.2.6. Monitoring Workers Productivity Linked to Fatigue

Furthermore, the use of smart wearables can be extended to productivity management
in companies. This can be achieved by identifying the relationship between worker fatigue
and productivity. To the best of our knowledge, all previous implementations of smart
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wearables for fatigue detection have not considered worker productivity and have not
addressed the identification of the relationship between fatigue and productivity. Detecting
such a link would also help companies increase revenue by improving work processes
while maintaining the health of their employees.

Therefore, we can summarize the future perspectives into the trending research top-
ics mentioned in the following list. In addition, those research topics are illustrated in
Figure 6 below (the symbol TR in the list below and in Figure 6 refers for the term trending
research topic):

• TR1: Integrate federated learning into smart wearables implementations for fatigue
detection to preserve subject privacy;

• TR2: Automate artefact and noise removal algorithms to reduce the impact of interfer-
ence and noise;

• TR3: Use multimodal ML algorithms to analyse data from multiple modalities and
sources to improve the precision and accuracy of recognition models;

• TR4: Use the multimodal ML to step for analysis of more than one vital sign when
possible, rather than limiting analysis to just one biometric parameter;

• TR5: Increase efforts to build predictive models to predict workplace illnesses for a
win-win for both workers and commercial enterprises.

Figure 6. Research topics that may serve as solutions to the challenges in the domain.

To summarize the challenges-future-solutions, and to help boost the research of the
usage of smart wearables in the detection of occupational physical fatigue, Figure 7 below
presents a link between the current top challenging issues and future perspectives that can
serve as possible solutions in the domain.
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Figure 7. Challenges-future-solutions chart.

5. Conclusions

Our world is changing at an accelerating pace, with almost our entire environment
changing within years and sometimes months. The “when”, “where”, and “how” to
work are also concepts that have changed for various reasons, such as the COVID-19
pandemic, which may not be the last to change our notions of work or increase work
pressure. Consequently, work-related fatigue, also known as occupational physical fatigue,
is spreading and becoming more common worldwide. This increases the need for solutions
that can monitor workplace fatigue to prevent workers’ health from deteriorating, especially
because the accumulation of fatigue can seriously affect workers’ health and even lead
to death, according to some studies. However, smart wearables associated with artificial
intelligence and machine learning technologies have proven their effectiveness in detecting
and monitoring fatigue in the workplace, especially when the relevant challenges can be
addressed with the latest and most advanced technologies. They also promise to act as
predictive tools that can limit the serious impact of fatigue on workers’ health.
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