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ABSTRACT
Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled
the automated reconstruction of reference-quality genomes. It has also been widely used to study
structural variants, phase haplotypes and more. Here, we introduce the assembler SMARTdenovo,
a single-molecule sequencing (SMS) assembler that follows the overlap-layout-consensus
(OLC) paradigm. SMARTdenovo (RRID: SCR_017622) was designed to be a rapid assembler,
which, unlike contemporaneous SMS assemblers, does not require highly accurate raw reads
for error correction. It has performed well in the evaluation of congeneric assemblers and
has been successfully users for various assembly projects. It is compatible with Canu for
assembling high-quality genomes, and several of the assembly strategies in this program have
been incorporated into subsequent popular assemblers. The assembler has been in use since
2015; here we provide information on the development of SMARTdenovo and how to implement
its algorithms into current projects.

Subjects Genetics and Genomics, Software and Workflows, Bioinformatics

INTRODUCTION
The development of high-throughput sequencing provides the means to deliver fast,
inexpensive, and accurate information for assembling whole genomes. As a result, there
has been rapid growth in the number of whole-genome sequencing projects [1–3].
Single-molecule sequencing (SMS) technologies, such as Pacific Biosciences (PacBio) and
Oxford Nanopore, which generate sequencing reads of >20 kb in length, are now widely
used in whole genome projects. These long reads are advantageous because they span
polymorphic regions, repeats, and transposable elements, and because they provide
long-range information for assemblies that are usually too complex to be resolved by short
reads alone.

The huge demand for long-range DNA sequencing and mapping technologies has
catalysed a renaissance of the development of high-quality SMS assemblers, such as
PBcR [4, 5], Falcon (RRID: SCR_016089) [6], Canu (RRID: SCR_015880) [7], Miniasm [8], Ra [9],
Wtdbg2 (RRID: SCR_017225) [10], Flye (RRID: SCR_017016) [11], Shasta [12], and ABruijn [13].
In fact, highly available SMS assemblers have always been essential for improving the
quality of genome assemblies.

SMARTdenovo (RRID: SCR_017622) is a long-read SMS assembler that follows the
overlap-layout-consensus (OLC) paradigm. It assembles genomes following four steps:
overlapping, trimming, layout, and consensus. The source code for SMARTdenovo was
released in GitHub in 2015 [14]. Assessment by others has shown that it performs well
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compared with other congeneric assemblers [15], and it has been widely used for
generating highly accurate contigs in many genome assemblies [16–18]. For datasets from
both PacBio and Oxford Nanopore, such as 20–30× 2D reads of different varieties of yeast,
SMARTdenovo assembled more accurate and more highly contiguous sequences than other
assemblers [15, 19]. SMARTdenovo was also used successfully for datasets from the wild
tomato Solanum pennellii (∼1.2 Gb) and Sorghum bicolor (∼732 Mb) using Oxford Nanopore
reads [18, 20], and for the long-read datasets for Taraxacum kok-saghyz (∼1.04 Gb) and the
woody plant, Rhizophora apiculata (∼274 Mb) using PacBio RSII reads [16, 21]. Here, we
explain how we developed SMARTdenovo and provide use cases to show its ability.

IMPLEMENTATION
The SMARTdenovo algorithm
SMARTdenovo uses four steps for assembly: overlapping, trimming, layout, and consensus.
We used homopolymer-compressed (HPC) k-mers for seed-indexing and identifying
collinear seeds. HPCs have been widely adopted in Minimap2, Wtdbg2 and Shasta [10, 12,
22]. We then trimmed low-quality regions and chimeric reads based on the overlapping
reads. We applied the Best-Overlap-Graph [23] to generate the layout of the reads and the
PBDAG-Con algorithm [24] to generate a consensus.

Overlapper
The algorithm for alignment follows a typical seed-chain-align procedure that is used by
most full-genome aligners. In this step, we constructed each read by contracting
homopolymer reads to a single base, called HPC strings. An HPC k-mer, a 1000-bp substring
of an HPC string, was treated as a seed (“wtzmo -k 16 by default”). For HPC-based
k-mer-indexing, we scanned all the reads and counted k-mers in a hashtable with a 64-bit
key to store a k-mer, and a 64-bit value to store its count. If a k-mer was present more than
500 times, it was filtered out (“wtzmo -K 500”). A seed array was also created and filled with
the “read_id” and the orientation of the remaining seeds. To manage the cost of memory for
k-mer-indexing, we used two different parameters: (1) we kept only the index with smaller
values between the k-mer and its reverse complement; (2) we randomly selected k-mers
according to the hash code (one quarter was set as the default). All queried k-mers were
indexed against the hashtable and seed array to identify candidate reads. We sorted the
seeds by the “read_id” and “strand” and calculated the coverage length of the overlaps. If
the coverage was longer than 300 bp (“wtzmo -d 300”), the candidate was kept. The top 500
candidates were chosen for each query (“wtzmo –A 500”).

To refine the collinearity relationship between query and candidate, we further built a
similar but shorter HPC-based index called a “z-mer” on queries for seed chaining. Each
z-mer was recorded with its offset and strand. Pairs of matched seeds between candidate
and query were obtained. However, because the high rate of insertions and deletions
(indels) made the distance between two nearby z-mers highly variable, wtzmo was used to
identify the synteny between query and candidate using sliding windows (“wtzmo –y 800”)
on query instead of using the whole overlapping region. We first filtered z-mer windows
using a minimummatch length of 200 bp. We then developed a scoring algorithm to filter
excessive matches. The adjacent matched pairs of seeds (pi, pi+1) were scored based on the
relationship of z-mers on candidates: Si+1 = Si + Li+1 − Distancei−(i+1), S, L, D represented the
sort of seeds, length of seeds, and the distance between the adjacent seeds, respectively. If
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Si+1 was larger than Li+1, pairs of pi, pi+1 were considered to be a syntenic block, and the
block would be extended until Sj was smaller than Lj. At that point, the block ended, Sj
recovered to Lj and the next round of syntenic block identification began. The z-mer-block
containing the highest value of S was the block chosen as the best syntenic overlap between
the two windows. If the coverage was longer than 100 bp, the matched windows were
retained. Seed windows were also scored using the same method as above for searching the
best colinear pairs. Finally, candidates with the best colinear window-block that covered
more than 300 bp were retained for pairwise alignment.

To speed calculation time and reduce unnecessary computation, we developed a
weighting algorithm that negatively ranked a repetitive region based on its depth in the
alignment process. “Wtzmo –q 100” was set so that the weights ranged between 1 and 0 if
the depth ranged from 10–100. Large numbers of false candidates containing similar
repeats were eliminated with queries. The pairwise alignment procedure based on the
collinearity relationship was split into four steps: (1) first, the bases of the z-mers were
decompressed and gaps were added between the matched z-mers; (2) global alignment was
conducted between two adjacent z-mers within a z-mer window; (3) the two adjacent z-mer
windows were aligned using the banded global Smith–Waterman algorithm, with a dynamic
bandwidth that increased according to the length of the gaps (“wtzmo –w 50 ∼ 3200”); (4) the
two ends were extended by global alignment with the band width set at 800 bp (Figure 1).

Trimming
Wtclp trimmed or discarded reads to a maximum total length of the valid overlaps. It took
one read as a reference, and tiled all reads containing overlaps. A functional model,
“call_legal_overlaps_wtclp”, calculated the length of valid overlaps. First, it clipped the ends
that had high error rates. Then, it detected chimeras and trimmed them according to their
depths. Structures containing partially aligned reads were called “spurs”. We counted the
depth of reads crossing the “spurs” as “m” and counted the number of reads with partial
alignments as “n”. If them of a read was less than half of the average depth, or if n was
larger than the average depth, or if n was larger than “m∕2”, the read was considered
chimeric and discarded. Otherwise, it was considered to be a sequencing error and the
maximum region of reads was retained. Errors in the structure were corrected based on the
graph. If a single read connected two subgraphs, it was considered a chimera. We then used
wtclp to check for any alternative path formed by valid overlaps of tiled reads.

Layout
Wtlay was used to achieve the Best-Overlap-Graph [23] to generate a layout of reads
following the OLC paradigm. In general, if an overlap was not end-to-end, leaving n (no
greater than 100) bp unaligned, it would be treated as true (“wtlay –w 100”). Owing to the
high indel rate, wtlay identified the best overlap with an alignment score ≥ 0.95, instead of
picking out the longest one (“wtlay –r 0.95”). Using this process would keep bubbles from
being merged, and instead find one appropriate path. The wtlay script also filtered out each
unitig sharing more than 40% identity with another unitig to avoid islands. The output
included uncorrected unitigs and all the parameters needed by the consensus caller.

Consensus
We used the wtcns command to implement the PBDAG-Con algorithm described in HGAP to
generate consensus [24]. Because an alignment algorithm is integrated into wtcns, it
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Figure 1. The algorithm for processing overlaps. (a) k-mer indexing and identification of candidate reads based on overlap coverage. LR, long reads. (b) Seed
chaining based on sliding windows. (c) Weighting algorithm negatively ranking the repetitive regions according to their depth. R, repeat; red blocks represent
reads and candidates represent the repeat region; and these bases of high depth would bemarkedwith lower weight. (d) Pairwise alignment with four steps: (1)
decompress thematched z-mers; (2) global alignment between two adjacentmatched z-mers within a z-merwindow; (3) global dynamic SW-alignment between
the two adjacent paired z-mer windows; (4) extend the two ends by global alignment.

required no other alignment tools. Wtcns took the layout file as input and output the
consensus sequences in fasta format.

RESULTS
Assembling the genome of the fruit fly and evaluating accuracy
of the assembly
We benchmarked SMARTdenovo against the SMS assemblers Flye, Canu, and Ra using the
dataset of the fruit fly, Drosophila melanogaster, and calculated the accuracy of the
assembly by aligning it with the reference genome. A total of 29.3 Gb PacBio reads from the
National Center for Biotechnology Information Sequence Read Archive database
(SRX499318) [25] was assembled with the command line “smartdenovo.pl -c 1 -t 16 reads.fa
> wtasm.mak && make -f wtasm.mak”. The length of the genome sequence was 146 Mb,
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Table 1. Evaluation of long-read assemblies on the fruit fly genome (PacBio datasets).

Parameter SMS assembler
Canu Flye Ra SMARTdenovo

Total length, Mb 161.98 137.02 139.27 146.29
Count of contigs 633 970 424 242

Total length (≥50,000 bp), Mb 151.43 131.37 135.14 143.15
Largest contig, Mb 25.87 25.74 5.82 23.29

N50, Mb 21.40 9.57 1.02 11.59
L50, n 4 4 37 4

Misassemblies, n 3,296 783 242 1,382
Mismatches per 100 kb, n 158.82 36.93 63.60 103.44

CPU hours 2810.14 348.47 226.28 830.95
peak MEM, Gb 15.70 134.66 92.50 24.02

Table 2. Comparison of different assemblers on the wild tomato genome (Oxford Nanopore datasets).

Parameter SMS assembler
Canu Flye Ra SMARTdenovo

Total length, Mb 801.62 1265.09 815.60 902.99
Count of contigs, n 14,286 10,323 6490 4395

Total length (≥50,000 bp), Mb 606.49 1,070.26 767.88 860.21
Largest contig, Mb 2.25 4.54 2.98 3.34

N50, kb 114.88 429.25 161.11 399.45
L50, n 1728 720 1,292 633

Misassemblies, n 97 3539 1096 136
Mismatches per 100 kb, n 881.26 2656.12 2250.65 931.47

CPU hours 11,885.30 723.91 507.97 651.72
peak MEM, Gb 19.09 135.57 135.50 27.78

with an N50 value of 11.59 Mb. We also tested three other SMS assemblers (Canu, Flye, Ra)
using this dataset. SMARTdenovo was superior to Flye and Ra in both total length and
contig N50, but was inferior to Canu (Table 1).

The genome size of D. melanogaster is usually estimated to be 180 Mb. Of this, 60 Mb of
the genome comprises centric heterochromatin, making it intractable for assembly [26].
Compared with the released reference [27], SMARTdenovo and Canu were able to create
longer assemblies: ∼146.29 Mb and ∼161.97 Mb, respectively. SMARTdenovo and Canu
performed better than the other two SMS assemblers, not only by creating longer assembly
lengths, but also having higher coverage when aligned to the reference genome.

Assembling the genome of the wild tomato
We also compared the performance of SMARTdenovo with that of three other SMS
assemblers: Flye, Canu, and Ra using the dataset for the wild tomato Solanum pennellii.
A total of 27.5 Gb Oxford Nanopore reads was downloaded from the European Nucleotide
Archive database (PRJEB19787) [28]. A k-mer analysis of this dataset indicated that this
accession of S. pennellii (LYC1722) has a genome size between 1 and 1.2 Gb [20]. We
assembled a 30-fold Oxford Nanopore dataset and achieved an assembly of 902.96 Mb, with
an N50 value of 339 kb (Table 2). We also tried Flye and Ra on this dataset: Flye obtained the
longest genome sequence (1.27 Gb) and a higher N50 value (429 kb). Ra was unable to
achieve the same sequence length as SMARTdenovo. When taking into account the
computation time, SMARTdenovo required 651 central processing unit (CPU) hours, which
was 70 hours faster than Flye (Table 2).
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DISCUSSION
SMARTdenovo is an accurate and efficient SMS assembler compatible with data formats
output of both PacBio and Oxford Nanopore technologies. It comprises several command
line tools: wtzmo, to overlap reads; wtclp, to trim low-quality regions and chimeras: wtlay,
to generate the assembly graph layout; and wtcns to calculate the consensus. Based on the
results of tests on the wild tomato dataset, we found that SMARTdenovo was more
memory-intensive than the other SMS assemblers, but its performance was comparable,
and it was faster. SMARTdenovo has been successfully used to assemble data from various
species such as plasmids [29], protists [17, 30], fungi [19, 31, 32], microorganisms [33], and
complex plants [18, 20, 21].

In addition to its solid performance, SMARTdenovo includes multiple algorithms that can
be—and have been—useful for improving other programs. These algorithms have had a
positive impact on popular SMS assemblers. For example, in developing SMARTdenovo, we
introduced the first algorithm to use HPC-based k-mers, and this has now been
incorporated into many other assemblers [10, 12, 22]. SMARTdenovo has had a more
extensive impact on our development of the assembler Wtdbg2, as it includes several of its
algorithms for handling long reads, including those for indexing, seed chaining, trimming,
consensus, and some of the data formation.

There are several other algorithms within SMARTdenovo that have not yet been taken
advantage of for use in other programs. An example includes its weighting algorithm for
handling repeat regions, which significantly improves both its speed and the accuracy of
the alignment. At this point, no other long read assemblers have this feature.

SMARTdenovo has been available on GitHub since 2015, but its performance not only
remains comparable with current assemblers, it also has several advantages as described.
Furthermore, given its excellent performance for use on corrected long sequence reads, it
continues to be widely used in for genome assembly projects today [34–43].

AVAILABILITY OF SUPPORTING SOURCE CODE AND
REQUIREMENTS
• Project name: SMARTdenovo
• Project home page: https://github.com/ruanjue/smartdenovo
• Operating systems: 64-bit Linux
• Programming language: C 93.3%, C++ 4.6%, Perl 1.5%, other 0.6%
• Other requirements: None
• License: GNU GPL-3.0
• RRID: RRID:SCR_017622

DATA AVAILABILITY
A Code Ocean capsule to execute SMARTdenovo is available (Figure 2) [44]. Supporting data
are available in the GigaScience GigaDB repository [45].
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Figure 2. Code Ocean capsule to execute SMARTdenovo [44]. https://doi.org/10.24433/CO.4665826.v1
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