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Aims: In this study, we evaluate the efficacy of SmartFFR, a new functional index

of coronary stenosis severity compared with gold standard invasive measurement of

fractional flow reserve (FFR). We also assess the influence of the type of simulation

employed on smartFFR (i.e. Fluid Structure Interaction vs. rigid wall assumption).

Methods and Results: In a dataset of 167 patients undergoing either computed

tomography coronary angiography (CTCA) and invasive coronary angiography or only

invasive coronary angiography (ICA), as well as invasive FFR measurement, SmartFFR

was computed after the 3D reconstruction of the vessels of interest and the subsequent

blood flow simulations. 202 vessels were analyzed with a mean total computational time

of seven minutes. SmartFFR was used to process all models reconstructed by either

method. The mean FFR value of the examined dataset was 0.846 ± 0.089 with 95% CI

for themean of 0.833–0.858, whereas themean SmartFFR value was 0.853± 0.095 with

95% CI for the mean of 0.84–0.866. SmartFFR was significantly correlated with invasive

FFR values (RCCTA = 0.86, pCCTA < 0.0001, RICA = 0.84, pICA < 0.0001, Roverall = 0.833,

poverall < 0.0001), showing good agreement as depicted by the Bland-Altman method of

analysis. The optimal SmartFFR threshold to diagnose ischemia was≤0.83 for the overall

dataset, ≤0.83 for the CTCA-derived dataset and ≤0.81 for the ICA-derived dataset, as

defined by a ROC analysis (AUCoverall = 0.956, p < 0.001, AUCICA = 0.975, p < 0.001,

AUCCCTA = 0.952, p < 0.001).

Conclusion: SmartFFR is a fast and accurate on-site index of hemodynamic significance

of coronary stenosis both at single coronary segment and at two or more branches level

simultaneously, which can be applied to all CTCA or ICA sequences of acceptable quality.
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INTRODUCTION

Fractional flow reserve (FFR) is considered the gold standard for
the assessment of the severity of coronary stenoses in patients
undergoing invasive coronary angiography (ICA). It can reliably
recognize hemodynamically significant lesions, thus providing
an excellent tool for percutaneous coronary intervention (PCI)
guidance (1, 2). However, FFR is not widely used in the
clinical settings probably due to its increased total procedural
cost (>$1,000 average cost per patient, including the dedicated
pressure wire and the vasodilator adenosine administered i.v.
to induce hyperemia), as well as the added discomfort of the
patient. In fact, in the evaluation of intermediate stenoses (i.e. 40–
70%) prior to intervention, FFR is measured only in 6.1% of the
cases (3).

Accordingly, alternative invasive and non-invasive coronary
functional assessment methods based on computational models
have been proposed not requiring pressure measurements
and vasodilator administration. During the past decade,
computed tomography coronary angiography (CTCA) has
gained increasing attention in the clinical setting as a non-
invasive substitute of coronary angiography, thanks to the
remarkable improvement of its imaging quality (4). CTCA is
now considered as an accurate diagnostic tool for the assessment
of CAD severity. It has been demonstrated that the combination
of CTCA-derived 3D arterial models with the application of
computational fluid dynamics (CFD) can offer a non-invasive
assessment of the hemodynamic status of the artery of interest
with an acceptable accuracy when compared to the invasively
measured FFR (5–13). The existing approaches follow the
rationale that since flow and pressure are not known a priori,
lumped parameter models of several factors such as the pressure
of the systemic circulation and the resistance of the coronary
microcirculation need to be coupled with the fluid domain of the
epicardial arteries, resulting to laborious virtual FFR calculations
that require a large computational time. Recently, the virtual
functional assessment index (vFAI) has been introduced as one
amongst several valid computational FFR surrogates [i.e. such
as QFR (14), DEEPVESSEL-FFR (15), FFRangio (16) as well as
the aforementioned functional assessment indices given above]
in patients undergoing ICA (17) or CTCA (18, 19), being able
to determine the functional severity of a coronary lesion in an
arterial segment. The non-invasive FFR computation by CFD
on CTCA images currently adopted in clinical practice (5) is an
off-site assessment with a relatively long computational time and
no substantial advantages compared to alternative on-site CTCA
assessment approaches as recently reported (12).

In this study, we present a new approach for a really on-
site and real-time, geometrically derived functional assessment
of coronary stenosis, which can be performed both with CCTA
or ICA datasets and both in case of stenosis involving a single
coronary segment as well as a coronary bifurcation (excluding
the common trunk and the common trunk bifurcation). One of
the main advantages of the proposed method is its speed and the
ability to perform it on-site. The overall diagnostic performance
of the proposed method was tested in a CTCA patient dataset
as well as in an ICA patient dataset and compared with

traditional pressure-wire derived FFR measurements available
in both datasets. Furthermore, we also examined the optimal
simulation type for the SmartFFR calculation by comparing rigid
wall simulations against fluid structure interaction simulations.

MATERIALS AND METHODS

Study Population
To obtain a suitable CTCA-derived dataset, data from the
multicenter EVINCI (EValuation of INtegrated Cardiac Imaging
for the Detection and Characterization of Ischemic Heart
Disease) project, as well as from the SMARTool (Simulation
Modeling of coronary ARTery disease: a tool for clinical
decision support) project were used. The aforementioned
projects complied with the Declaration of Helsinki. In the context
of the EVINCI study (20), ethical approval was provided by
each participating center and all subjects gave written informed
consent. For the present study investigating anonymized imaging
data, informed consent was waived. From the EVINCI and
SMARTool populations, we chose 69 patients with intermediate
(20–90%) pre-test probability of CAD (21) who underwent
CTCA and ICA exams and had invasive FFR assessed in at least
one major vessel. The exclusion criteria were previous acute
coronary syndrome, left ventricular ejection fraction <35%,
cardiomyopathy, known CAD and more than moderate valve
disease. An additional exclusion criterion was poor CTCA scan
quality evaluated in a four levels scale (poor, satisfactory, good
and excellent). Poor quality scans were excluded from our
study. The final CTCA-derived dataset consisted of 88 major
coronary arteries (Figure 1).

Regarding the ICA-derived dataset, a study population
of 98 patients with stable or unstable angina or non-ST
elevation myocardial infarction undergoing ICA and invasive
FFR measurement at the University Hospital of Ioannina was
retrospectively included in this study. The final ICA-derived
dataset consisted of 114 major coronary arteries. Details on the
coronary artery type distribution and patient demographics are
presented in Table 3.

CTCA Acquisition
CTCA was performed in all patients using ≥64-slice scanners.
All the arteries which were used in the present study were
reconstructed at mean diastole (70%-80% of R-R interval) (22).
The slice increment was 0.6mm, whereas the average slice
thickness was 0.625mm. The pixel spacing values varied due to
the different scanners that were used throughout themulti-center
EVINCI study. Nitrates were used to enhance the CTCA quality,
whereas beta-blockers were used when necessary to reduce the
heart rate in order to perform good quality examinations and
nitrates were always used as described in the international
guidelines (23).

Invasive Coronary Angiography and FFR
Acquisition
Standard techniques were used for the ICA acquisition with
multiple projections. FFR was invasively measured after the
intravenous administration of 140 µg/kg/min of adenosine,
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FIGURE 1 | Enrollment and diagnostic procedures.

using a combo-wire (Volcano Corporation). Arterial segments
stenoses with FFR values lower than 0.80 were defined as
hemodynamically relevant. The ICA dataset was provided by
the University hospital of Ioannina which included all the FFR
measurements that were performed during a period of 4 years.
The main reasons for the exclusion of ICA cases were the
following: a) poor image resolution, b) <30◦ angle difference
between two ICA projections, c) presence of only one ICA
projection, d) stenosis degree either <30 or >90%.

3D Reconstruction
The reconstruction of the arterial models was performed
with our in-house developed algorithms for the CTCA-derived
dataset (24, 25) and for the ICA-derived dataset (26) and are
both described in detail in the online Supplementary Material

section. An expert interventional cardiologist (LL) performed the
segmentation of the vessels of interest using the ICA images that
contained the FFR wire within the vessel, in order to ensure the
co-alignment of the FFR measured segment with the respective
3D reconstructed one.

SmartFFR Calculation
In order to calculate SmartFFR, blood flow simulations are
carried out on the reconstructed 3D models of the arteries of
interest using the finite element method. The arterial lumen is
discretized into tetrahedral finite elements of face size that ranges
from 0.09–0.12mm, as defined by a mesh sensitivity analysis,
and the respective Navier-Stokes and continuity equations are
then solved using ANSYS R© CFX 16.2. The SmartFFR index is
primarily based on the virtual functional assessment index (17)

as an outcome, but it has some key points of deviation regarding
the process with which the index is calculated, constituting
the method more robust, faster and able to be applied on
more than one segment at a time. A transient blood flow
simulation is performed on the 3D reconstructed artery for which
the boundary conditions which are applied in single-segment
simulations are the following:

Inlet: an average static pressure of 100 mmHg is applied as
inlet boundary condition.
Outlet: an increasing transient flow profile is applied as an
outlet boundary condition. It consists of 4 timesteps of a
duration of 0.25 s each and flow rate values are increasing from
1 to 4 ml/s with a step of 1 ml/s (Figure 2).
Wall: a no-slip and no-penetration boundary condition is
applied at the arterial wall.

For each timestep, the Pd/Pa value is calculated in order to
construct the Pd/Pa vs. flow curve. The calculated Pd/Pa values
for every timestep are then connected to create the appropriate
patient-specific curve, using a smooth spline approximation with
a total of 100 interpolation points using a dedicated script
in MATLAB. The patient-specific curve is constructed for a
flow range of 0–4 ml/s and the SmartFFR value is calculated
by dividing the area under the patient-specific curve to the
respective area under the curve of the respective healthy arterial
segment (i.e. AUC = 4), following the vFAI rationale by
Papafaklis et al. (17).

In the ICA-derived dataset, only the main vessel was
reconstructed, whereas in the CTCA-derived dataset, when the
simulation was performed in the left coronary artery system, the
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FIGURE 2 | Illustration depicting the outlet boundary conditions for an arterial bifurcation.

two main coronary arteries (LAD and LCx) were reconstructed.
In order to calculate the SmartFFR in bifurcating arterial models,
we first have to determine the flow ratio that enters each
branch. The left descending and circumflex coronary arteries
were evaluated by 3D reconstructed models and the flow ratio
of each branch was determined at the level of the bifurcation
involved. For the left vasculature, we assume a flow rate of 2
ml/s during rest that might be evenly distributed in the two main
branches if we have an equal area at the inlet of the two branches
(27). However, the patient-specific flow that enters each branch
needs to be defined for every case. In order to do that, we apply
Murray’s law after having calculated the diameters and the areas
of the two branches. Murray’s law correlates the flow ratio that
passes through the two branches with the respective diameters of
the two branches. The aforementioned relation is given by:

qD2

qD1
=

(

dD2

dD1

)3

, (1)

where qD1 and qD2 are the flows of branches 1 and 2 and dD1 and
dD2, their respective diameters (Figure 3).

After having calculated the ratio, we then perform a transient
blood flow simulation in the entire model with the following
outlet boundary conditions:

Outlets: an increasing transient flow profile is applied as a
boundary condition. However, in this case, we need to calculate
the flow of each branch for each time step. The left main branch
of the coronary vasculature has a total flow of around 2 ml/s
during rest as it has been calculated through PET quantitative
measurements. This is expected since both left main branches

(i.e. Left Anterior Descending and Left Circumflex) average a
mere 1ml/s during rest (i.e. approximately equal to the respective
flow during rest of the Right Coronary Artery). We assume
that in a totally healthy left vasculature, we will have a peak
hyperemic flow of 8 ml/s (i.e. 4 ml/s per branch) entering the left
main stem [i.e. following the rationale of (28) stating that it is
equal to the mean ± 2SD hyperemic flow increase in a normal
artery] (29). Having this in mind, we create a transient flow of
4 timesteps of 0.25 s each with a total flow for each timestep
from 0 to 8 ml/s. The outlet flow of each branch is calculated
using the previously computed flow ratio and is applied for each
timestep, respectively.

The inlet andwall boundary conditions were the same as in the
single segment smartFFR calculation process. Flow is considered
laminar, and blood is treated as a Newtonian fluid with density
1050 kg/m3 and dynamic viscosity 0.0035 Pa·s.

In order for the SmartFFR value to be calculated for each
branch, we need to calculate the Pd/Pa values for each time step
at each branch. In order to do that, we first have to find the
computed pressure at the inlet of each of the two branches, since
this is the inlet pressure for each branch and not the overall inlet
pressure at the left main stem. After having the Pd/Pa values
calculated for each timestep, we then build the respective Pd/Pa
vs. flow curves for each branch. In order to have a balanced
universal value for each branch, we have to interpolate the curve
of the branch with the higher flow up to a flow of 4 ml/s and
extrapolate the respective curve of the second branch up that had
the lower flow to the same value. The flow division is performed
in order to apply physically valid boundary conditions on the
two branches regarding the outlet, since the two branches cannot
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FIGURE 3 | Illustration depicting the flow separation ratio as calculated for an indicative case, as calculated by Murray’s law.

have an equal division of flow. SmartFFR is then calculated as
the ratio of the area under the patient-specific curve divided by
area under the curve of the respective healthy arterial segment
for each branch (Figure 4). The SmartFFR values were calculated
in a blind fashion from the actual FFR values.

Effect of Fluid Structure Interaction (FSI)
on SmartFFR
We have investigated the effect of different simulation methods
on the calculated SmartFFR values. The whole process is
described in detail in the online Supplementary Material.

Statistical Analysis
The relationship between FFR and SmartFFR was quantified
by calculating the Pearson’s correlation coefficient. In order

to assess the agreement between the two methods, the
Bland–Altman plots and the corresponding 95% limits of
agreement were used. A Receiver Operator Curve (ROC)
analysis was performed to identify the cut-off values of
the examined variables. The categorization of FFR and
SmartFFR values was made using the cut-off value of 0.8
and the calculated cut-off from ROC curve for the FFR
and SmartFFR (for each dataset separately), respectively.
Sensitivity (SE), specificity (SP), positive predictive value (PPV),
negative predictive value (NPV), and diagnostic accuracy (the
percentage of patients correctly diagnosed by SmartFFR) were
used to assess the performance of SmartFFR. P values <

0.05 were considered statistically significant. The comparison
between the ROC curves was based on the DeLong method
(MedCalc software).
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FIGURE 4 | Illustration depicting the simultaneous SmartFFR calculation process for the two main branches of the left coronary vasculature (i.e. LAD and LCx). The

dashed line after the last simulation timestep at the LAD branch was used to extrapolate the curve to reach the 4 ml/s mark, whereas for the LCx branch, the curve

was interpolated to limit the curve to the 4 ml/s mark, respectively.

RESULTS

From the CTCA-derived and ICA-derived datasets, 202 major
coronary arteries (i.e. stenosis degree ranging between 30–90%),
in which invasive FFR had been measured, were used to compute
and validate the SmartFFR index. The ICA-derived dataset
consisted of 114 major coronary vessels from 98 patients. Among
the 114 arteries, 81 were LAD segments, 18 were LCx segments
and the remaining 15 were RCA segments. 29 vessels (i.e. 25.4%)
presented with a pathologic FFR value (i.e. FFR ≤ 0.80) and
among these, sixteen arteries had FFR values within the so-called
“gray zone” (i.e. FFR 0.75–0.80) (30).

In order to validate the efficacy of the bifurcation-based

SmartFFR, we used the CTCA-derived dataset. The dataset
consisted of 88 major coronary arteries. However, we must

here state that the cases for which FFR measurements of both

LAD and LCx branches (i.e. simultaneous SmartFFR calculation

for two branches) were available were very few (i.e. nine
cases). Twenty-seven cases (i.e. 30.7%) exhibited an ischemic
FFR value (i.e. FFR ≤ 0.80) and from these, eleven cases
were within the “gray zone”. In order to tackle this issue, we
validated the method by comparing the SmartFFR value with
the respective invasively measured FFR value of the branch that
was available.

Strong correlation was observed between the two methods for
the three (i.e. CCTA-derived dataset, ICA-derived dataset and
overall dataset) datasets (RCCTA = 0.86, pCCTA < 0.0001, RICA

= 0.84, pICA < 0.0001 and Roverall = 0.833, poverall < 0.0001,
respectively) and good agreement was observed by the Bland-
Altman method of analysis (Figure 6). For the ICA-derived
dataset there was a slight overestimation of FFR by SmartFFR in
this case with a mean difference of 0.024 ± 0.051 (p < 0.0001).
The corresponding limits of agreement were−0.012 to 0.08 with
95% confidence intervals −0.14 to −0.11 for the lower limit and
0.06 to 0.09 for the upper limit, respectively. For the CCTA-
derived dataset there was a slight underestimation of FFR by
SmartFFR with a mean difference of 0.006 ± 0.053 (p = 0.26).
The corresponding limits of agreement were from−0.098 to 0.11
with 95% confidence intervals−0.1150 to−0.08135 for the lower
limit and −0.1150 to −0.08135 for the upper limit, respectively.
Finally, for the overall dataset, there was a slight overestimation
of FFR by SmartFFR in this case with a mean difference of 0.007
± 0.053 (p < 0.0001). The corresponding limits of agreement
were −0.0147 to 0.00016 with 95% confidence intervals −0.1251
to−0.09966 for the lower limit and 0.085 to 0.11 for the upper
limit, respectively.

The interobserver agreement for SmartFFR measurements
was tested in 20 randomly selected coronary vessels reconstructed
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from ICA (12 LAD, 4 LCx and 4 RCA, respectively) and 20
vessels reconstructed by CTCA (13 LAD, 3 LCx and 4 RCA,
respectively). Strong agreement was found between the two
observers for the CTCA dataset (mean difference = −0.007
± 0.01, p = 0.0068), as well as for the ICA dataset (mean
difference = −0.009 ± 0.018, p = 0.04). The intraobserver
agreement for SmartFFR measurements was tested in the same
randomly selected set of 40 vessels (20 vessels reconstructed
from ICA and 20 vessels reconstructed fromCTCA, respectively).
Excellent agreement was observed in the intraobserver variability
analysis for the CTCA-derived dataset (mean difference =

−0.002± 0.006, p= 0.16), as well as for the ICA-derived dataset,
respectively (mean difference=−0.0035± 0.006, p= 0.15).

Diagnostic Accuracy of SmartFFR (Overall
Dataset)
The optimal SmartFFR cutoff value for identifying a functionally
significant stenotic segment with an FFR value ≤0.80 was ≤0.83
from receiver operator curve (ROC) analysis (Figure 5). The
overall diagnostic performance of SmartFFR using the calculated
optimal threshold but also the established FFR threshold of 0.80
is presented in Table 1 (AUC= 0.956, p < 0.001).

Diagnostic Accuracy of SmartFFR (ICA
Dataset)
In the ICA-derived dataset, the optimal SmartFFR cutoff value
for identifying a functionally significant stenotic segment with
an FFR value ≤0.80 was ≤0.81, deriving from the receiver
operator curve (ROC) analysis (Figure 5). The overall diagnostic
performance of SmartFFR using the calculated optimal threshold
but also the established FFR threshold of 0.80 is presented in
Table 1 (AUC= 0.975, p < 0.001).

Diagnostic Accuracy of SmartFFR (CTCA
Dataset)
In the CTCA-derived SmartFFR analysis, the optimal SmartFFR
threshold to identify a functionally significant stenotic segment
with FFR≤ 0.80 was SmartFFR≤ 0.83, as dictated by the receiver
operator curve (ROC) analysis (Figure 5). The overall diagnostic
performance of SmartFFR is presented in Table 1 (AUC= 0.952,
p < 0.001).

SmartFFR and Type of Simulation
To assess the possible effect of the simulation type on SmartFFR,
a rigid wall or a FSI simulation model were used to compute
SmartFFR in 25 coronary segments. The average SmartFFR for
the rigid wall simulations for the 25 segments was 0.838 ±

0.19 whereas, for the FSI simulations the average SmartFFR was
0.848± 0.19, respectively. Strong correlation was found between
the two simulation methods presenting with almost identical
SmartFFR values (r= 0.99, p < 0.0001) (Figure 6).

Excellent agreement was also found for the two methods of
simulation with a mean difference of −0.010000 ± 0.012 as
calculated by the Bland-Altman method of analysis (Figure 7).
The upper limit was 0.0133 with 95% CI from 0.0048 to 0.022,
whereas the lower limit was −0.033 with 95% CI from −0.042
to−0.025.

DISCUSSION

In this study, we have demonstrated the efficacy of our
newly proposed SmartFFR index in assessing the hemodynamic
significance of coronary stenoses within a matter of minutes,
using either the most well-known non-invasive cardiac imaging
modality (i.e. CTCA), or the most-commonly used invasive
coronary imaging modality (i.e. ICA) (Figure 8). We observed
that SmartFFR values from the ICA-derived dataset had a
slightly inferior correlation to the invasively measured FFR
than those from the CTCA-derived dataset, but had slightly
increased accuracy and sensitivity, possibly due to the higher
spatial resolution of ICA. More specifically, in the overall dataset,
SmartFFR matched the values of the invasively measured FFR
closely, having sensitivity and specificity of 94.6 and 85.6%,
respectively, using the computed cutoff value of≤0.83 to identify
stenoses of FFR ≤ 0.80 (Table 1).

Several studies have already demonstrated the efficacy of
CTCA-derived or ICA-derived functional indices to identify
ischemic lesions with the aid of CFD simulations (8, 31). In
the first studies investigating the possible application of CTCA-
derived computational FFR measurements, the agreement
between FFRCT and the invasively measured FFR was rather
modest (32). However, by gaining the ability to create
far more complex models of the coronary vasculature that
included vascular microcirculation, the accuracy of FFRCT was
significantly improved over the past years and many studies
demonstrated the efficacy of the method. The results of the
present study indicate the efficacy of a new method, SmartFFR,
to identify hemodynamically significant stenoses. Compared to
the previously validated virtual Functional Assessment Index
(17) which is the foundation for SmartFFR, SmartFFR required
a lower total computational time, since only one blood flow
simulation is needed (Table 2). Furthermore, SmartFFR allows
for the simultaneous functional assessment of at least two vessels
and could even allow for the assessment of more than two
branches. When compared to other virtual indices, SmartFFR
exhibits similar or even superior diagnostic performance having
a diagnostic accuracy, sensitivity, specificity, PPV and NPV of
88.1, 94.6, 85.4, 71.6, and 97.7%, regarding the overall dataset
(Table 1). Furthermore, SmartFFR can be calculated on a simple
personal computer on-site, without the need of a dedicated
core-laboratory and the total process time, along with the
required 3D reconstruction time does not exceed an average
of 10 minutes, depending on the available imaging modality
(Table 2).

Study Limitations
Our study included a retrospective analysis of two imaging
datasets including either invasive or non-invasive coronary
angiographies. The rather limited number of patients included
in the CTCA-derived dataset is a limitation. We tested
the efficacy of the multi-vessel SmartFFR only on the left
coronary system of the CTCA patients that had invasive FFR
measurements available for the LAD, the LCx or both, since
this was the only way to validate the efficacy of the method.
Unfortunately, there was a lack of simultaneous invasive FFR
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FIGURE 5 | (A) Regression plot and (B) Bland-Altman plot comparing SmartFFR to the invasively measured FFR (ICA Dataset). (C) Regression plot and (D)

Bland-Altman plot comparing SmartFFR to the invasively measured FFR (CTCA Dataset). (E) Regression plot and (F) Bland-Altman plot comparing SmartFFR to the

invasively measured FFR (Overall dataset).

measurements in two branches (only 9 cases had simultaneous
invasive FFR measurements for the LAD and the LCx branch,
respectively), which constitutes a limitation of our study. Even
in this rather modest sample though, SmartFFR matched the

invasively measured FFR values rather well, discriminating the
hemodynamically significant stenoses with good accuracy. We
should also mention that SmartFFR was tested also in a single-
vessel manner in the CTCA dataset for the RCA cases that
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TABLE 1 | Diagnostic performance of SmartFFR for the overall dataset, the ICA-derived dataset and the CCTA-derived dataset, for the optimal thresholds as calculated

by the Youden index and for the established FFR threshold of 0.80.

FFR ≤ 0.80

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) TP TN FP FN

SmartFFR ≤ 0.83

Overall dataset

88.1 94.6 85.6 71.6 97.7 53 125 21 3

SmartFFR ≤ 0.80

(Overall dataset)

89.1 76.8 93.8 82.7 91.3 43 137 9 13

SmartFFR ≤ 0.81

(ICA dataset)

91.2 96.6 89.4 75.7 98.7 28 76 9 1

SmartFFR ≤ 0.80

(ICA dataset)

91.2 89.7 91.8 78.8 96.3 26 78 7 3

SmartFFR ≤ 0.83

(CTCA Dataset)

90.9 88.9 91.8 82.8 94.9 24 56 5 3

SmartFFR ≤ 0.80

(CTCA Dataset)

86.4 63 96.7 89.5 85.5 17 59 2 10

FIGURE 6 | ROC curve depicting the diagnostic performance of SmartFFR for (A) ICA dataset (95% CI 0.91–0.98), (B) CTCA dataset (95% CI 0.88–0.99) and (C)

Overall dataset (95% CI: 0.92 to 0.98).

FIGURE 7 | (A) Regression plot and (B) Bland-Altman plot comparing FSI and rigid wall SmartFFR calculations.
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FIGURE 8 | Top row: ICA-derived model, Bottom row: CCTA-derived model. (A) 3D reconstructed ICA-derived model back-projected on the two utilized angiographic

views using our in-house developed software platform. (B) ICA-derived 3D model with smartFFR value, back-projected on the respective angiographic image, (C) ICA

image with respective invasively measured FFR value and delineation of the segment of interest, (D) Volume rendered 3D reconstructed model with our in-house

developed software platform. The outer wall is depicted in transparent green and the lumen in orange. (E) CCTA-derived 3D model with smartFFR value,

back-projected on the respective angiographic image (F) ICA image of the CCTA model with respective invasively measured FFR value and delineation of the segment

of interest.

TABLE 2 | Average required time for SmartFFR and vFAI.

Imaging modality Reconstruction time Mesh generation SmartFFR (per bifurcation) vFAI (per segment)

ICA ∼3min ∼3min ∼3min ∼7 min

CTCA ∼1-2min ∼3min ∼3min ∼7 min

were examined. However, the majority of the lesions were
located at the left coronary vasculature (i.e. ∼80%) which is
also a limitation of the examined dataset. Furthermore, the
lack of diastolic blood pressure data did not allow us to
substitute the universal inlet pressure value with a patient-specific
blood pressure value, a methodological step that will further
enhance the SmartFFR methodology. Moreover, Murray’s law
is generally used for idealized laminar flows and in cases of
severe stenoses it might not be most suitable. However, we
used laminar flow assumptions throughout the entire dataset in
order to preserve consistency through the simulations. Finally,
we must also mention the rather limited number of marginal

cases (i.e. within the so-called FFR “gray-zone”), cases that
are usually most challenging in terms of accuracy, even for
the invasive FFR measurement (Table 3). We are currently
working on broadening our validation dataset for the multi-
vessel SmartFFR analysis, a non-trivial task though, since
multiple invasive FFR measurements are required in the left
coronary vasculature.

CONCLUSIONS

We have demonstrated the efficacy of SmartFFR to discriminate
hemodynamically significant stenoses in either CTCA-derived
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TABLE 3 | Patient demographics and vessel characteristics.

Cardiovascular risk factors

Age 63.1 (± 7.6)

Female 59 (29%)

Male 143 (71%)

BMI, kg/m2 27.8 (± 4.7)

Body Mass, kg 82.1 (± 16.9)

Diabetes (N, %) 47 (23.2%)

Smoker during past year (N, %) 41 (20.3%)

Hypertension (N, %) 138 (68.3%)

Hypercholesterolemia (N, %) 138 (68.3%)

Coronary vessels (N, %)

Right coronary artery 39 (19.3%)

Left anterior descending 131 (64.9%)

Left Circumflex 32 (15.8%)

Severity of coronary lesions at ICA (N, %)

Stenosis 30–49% 89 (44.3%)

Stenosis 50–70% 69 (34.1%)

Stenosis 70–90% 44 (21.6%)

FFR categories (N, %)

FFR ≤ 0.75 35 (17.3%)

FFR > 0.75 and ≤ 0.8 21 (10.4%)

FFR > 0.8 146 (72.3%)

or ICA-derived coronary 3-dimensional models on-site with
relatively fast computational time and low computational cost.
SmartFFR correlated well with the invasively measured FFR,
which is the gold standard in the functional assessment of
coronary stenoses.
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