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�e integration of cheap and powerful sensors in smartphones has enabled the emergence of several context-aware applications
and frameworks. However, the available smartphone context-aware frameworks are static because of using relational data models
having prede�ned usage of sensory data. Importantly, the frameworks lack the so	 integration of new data types and relationships
that appear with the emergence of new smartphone sensors. Furthermore, sensors generate huge data that intensi�es the problem
of too much data and not enough knowledge. Smarting of smartphone sensory data is essential for advanced analytical processing,
integration, inferencing, and interpretation by context-aware applications. In order to achieve this goal, novel smartphone sensors
ontology is required for semantic modeling of smartphones and sensory data, which is the main contribution of this paper.
�is paper presents SmartOntoSensor, a lightweight mid-level ontology that has been developed using NeOn methodology and
Content Ontology Design pattern. �e ontology describes smartphone and sensors from di
erent aspects including platforms,
deployments, measurement capabilities and properties, observations, data fusion, and context modeling. SmartOntoSensor has
been developed using Protégé and evaluated using OntoQA, SPARQL, and experimental study. �e ontology is also tested by
integrating intoModeChanger application that leverages SmartOntoSensor for automatic changing of smartphonemodes according
to the varying contexts. We have obtained promising results that advocate for the improved ontological design and applications of
SmartOntoSensor.

1. Introduction

Smartphones are modern high-end mobile phones com-
bining the features of pocket sized communication devices
(i.e., mobile phones) with PC like capabilities (i.e., PDAs).
Sensory technology was extended to smartphones in order
to turn these communication devices into life-centric sen-
sors so that their capabilities and functionalities could be
increased substantially. To date, smartphones have a rich
set of sensors [1], which have increased their capabilities in
several ways especially introducing a new class of cooperative
services including real-time healthcare, environmental and
transportation monitoring, gaming, safety, and social net-
working [2, 3]. However, in frame of the smartphone context-
aware application development, the integration of large-scale
sensory data that contains real-time spatial, temporal, and
thematic information, which could be used for decision
making in a rich tactical environment, is crucially di�cult [3].

Today, most of these context-aware applications use brute-
force approach for collecting and analyzing sensory data that
wastes valuable energy and computation resources because of
generating observations of minimal use.

�e huge sensory data obtained from smartphone sensors
intensi�es the problem of too much data but not enough
knowledge, which is undesirable to smartphone context-
aware applications. �e problem results due to several rea-
sons. First, the heterogeneous sensors produce voluminous
data in varying formats and measurement procedures, which
makes it di�cult for classical Information Retrieval (IR)
techniques to help users in searching and retrieving relevant
information. Second, sensors di
er in their values as well
as description terminologies resulting into terminology mis-
match, which makes it di�cult for keyword-based searching
techniques to retrieve relevant information. �ird, sensors
inherent design characteristics and lack in adaptability to
varying conditions hampers the accuracy and reliability of
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the captured data. Fourth, the noisy, asynchronous, varying
sampling rates characteristics of heterogeneous sensors could
result into missing of valuable data that limits the capabilities
of applications to statically prede�ned usages of the collected
data instead of showing dynamic behaviors. Fi	h, the lack
and improper de�nitions of domain and sensors speci�ca-
tions and annotations data can hamper inferencing of domain
knowledge from low-level sensory data. Finally, sensors data
fusion could enable extraction of knowledge that cannot be
perceived or inferred using individual sensors. �erefore,
in the light of these problems, the available smartphone
context-aware applications and frameworks are ill-equipped
at handling raw sensory data, where usage of sensory infor-
mation is static, prede�ned, and with no so	 integration of
new data types from the newly emerging sensors. A slight
change in the technologies and conditions would compel for
redesigning of an entire application. Furthermore, to develop
practically useful application, developers require actionable
knowledge, which is not possible from raw sensory mea-
surement information [4]. �erefore, like other real-world
sensors-based systems, the data processing, management,
and interpretation of smartphone sensory data are a big
challenge that can be resolved by either smarting applications
or data. �e later approach is more practical by leveraging
state-of-the-art technologies for more meaningful represen-
tation and semantic interpretation of smartphone sensors
and sensors observations for using in potential context-aware
applications.

�e potential of sensor technology cannot be optimally
exploited until the availability of a well-developed common
language for expressing di
erent aspects of sensors [5]. Sen-
sors and sensors observations have already been standardized
for improving interoperability among heterogeneous sen-
sors data repositories and applications [6]. �ese standards,
however, provide synthetic interoperability with no facilities
of semantic descriptions for computer logic and reasoning
[7]. �erefore, Semantic Web technologies could be used to
provide semantic layer to enhance semantic compatibility
and interoperability of smartphone sensors and data. In
this regard, ontologies allow the annotation of sensory data
with spatial, temporal, and thematic metadata to enhance
semantic understanding, interoperability, and mapping of
relationships between mismatching terms to improve per-
formance of a system [8]. �erefore, smartphone sensors
ontology is immensely required to provide a common and
widely accepted language as well as dictionary of terminolo-
gies for understanding the structure of information regarding
smartphones, sensors, and sensory observations in order to
provide highly expressive representations, advanced access,
reuse smartphone and sensors domain knowledge, formal
analysis of sensors resources and data, and mapping high-
level contexts and to make explicit the domain knowledge
without having knowledge of technical details regarding
format and integration. Furthermore, the ontology would
allow for classi�cation of the capabilities and observations
of sensors, provenance of measurements, reasoning about
individual sensors, connecting a number of sensors as a
microinstrument, semantic interoperability and integration,
and other types of assurance and automation. Annotating

sensory data would enhance sensors data fusion and interop-
erability between heterogeneous sensors, reused as compared
to syntactic representation, and contextual information for
situation awareness.�eontologywould revolutionize smart-
phone context-aware applications by providing a broader
data model with the potential for integrating new and emerg-
ing contents and data types. �e ontology would separate
the application knowledge from the operational knowledge,
which would enable application and knowledgemanagement
easier and bring semantic interoperability among applica-
tions [9].

�e objective of this paper is to design and develop
an ontology for smartphone sensors, namely, SmartOn-
toSensor (SOS) that consists of formal conceptualization of
smartphone in general and smartphone sensors in speci�c
for context representation. SmartOntoSensor has numerous
characteristics including (1) semantic annotation of smart-
phone and sensors to increase data interoperability, (2) fusion
of multisensors data to support intelligent decision making,
(3) resolution of sensors data heterogeneity to express data
uniformly, (4) description of sensing and measurements
capabilities of sensors to increase sensors data sharing
and reusing capabilities, and (5) addition of contexts and
contextual information to support context-aware applica-
tions. �e SmartOntoSensor framework is kept conservative
as much as possible while keeping the option open for
changes, potential reuse, extension, and plugging into other
smartphone domain-speci�c heavy-weight ontologies. �is
is due to the speedy evolution in the smartphone’s hard-
ware and so	ware industries, which makes it essential that
decisions made today regarding smartphones and associated
sensors speci�cations are adoptable and extensible. �is
paper presents a pragmatic approach for the development of
smartphone sensors ontology with no claim that orthogo-
nal, complete, or universally acceptable smartphone sensors
ontology is feasible. However, SmartOntoSensor is evaluated
using state-of-the-art technologies and standards, and the
results are promising. �e rest of the paper is organized
as follows: Section 2 brie�y presents related work, Section 3
presents the proposed SmartOntoSensor ontology, Section 4
presents evaluation and discussion, Section 5 presents some
of the potential applications of SmartOntoSensor, and �nally
Section 6 concludes our discussion. References are presented
at the end.

2. Related Work

Sensor networks empower Internet with the acquisition of
contextual information by observing and measuring real-
world incidents and pave the way for the creation of context-
aware platforms, applications, and services. However, to
gain high degree success and adoptability, data captured by
di
erent types and levels of sensors in sensor networks need
to be utilized productively. Despite the extensive research
e
orts in sensors and sensor networks technologies, a univer-
sally accepted language for representing sensors’ de�nitions,
properties, taxonomies, performance descriptions, and so
forth was needed to enhance data fusion and interoperability
in a network-centric environment [10]. �erefore, several
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researchers have investigated ontologies for semantic repre-
sentation of sensors and sensor networks and came up with a
number of ontologies and ontological models [4, 5, 7, 8, 10–
15], which are brie�y described here.

Avancha et al. [11] used ontology for adaptive wireless
sensor networks enabling sensor nodes adoptable to available
power, environmental factors, and current operating condi-
tions while maintaining calibration and communication. Its
usefulness is the concepts representing a sensor node as a
system having di
erent components and their relationships.
OntoSensor [5, 10] is a general knowledge base of sensors for
query and inference and adapted its concepts from SensorML
[16], IEEE SUMO [17], and ISO 19115. However, it lacks
distinctive data description model to facilitate interoperable
data representation for sensors observation and measure-
ment data. In addition, it provides no constructs to describe
sensors as process similar to SensorML [7]. Eid et al. [13] have
described a two-layer high-level framework for universal
sensors ontology in order to describe hierarchical knowledge
model of sensors, dynamic observational properties of trans-
ducers, and the integration of domain-speci�c ontologies
with the ontology. Important aspects of the ontology are
using notion of virtual sensors formed by physical sensors
for more abstract measurements and operations. However,
the ontology mainly focuses on data and measurements
with little capacity to describe sensors, systems, and how
measurements are taken. CSIRO [7] is a generic ontology that
organizes concepts into four core clusters while covering a
broad range of concepts for describing sensors, groundings,
operational model, process, and measurement. However, the
ontology contains no concepts for describing components of
platforms. Coastal Environmental Sensing Networks (CESN)
ontology [12] contains description of sensors types, deploy-
ment, location, and physical property. �e CESN ontology
is, however, very limited of having 10 concept de�nitions
for sensor instances and 6 individuals [18]. Semantic Sensor
Network (SSN) ontology [8] has reused DUL (DOLCE Ultra
Lite) upper ontology for describing sensors in terms of
measurement capabilities, observations, sensing methods,
deployments, and operating and survival ranges along with
performance within those ranges for enhancing discovering
and querying sensors in a network-centric environment.
�e ontology is more general and comprehensive because
of providing most of the necessary details about di
erent
aspects of sensors and measurements and can pave the way
for the construction of any domain-speci�c sensors ontology.
SWAMO ontology [19] provides interoperability between
sensor web products and services. It includes concepts for
sensors and actuator and enables autonomous agents for
system-wide resource sharing, distributed decision mak-
ing, and automatic operations. �e ISTAR ontology [14]
solves the problems faced by intelligence and surveillance
including dynamic selection and assignment of sensors
(i.e., depending on requirements, �tness, etc.) for individual
tasks in a mission. Service-oriented sensor network ontol-
ogy [15] is developed using Geography Markup Language
(GML), SensorML, SUMO, and OntoSensor ontology for
describing sensors services. �e ontology emphasizes devel-
oping sensors descriptions ontology for sensors discovery

and description of sensors metadata in a heterogeneous
environment. Korpipää and Mäntyjärvi [4] have designed
ontology for mapping raw sensory data from mobile devices
for high-level semantic description of composite contexts.
�e ontology encourages the quick development of sensors-
based mobile applications, more e�cient use of development
and computing resources, and reuse as well as sharing of
information between communicating entities. However, the
ontology provides no description of sensors and platforms
and their relationships with contexts. OOSTethys [20] is an
observation-centered ontology describing observation as a
procedure for estimating property value of a feature of interest
and process as a system comprising other systems or atomic
processes.

Sensors used in di
erent applications including home
appliances, robotics, military, and earth sciences can have
analogous characteristics but their needs and usage make
them unique [21]. For example, sensors used in weather fore-
casting measure basic physical properties including air pres-
sure, humidity, temperature, and wind speed [21], whereas
sensors used in military missions provide information about
hostile terrain such as tactics, location, movement, strength,
and equipment and in the development of countertactics and
strategies [10]. Smartphone sensors have the same sensing
capabilities but with more potential usage than sensor nodes
found in sensor networks. �is is because, in addition to
sensing capabilities, these sensors are locally supported by
rich processing, storage, and communication capabilities
that are integrated in a single unit and turn smartphones
into smart sensors. However, the available ontologies for
sensors and sensor networks [4, 5, 7, 8, 10–15] cannot
be applied directly for smartphone sensors-based context-
aware computing due to a number of shortcomings. �ese
include (1) variations in scope and completeness, where the
ontologies were exclusively developed for sensors and sensor
networks by describing heterogeneous sensors nodes and
enhancing data fusion and interoperability in a network-
centric environment, (2) lack of uni�ed ontology framework
and consistency in de�nitions of concepts leading to poor
reuse and sharing, and (3) lack of expressiveness due to low
explicit hierarchy of concepts and poor logic of relationships
which could result into unsatisfactory reasoning [22]. In
addition, technically they tend to be shallow and provide
super�cial aspects of sensors that are expressed in taxonomies
and captured as class hierarchies [10]. �erefore, none of the
existing sensors and sensor networks ontologies is detailed
enough to provide constructs that could be applied directly
to meet the unique needs, features, and applications of
smartphone and associated sensors in real-world scenarios.
However, these ontologies contain important ingredients
(i.e., concepts, relationships, and axioms) that can be reused
to provide necessary grounds and understanding for smart-
phone sensors ontology.

3. SmartOntoSensor Ontology

�e lifestyle of people changes with the developments in the
society resulting into new events, interactions, and needs.
Smartphones, because of their sensing capabilities, have the
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potential to capture these aspects and understand the needs
of the users. However, due to complexities in understanding
users’ lifestyles, smartphone sensors are needed to perceive
complex objects and their actions as well as interactions
e
ectively under varying operating conditions, strict power
constraints, and highly dynamic situations. Furthermore,
smartphone-based context awareness works by capturing
excessive sensory measurements for inferring complex con-
textual information including information about environ-
mental conditions, identities of objects in the environment,
physical activities of objects and their positions as well as
interactions, and the undergoing tasks. Such context-aware
smartphone sensors applications demand for comprehensive
semanticmodeling of smartphone sensors data. It is observed
that the role of smartphone sensors ontologies is inevitable
for improving the power of smartphone context-aware appli-
cations. In order to meet the unique needs and applications,
comprehensive smartphone sensors ontology is demanded,
which consists of domain theory, represented in a language,
and constructed using the functional and relational basis to
support ontology-driven inference.

�e intended purpose of the SmartOntoSensor is to
develop an ontological model consisting of formal conceptu-
alization of smartphone resources and sensors including their
categories, taxonomy, relationships, and metadata regard-
ing sensor characteristics, performance, and reliability. In
addition, the SmartOntoSensor includes logical statements
that describe associations among components and sensor
concepts as well as aspects of their operating principles, com-
puting and capabilities, platforms, observations andmeasure-
ments, and other pertinent semantic contents. �e primary
objectives of SmartOntoSensor include the following.

(i) Providing a semantic framework for capturing the
important functionality features of smartphone sen-
sors enabling context-aware applications to reason the
available and running sensors for applying them to
current information needs, querying, and retasking as
needed.

(ii) Providing context-aware applications with a semantic
interface for managing, processing, integrating, and
making sense of data acquired from a set of heteroge-
neous smartphone sensors.

(iii) Providing semantic description of smartphone sen-
sors for reasoning available sensors capabilities and
performances to construct low cost combinations of
sensors for achieving goals of an operation.

(iv) Providing basis for new measurement methods to
evaluate each perception system’s ability (sensors and
algorithms) to perform the required tasks.

�e development of SmartOntoSensor is an attempt to
provide a common understating of data captured by smart-
phone sensors to increase information value and reusability
for the application development and sharing. �e goals
and design principles suggested by [4] are followed in the
development of the ontology to ensure its coverage, validity,
and usability:

(i) �e ontology has been developed for representing
information in domain of smartphone and sensors
and mapping sensory information into high-level
contexts to be used in a variety of context-aware
applications.

(ii) �e ontology describes concepts, relations, and
expressions in a simple and easy-to-understandman-
ner to be easily and e
ectively used by application
developers.

(iii) �e ontology is �exible and extendable as it allows
developers/users with minimal overhead to add new
domain-speci�c concepts and complementary rela-
tions in order to enhance interoperability and knowl-
edge sharing among smartphone context-aware appli-
cations.

(iv) �e ontological representation facilitates inference by
allowing developers to employ an e�cient inference
method using recognition engines or application
control.

(v) �e ontology is general by describing concepts, facets,
and relationships that are possibly applicable to awide
range of smartphone platforms, embedded sensors,
data formats, measurement capabilities and opera-
tions, and contexts.

(vi) �e ontology is memory-e�cient and supports time-
e�cient inference methods. �e imports and con-
structs in the ontology are de�ned while keeping in
mind the limited nature of memory and processing
resources of smartphones; that is, a smartphone
should not be jeopardized during inferencing task.

(vii) �e ontology provides detailed information about
ingredients and the versatility of expressions is
high. �e ontology is lightweight but comprehensive
by declaring enough concepts and relationships to
describe possibly every aspect of the domain of
interest.

(viii) �e concepts and properties in the ontology are
de�ned and arranged precisely for ease in access
and producing potentially high values for quality and
completeness metrics. In addition, the ontology can
be easily used in any of the smartphone SemanticWeb
frameworks such as AndroJena.

3.1. Materials and Methodology. In developing SmartOn-
toSensor, the NeOnmethodology [23] is used, which empha-
sizes the searching, reusing, reengineering, and merging
of ontological and nonontological resources and reusing
ontology design patterns, which are the main designing
rationales of SmartOntoSensor. However, the NeOnmethod-
ology [23] is lacking with ontology project management
features, which are adopted from the POEM methodology
[24]. Good ontological engineering emphasizes leveraging
of upper and related ontologies consisting of general ingre-
dients and providing a common foundation for de�ning
concepts and relationships in a specialized domain-speci�c
ontology. �e use of standard ontologies implies shorter
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Observation
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Figure 1: 3SOC ontology design pattern for SmartOntoSensor.

Table 1: An excerpt of the lexicon.

Lexicon

Smartphone WiFi Type IMEI

Accuracy Resolution Humidity Latitude

Location Physical sensor Service Country

Manufacturer Accelerometer Sensing Roll

Bluetooth Observation value Logical sensor Manufacturer email

Temperature Hardware Pro�le Multitouch

Version Passive sensing Time Unit

Input Output Single output Event status

Pitch Active sensing Observation Indoor range

development cycles, universalism, initial requirements set
identi�cation, easier and faster integration with other con-
tents, and more stable and robust knowledge systems [13].
�e Content Ontology Design pattern [25] is used where
contents in SOS are conceptual and instantiated from log-
ical upper-level ontologies and provide explicit nonlogical
vocabulary for the domain of interest. Furthermore, Com-
ponency Pattern is used for representing classes/objects
as either proper parts of other classes/objects or having
proper parts. Technically, the Stimulus-Sensor-Observation
pattern [8] is extended into Smartphone-Sensor-Stimulus-
ObservationValue-Context (3SOC) design pattern (shown in
Figure 1) in order to represent the relationships and �ow
of information between the components from inception to
application. Verbally, a smartphone system contains sensors
for detecting stimulus containing observations for producing
an observation value, which could be used to identify a
context for invoking a service to take an appropriate action.

3.1.1. SmartOntoSensor Requirements Speci�cations. �e
ontology requirements speci�cation activity is performed
for identifying and collecting requirements that the
ontology should ful�ll. Ontology Requirements Speci�cation
Document (ORSD) is formed explaining (1) purpose and
reasons to build the ontology; (2) scope of the ontology to
fuel applications for mapping smartphone sensory data into
high-level contexts for adopting services according to the
contexts; (3) users and bene�ciaries of the ontology who
will be developing applications/services that interact with
smartphones and services; (4) ontology as a knowledge base
to store data about smartphone, resources/devices, sensors,
measurement capabilities and properties, contexts, services,
pro�les, and so forth; (5) and degree of formality of the
ontology by implementing in OWL-DL to get maximum
expressiveness with computational completeness.

�e SmartOntoSensor requirements are mainly con-
cerned with nonfunctional and functional requirements.
�e nonfunctional requirements comprise terminological

requirements (i.e., collection of terms used in the ontology
from the standards that could be used to express competency
questions) and the naming convention used for the terms.
�e terminological requirements of SmartOntoSensor can
be broadly divided into several categories: (1) base terms
represent the basic classes of entities in the domain of
interest, which could be further extended into subclasses;
(2) system terms represent components, subcomponents,
resources, deployments, metadata, and so forth of a system;
(3) sensor terms represent types, characteristics, processes,
operations, con�guration, metadata, and so forth of sensors;
(4) observation terms represent input, output, response
model, observation condition, and so forth of observations
that are used and produced by sensors; (5) domain terms
are used for units of measurement, features selections and
calculations, sampling patterns de�nitions, and so forth; (6)
context terms are used for recognizing a context such as loca-
tion, time, event, activity, and user; and (7) storage terms are
used for the storage units used for storing sensors captured
observations and other data such as �le and folder. A lexicon
representing a set of terminologies in the problem domain
and applications is identi�ed and collected from application-
speci�c and domain-speci�c documents. An excerpt of the
lexicon is reported in Table 1.

�e SmartOntoSensor functional requirements repre-
sent the intended tasks and are represented in competency
questions, which the ontology should answer by executing
SPARQL queries such as “what is a smartphone location?,”
“what is the sensing accuracy of a smartphone X sensor?,”
“which of a smartphone sensors could be used for recog-
nizing a Y context?,” “what is the accelerometer sensor x-
axis observation value for sitting context,” “what are the
environmental conditions for a sensor to work?,” and “what
are the humidity level of an environment?”�e set of possible
competency questions would help in determining the cor-
rectness, completeness, consistency, veri�ability, and under-
standability of requirements. �e domain characteristics,
which are di�cult to express in competency questions, are
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Table 2: An excerpt of the competency questions.

Competency question Question

CQ1 What is status of a smartphone?

CQ2 Is accelerometer sensor available in a smartphone?

CQ3 What is location of a smartphone?

CQ4 What is the output of accelerometer sensor?

CQ5 Which sensors can recognize a running context?

CQ6 What are the device conditions for GPS sensor to work?

CQ7 Who is user of a smartphone?

CQ8 Which service would be invoked if sleeping context is detected?

CQ9 What are the activities composing a sensing process?

CQ10 Which of the sensors are used by accelerometer as supporting sensors for detecting a running context?

Table 3: Relationship between scenarios and iterations.

Scenarios
Iterations

1st 2nd 3rd

2 Reusing and reengineering nonontological resources ✓
3 Reusing ontological resources ✓
4 Reusing and reengineering ontological resources ✓
5 Reusing and merging ontological resources ✓ ✓
6 Reusing, merging, and reengineering ontological resources ✓ ✓
7 Reusing ontology design patterns (ODPs) ✓ ✓ ✓
8 Restructuring ontological resources ✓
9 Localizing ontological resources ✓

written in natural language sentences such as “fusion of data
from multiple sensors for mapping a context” and “extreme
environmental conditions can a
ect sensors observations
and performances.” �e initial iteration produces short list
of functional requirements. However, the list is improved
signi�cantly in the subsequent iterations and consists of 156
competency questions and 40 domain characteristics. An
excerpt of competency questions is shown in Table 2.

3.1.2. SmartOntoSensor Development Resources and Tools. By
following the NeOn methodology [23], SmartOntoSensor is
developed by reusing the existing knowledge resources. �e
development task is divided into three iterations where both
ontological and nonontological resources are reused in the
�rst and second iterations, and ontology design pattern is
included in all of the development iterations. Table 3 shows
the selected scenarios to be carried out in combination with
Scenario 1.

SmartOntoSensor is constructed by reusing multiple rel-
evant ontologies. �e review and analysis of the sensors and
sensor networks ontologies and sensors vocabularies have
highlighted that reusing available sources describing sensors,
their capabilities, the systems they are part of, observation
and measurements, properties and associations, quantitative
values for properties, and so forth can provide promising start
for building SmartOntoSensor. A	er thoroughly analyzing
the sensors and sensor network ontologies, the SSN ontology
[8] is foundmost relevant due to providing advanced schema
for describing sensor equipment, observation measurement,

and sensor processing properties. SSN has a wider range
of generality and extension space and is reused in several
projects to solve complex problems [26]. �erefore, SSN is
extended for the development of SmartOntoSensor. Other
ontologies are also found containing relevant ingredients
but excessive imports can cause certain problems including
decrease in e�ciency, simplicity, consistency, veri�ability,
and �exibility [27]. Some categories, taxonomies and de�-
nitions of commonly used concepts, properties, and meta-
data are adopted in part from SensorML [16]. Although
the initial objective was to faithfully replicate the required
items from SensorML, some implementation compromises
and workarounds are made exclusively to meet the unique
demands of the new paradigm. �e context ontology (CXT)
developed by CoDAMoS project [28] is imported and
extended with required domain concepts and relationships
for modeling context in SmartOntoSensor. Sensors data are
stream requiring inde�nite timestamp sequence information
for unique representation. �erefore, OWL Time (TIME)
ontology is reused for incorporating time information into
the SmartOntoSensor. To develop SmartOntoSensor, classes
in the imported ontologies are either used directly or
extended by making SmartOntoSensor classes as subclasses
of the relevant classes. Furthermore, classes in the imported
ontologies representing the same concepts are aligned by
declaring them equivalent classes and other classes are
refactored either by restructuring the class hierarchy or by
de�ning new associations and relationships for enabling
them to be used in SmartOntoSensor as per needs. �e
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SmartOntoSensor

SSN ontology

SensorML

extends

replicates
Literature

includes

Time ontology

extends

Context ontology

extends

Figure 2: Abstract level structure of SmartOntoSensor.

additional domain-speci�c contents of SmartOntoSensor are
captured from the detailed investigation and analysis of the
related literature. Figure 2 shows the abstract level structure
of SmartOntoSensor by highlighting the contributing infor-
mation sources. To communicate semantics of sensors obser-
vations, an appropriate terminology (obtained in lexicon) is
de�ned for describing concepts, relations, and processes.�e
terminology used is discussed in the subsequent sections.
A	er formally de�ning the constituents, SmartOntoSensor is
developed in OWL-DL language using open source ontology
editor and knowledge-based framework Protégé 4.3 along
with its exclusive plug-ins (e.g., SPARQL query plug-in and
RacerPro reasoner) for the ontology editing, development,
implementation, and testing.

3.2. SmartOntoSensor Framework. �e SmartOntoSensor
framework is conceptually (but not physically) organized
into 9 modular subontologies where a modular subontology
represents a subdomain and a central ontology links the other
ontologies. Each of the subontologies contains a number of
concepts and properties for modeling a speci�c aspect of
the domain of interest. �e SSN framework [8] has pro-
vided inspiration for the development of SmartOntoSensor
framework and some of the its modules are refactored and
merged for inclusion into the SmartOntoSensor framework.
�e novelty of the framework is fourfold information pre-
sentations to ful�ll objectives of SmartOntoSensor. First,
detailed information about smartphone systems regarding
their hardware components, so	ware, platforms, metadata,
potential deployments, and so forth is presented. Second,
the detailed information about smartphone sensors regarding
their inputs, outputs, processing, observations, measure-
ments, operating restrictions, capabilities, and so forth is
presented.�ird, potential applications of observation values
(i.e., produced by smartphone sensors a	er sensing process)
for context recognition and context modeling as a whole
such as user information and pro�les, current and planned
activities and events, and device and its surroundings are pre-
sented. Fourth, enhancing of smartphone context-awareness
capability for solving the challenges of applications adoptabil-
ity according to users’ contexts is presented. Figure 3 depicts
the SmartOntoSensor framework and a snippet of the main

concepts and their relationships. �e framework represents
the main high-level concepts and object properties in a
subdomain, whereas detailed concepts and object properties
are le	 aside. In the framework, classes are represented with
rectangles and subclass axioms and object properties are
represented with solid and dotted arrow lines, respectively.
�edetailed discussion on the SmartOntoSensor framework’s
subdomains is presented in Sections 3.2.1 to 3.2.8.

3.2.1. Smartphone. �e smartphone subdomain is con-
structed around using concepts for modeling knowledge
about a smartphone system describing its resources (i.e.,
hardware and so	ware), organization, deployment, and
platform aspects. �e SOS:Smartphone concept is derived
from the SSN:System concept of the SSN ontology [8]
providing necessary properties for deployment and platform.
SOS:Smartphone could have di
erent hardware resources
including sensing (SOS:SensingResource), memory (SOS:
MemoryResource), and network (SOS:NetworkResource)
and so	ware resources including operating system (CXT:
OperatingSystem) andmiddleware (CXT:Middleware). Each
of these resources is a system by itself. A number of
object properties (i.e., SOS:hasBluetooth, SOS:hasWiFi,
SOS:hasSensor, hasOperatingSystem, etc.) are made as
subproperties of SSN:hasSubSystem for linking SOS:
Smartphone with resources. �e SOS:Smartphone inherits
SSN:hasOperatingRange and SSN:hasSurvivalRange proper-
ties to de�ne the extremes of operating environments and
other conditions in which a smartphone is intended to
survive and operate for providing functionalities including
standard con�guration, battery lifetime, and system lifetime.
A smartphone could be mounted or connected (SSN:
onPlatform) with a platform (SSN:Platform lCXT:Platform)
which could be having hardware (CXT:providesHardware)
and so	ware (CXT:providesSo	ware) features. �e SOS:
Smartphone could be deployed (SSN:hasDeployment→ SSN:
Deployment) at a speci�c place including worn on a helmet
(SOS:Halmet ⊆ (SSN:Platform l CXT:Platform)) or around
the neck, attached with belt (SOS:Belt ⊆ (SSN:Platform l

CXT:Platform)), placed on a sel�e stick (SOS:Sel�Stick ⊆
(SSN:Platform l CXT:Platform)), and placed in treasure
pocket. SSN:Deployment could be a complete process of
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Figure 3: SmartOntoSensor framework.

installation, maintenance, and decommission and could
have spatial (SOS:hasDeploymentPosition) and temporal
(SOS:hasDeploymentTime) properties.

3.2.2. Sensor. �e sensor subdomain is the cornerstone of
SmartOntoSensor that serves as a bridge for connecting all
other modules. It models smartphone sensors using concepts
and properties for describing taxonomy of sensors, types
of operations, operating conditions, resource con�gurations,
measuring phenomena, and so forth. During the alignment
process between SSN and SmartOntoSensor, the SSN:Sensor
concept is extended by a detailed hierarchy of sensors in
SmartOntoSensor. �e SSN:Sensor is categorized into logi-
cal (SOS:LogicalSensor) and physical (SOS:PhysicalSensor)
sensors where physical sensors represent hardware-based
sensors and logical sensors represent so	ware-based sensors
that are created by employing one or more physical sensors.
Individual sensors (e.g., SOS:Accelerometer) are declared
subclass of either physical or logical sensors. A physical
sensor has type of operation (SOS:hasTypeOfOperation)
which could be either active sensing (SOS:ActiveSensing) or
passive sensing (SOS:PassiveSensing). A physical sensor has
to work under certain conditions and have speci�c features
such as SSN:Accuracy, SSN:Latency, SOS:Hystheresis, and

SSN:Sensitivity to capture a particular stimulus. A sensor
could have its own hardware (SOS:hasSensorHardware)
and so	ware (SOS:hasSensorSo	ware) speci�cations. A
sensor can measure (SOS:measure) properties of a phe-
nomenon that can be quanti�ed (i.e., that can be per-
ceived, measured, and calculated) which could be either
physical quality (SOS:PhysicalQuality) or logical quality
(SOS:LogicalQuality). A sensor detects (SSN:detects) a stim-
ulus (SSN:Stimulus) which is an event in the real world that
triggers a sensor and could be the same or di
erent to observe
property and serves as a sensor input (SSN:SensorInput).�e
output (SSN:“Sensor Output”) produced by a sensor can be
either a single value (SOS:SingleValue) or more than one
value (SOS:TupleValue).

3.2.3. Process. In addition to physical instrumentation, a sen-
sor has associated functions and processing chains to produce
valuable measurements. �e sensor concept has to imple-
ment (SSN:implements) a sensing process (SSN:Sensing),
which could be either participatory (SOS:Participatory) or
opportunistic (SOS:Opportunistic). A process can have a
subprocess (SOS:subProcess) such that a sensing process
could require a prior calibration process. �erefore, con-
cepts for calibration (SOS:Calibartion) and maintenance
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(SOS:Maintenance) processes are declared as subclasses
of SSN:Process and are disjointed with SSN:Sensing. A
sensing process could have input (SOS:Input) and out-
put (SOS:Output) parameters. A sensing process can use
calibration and maintenance processes as complementary
and supporting classes using SOS:SubProcess property.
A process has type (SOS:hasProcessType) either physical
(SOS:PhysicalProcess) or logical (SOS:LogicalProcess) where
a physical process would be essentially having a physical
location or interface and a logical process do not. A sensing
process has process composition describing its algorithmic
details (i.e., sequence, condition, and repetition) of how
outputs are made out of inputs. �erefore, a process has
control structure (SOS:hasControlStructure) for linking with
instances of SOS:AtomicProcess, SOS:CompositeProcess,
and SOS:PhysicalProcess. A sensing process could implement
(SOS:implement) machine learning techniques (SOS:MLT)
for extracting features of interest from an input to create an
output.

3.2.4. Measurement. �e measurement subdomain is con-
structed for complementing sensor perspective. �e main
concepts in this subdomain are SSN:Observation, SSN:
FeatureOfInterest, and SSN:ObservationValue. A sensor has
an observation (SSN:Observation) representing a situation
in which a sensing method (SSN:Sensing) estimates the
value of a property (SSN:Property) of a feature of interest
(SSN:FeatureOfInterest) where a feature is an abstraction
of a real-world phenomenon. An observation is formed
from a stimulus (SSN:Stimulus) in a contextual event (SOS:
Event) which serves as input to a sensor. A sensor input is a
proxy for a property of the feature of interest. An observation
(SSN:Observation) should represent an observing property
(SSN:observedProperty), sensing method used for observa-
tion (SSN:sensingMthodUsed), quality of the observation
(SSN:qualityOfObservation), observation result (SSN:obser-
vationResult), and the time (CXT:Time) at which the
sampling took place (SSN:observationSamplingTime). An
observation result is a sensor output (SSN:SensorOutput),
which is an information object (SSN:SensorOutput ⊆ SSN:
InformationObject). �e information object represents a
measurement construct for interpreting events, partic-
ipants, and associated result and signi�es the interpretative
nature of observing by separating a stimulus event from
its potential multiple interpretations. SSN:SensorOuput has
value (SSN:hasValue) for observation value (SSN:Observa-
tionValue). �e SSN:ObservationValue represents the encod-
ing value of a feature and is indirectly depending on the
accuracy, latency, frequency, and resolution of a sensor pro-
ducing output. �e observation value is annotated with loca-
tion (SOS:hasObservtionLocation), theme (SOS:hasObser-
vation�eme), and time (SOS:hasObservationTime) infor-
mation for identifying a context (SOS:identifyContext).

3.2.5. Capabilities and Restrictions. Another complementing
sensor subdomain is the sensor measurement capabilities
and operational restrictions. Sensors are integrated within
the suit of a smartphone; however, they are intended to be
exposed and operated to provide best performancewithin the

de�ned operating conditions (SOS:OperatingCondition ⊆
SSN:Condition), which are categorized into device conditions
(SOS:DeviceCondition) and environmental conditions
(CXT:EnviromentalCondition) of the atmosphere (i.e., SOS:
Humidity, SOS:Temperature, and SOS:Pressure) in a
particular space and time. A sensor has inherent character-
istics by design of measurement capabilities (SSN:
MeasurementCapabilities) that depends on themeasurement
properties (i.e., representing a speci�cation of a sensor’s
measurement capabilities in various operating conditions)
and directly a
ects a sensor’s output. �e measurement
properties (SSN:MeasurementProperty) determine the
behavior, performance, and reliability of a sensor. In addition,
these measurement properties determine the quality of
quanti�able properties such as mass, weight, length, and
speed related to a phenomenon. �ese properties can be
classi�ed into accuracy (SSN:Accuracy), frequency (SSN:
Frequency), power consumption (SOS:PowerConsumption),
random (SOS:Random) and systematic (SOS:Systematic)
errors, settling time (SOS:SettlingTime), precision (SSN:
Precision), and resolution (SSN:Resolution).

3.2.6. Metadata. �e metadata subdomain is constructed
to provide detailed descriptive information regarding
origination, introduction, application, and production
of an object or a phenomenon that is of interest to a
decision making system. �e metadata determines and
a
ects the reliability and credibility of an object or a
phenomenon. A vision of SensorML is that the schema
should be self-describing and can be accomplished by
accommodating metadata about a schema within the
schema [10]. An object (e.g., sensor) would have metadata
(SOS:hasSensorMetadata) that provides information about
manufacturer (SOS:hasManufacturer), model information
(SOS:hasModel), serial number (SOS:hasSerialNumber),
and size (SOS:hasSize). SOS:Metadata has explicit rela-
tionships with SOS:Identi�cation, SOS:Note, and SSN:
Design. SOS:Identi�cation provides information about
recognition of a phenomenon including manufacturer,
model, size, and version. Manufacturer perspective (SOS:
Manufacturer) is constructed by providing necessary infor-
mation about manufacturer of a smartphone, resource,
platform, and sensor. SOS:Manufacturer is enriched with
several object properties for describing a manufacturer
that includes SOS:hasManufacturerEmail, SOS:hasManu-
facturerName, SOS:hasManufacturerLocation, and SOS:
hasManufacturerWebsite. Similarly, additional information
about objects are provided by establishing explicit rela-
tionships with SOS:Model, SOS:SerialNumber, SOS:Version,
and SOS:Size. Similarly, SOS:Note provides a description
about a phenomenon.

3.2.7. Time. �e time subdomain models knowledge about
time such as temporal unit and temporal entities. �is
subdomain has been developed by reusing the OWL
Time ontology, in which TIME:CalendarClockDescription,
TIME:TemporalUnit, and TIME:TimeZone are made sub-
classes of CXT:Time. Similarly, day, week, month, second,
minute, and hour properties of Time ontology are used to
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represent time information. SSN:TimeInterval is made sub-
class of CXT:Time to represent time duration of a phe-
nomenon.

3.2.8. Contexts and Services. �e context subdomain is
constructed for describing the application of sensors’
generated observation values for identifying user contexts.
Ontology-based context modeling will be helpful in
formal and semantic enrichment and representation of
complex context knowledge in order to share and integrate
contextual information [28]. �e context ontology from
CoDAMoS project is reused for providing relevant core
knowledge for SmartOntoSensor, which is extended
with more detailed context types and properties. �e SOS:
Context ismain concept in this subdomain,which is classi�ed
into more specialized contexts including CXT:Activity,
CXT:Environment, SOS:Event, SOS:Device, ontology:User,
and SEN:Location. Each of the subcontexts represents
a subdomain which could have more speci�c contexts
such that ontology:Activity is classi�ed into SOS:Motional
and SOS:Stationary and SOS:Event is classi�ed into
SOS:SpatialEvent, SOS:TemporalEvent, SOS:SpatioTem-
proalEvent, and so on. �e SOS:Device subdomain models
knowledge about devices and includes a wide categorization
of devices as well as their characteristics. SOS:Environment
subdomain models knowledge about environment in terms
of environmental conditions such as humidity, noise,
light, and temperature. CXT:Location models knowledge
about locations such as buildings, location coordinates,
spatial entities, distance, and countries. For more detailed
location modeling, CXT:Location is linked with geonames:
GeonamesFeature. CXT:User (i.e., CXT:User l SSN:Person)
subdomain models knowledge about users such as roles,
pro�les, preferences, tasks, projects, publications, and social-
ization. For more detailed user mappings, CXT:User is
linked with FOAF:Person. SOS:Event subdomain models
knowledge about users’ real-life events and includes a
wide categorization of events using space, time, and other
characteristics. CXT:Activity subdomain models knowledge
about users’ motional and stationary activities and includes
their characteristics. A context needs spatial (SOS:Space),
temporal (CXT:Time), and thematic (SOS:�eme) infor-
mation for its description. A context is identi�ed by the
observation value (SSN:ObservationValue) that depends on a
sensor output (SOS:SensorOutput). CXT:Service subdomain
ful�lls the service-oriented requirement of the ontology by
providing service-oriented features in ubiquitous computing.
A service would be so	ware and includes services which
would be recognized and utilized on the basis of identi�ed
context. A service could have a provider (SOS:Provider) that
would include simple or aggregated service providers.

3.3. SmartOntoSensor Concepts Hierarchy. SmartOntoSen-
sor taxonomic class diagram, forming foundation of the
ontology, is constructed from concepts, which are common
and speci�c to smartphones, sensors, and context applica-
tions. �e identi�ed concepts are hierarchically arranged
by determining their relationships that whether a concept
is a subconcept of another concept or not. �e required

classes, which are provided by either of the imported
ontologies (e.g., SSN:Input, SSN:Output, CXT:So	ware, and
SSN:Precision), are directly used in SmartOntoSensor and
no explicit classes are declared to eradicate any type of
ambiguity. Furthermore, classes in the imported ontologies
representing the same semantics are declared as equivalent
classes (e.g., SSN:Platform l CXT:Platform). New classes are
created explicitly either as parent classes or as subclasses
of the relevant classes in the imported ontologies or as per
requirements. Figure 4 shows a snippet of SmartOntoSensor
concepts hierarchy.

�e SmartOntoSensor, at present, contains 259 concepts,
where each concept is formed by keeping in mind the unique
needs and requirements of the domain. SmartOntoSensor
extends SSN ontology by making SOS:Smartphone ⊆
SSN:System, which means SOS:Smartphone is a kind
of SSN:System. Smartphone platforms (SOS:Halmet,
SOS:Belt, and SOS:Sel�Stick), to which a smartphone
can be attached during sensing process, have unique
characteristics and are made subclass of SSN:Platform l

CXT:Platform to partially satisfy needs of a smartphone
platform. �e SSN:Sensor concept is used to represent
sensing devices for SmartOntoSensor to capture inputs
and produce outputs. �e SSN:Sensor concept is further
divided into two categories SOS:PhysicalSensor and
SOS:LogicalSensor to represent hardware-based sensors and
so	ware-based sensors, respectively, in a smartphone. A
SOS:LogicalSensor is formed by employing one or more of
the SOS:PhysicalSensor for data capturing and producing
a unique output; for example, e-compass sensor is formed
using accelerometer and magnetometer sensors. Real-world
smartphone physical sensors such as SOS:Accelerometer,
SOS:Gyroscope, SOS:Camera, and SOS:GPS are made as
subclasses of SOS:PhysicalSensor and logical sensors such as
SOS:Magnetometer and SOS:Gravity are made as subclasses
of SOS:LogicalSensor.�e sensors hierarchy can be extended
at any level to include more detailed and speci�c types of
sensors. For example, accelerometer sensor can sense motion
in either 2-dimensions or 3-dimensions. Speci�cally, 1st- and
2nd-generation accelerometer sensors can detect motion in
either of these categories while 3rd-generation accelerometer
sensors can detect motion across both categories as shown
in Figure 5. �e quanti�able properties that a sensor can
measure (SOS:measure) for a particular phenomenon are
classi�ed into physical quality (SOS:PhysicalQuality) or
logical quality (SOS:LogicalQuality). A sensor has type
of operation, representing how a sensor would sense
a stimulus that is either active or passive. �erefore,
SOS:ActiveSensing and SOS:PassiveSensing are made
as subclasses of SOS:TypeOfOperation. �e concepts
SOS:DeviceCondition and CXT:EnvironmentalCondition
are declared as subclasses of SOS:OperatingCondition.
�e metadata concepts including SOS:SerialNumber and
SOS:Size are declared as subclasses of SOS:Identi�cation,
which would be used by SOS:Metadata to provide necessary
metadata about smartphones, sensors, and platforms. A
smartphone sensor has to perform sensing operations, which
could be either opportunistic or participatory. �erefore,
SOS:Opportunistic and SOS:Participatory are made as
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Figure 4: Snippet of SmartOntoSensor concept hierarchy.

SSN:Sensor

SOS:LogicalfSensors SOS:PhysicalSensors

SOS:LocationSensor SOS:MotionSensor OrientationSensor SOS:PressureSensor

SOS:Accelerometer

SOS:BiAxialAccelerometer SOS:TriAxialAccelerometer SOS:HybridAccelerometer

SOS:ImageSensor

Figure 5: Snippet of SmartOntoSensor “sensor” class hierarchy.

subclasses of SSN:Sensing class. Sensors di
er by the amount
of output produced where some could produce a single value
outputs whereas others could produce triple value outputs.
�erefore, SOS:SingleOutput and SOS:TrippleOutput are
made as subclasses of SSN:SensorOutput. An observation
value produced by a sensor as output could be used to
recognize SOS:Context, which is divided into subclasses as

SOS:Event, SOS:Device, CXT:User, and CXT:Environment.
An identi�ed context can start a CXT:Service, which would
be a so	ware and is made subclass of CXT:So	ware. In
addition to all of the above, several concepts are explicitly
identi�ed and included in SOS including SOS:RAM,
SOS:WiFi, SOS:CPU, SOS:GSM, SOS:Bluetooth, SOS:NFC,
SOS:Infrared, SOS:GPU, and SOS:SDCard, as subclasses
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of CXT:Hardware, SOS:Random, and SOS:Systematic as
subclasses of SOS:Error, SOS:Calibration, and SOS:Main-
tenance as subclasses of SSN:Process, SOS:�eme, and SOS:
Space to provide a comprehensive set of information for
improving inferencing mechanisms.

Apart from using subclass axioms, classes are coupled
with other axioms to facilitate the creation of individuals (i.e.,
objects) unambiguously and semantically. For example, the
disjoint axiom is de�ned for classes belonging to the same
generation level to restrict individuals’ behaviors such that
SOS:LogicalSensor and SOS:PhysicalSensor are disjointed to
ensure that an individual can be an instance of any one of
these classes but not both at the same time.

3.4. SmartOntoSensor Properties and Restrictions. In OWL,
properties represent relationships among classes. A property
can be either object property or datatype property, either
of which represents link(s) between instance(s) of domain
with instance(s) of range. For an object property, both the
domain and range should be instances of concepts, whereas
for a datatype property domain should be an instance of a
concept and range should be an instance of a datatype. Like
concepts, exhaustive lists of object anddatatype properties are
identi�ed from sources for using in SmartOntoSensor.

SmartOntoSensor contains an extended list of object
properties (i.e., 382), some of which are coming from
the imported sources and others are explicitly created.
As several of the SmartOntoSensor concepts are derived
from the concepts in the imported ontologies, therefore, their
object properties are also inherited in the same fashion and
made themmore specialized for SmartOntoSensor concepts.
�e SmartOntoSensor object properties SOS:hasWiFi, SOS:
hasBluetooth, SOS:hasCPU, SOS:hasRAM, and SOS:hasDis-
play are made as subproperties of the SSN:hasSubSystem
for linking SOS:Smartphone with individual resource
classes. Another SmartOntoSensor object property SOS:
hasSmartDeployment is made as subproperty of SSN:
hasDeployment to de�ne relationship between SOS:
Smartphone and SOS:SmartPhoneDeployment. It is due
to the fact that a smartphone deployment has unique
features and methods compared to the objects deployments
in wireless sensor networks. As several concepts of the
imported ontologies are used directly, therefore, their
object properties are used similarly to avoid any confusion.
�e object properties SSN:hasInput and SSN:hasOutPut
are used to represent input and output, respectively, of
SSN:Sensing. Similarly, the object property SSN:hasValue is
used to represent the relationship between SSN:SensorOuput
and SSN:ObservationValue. Furthermore, like concepts, a
bundle of domain-speci�c object properties are identi�ed
for SmartOntoSensor from the additional sources to relate
concepts in the ontology in a more meaningful and subtle
ways such as SOS:recognizeCotnext, SOS:hasProcessType,
SOS:organizedBy, SOS:deriveFrom, SOS:constructedFrom,
SOS:hasLatency, SOS:hasFrequency, and SOS:hasSpace.
Table 4 represents an excerpt of the SmartOntoSensor object
properties along with their domains and ranges.

Apart from the object properties, SmartOntoSensor
contains an extensive list of 136 datatype properties,

which are identi�ed and mapped to give comprehensive
information about concepts such as SOS:hasMemorySize,
SOS:hasActiveSensing, SOS:modelScienti�cName, SOS:lati-
tude, SOS:eventCancelled, SOS:isConsumable, SOS:manu-
facturerEmail, SOS:hasBatteryModel, SOS:minValue, SOS:
value, SOS:hasMaxRFPower, and SOS:nickName. Table 5
presents an excerpt of the SOS datatype properties along
with their domains and ranges.

Classes in SmartOntoSensor are re�ned by using object
properties and datatype properties to superimpose con-
straints and axioms for describing their individuals. An
example of such constraints is the property restrictions (i.e.,
quanti�er restrictions, cardinality restrictions, and hasValue
restrictions) for describing number of occurrences and values
of a property essential for an individual to be an instance
of a class. For example, for an individual to be an instance
of SOS:Smartphone class, it is essential for the individual to
have at least one occurrence of SOS:hasCPU object property
for relating the individual with an instance of the SOS:CPU
class. Tables 4 and 5 also show excerpts of the property
restrictions for the SmartOntoSensor object properties and
datatype properties, respectively.

4. Evaluation and Discussion

Several approaches have been proposed and used for eval-
uating ontologies from the perspectives of their quality,
correctness, and potential utility in applications. �e four
main methods are gold-standard comparison, application-
based evaluation, data sources comparison, and human-
centric evaluation [29–31]. �e gold-standard method advo-
cates on comparison measurements of a well-formed dataset
produced by a given ontology against other datasets. �e
application-based evaluation method evaluates an ontology
using the outcomes of an application that is employing the
ontology.�e data sources comparisonmethod describes the
use of a repository of documents in a domain where ontology
is expected to cover the domain and its associated knowledge.
�e human-centric evaluation method emphasizes human
e
orts where an expert would assess the quality of a given
ontology by comparing it to a de�ned set of criteria. Sim-
ilarly, several metrics have been de�ned for verifying and
validating ontologies, where veri�cation determines whether
ontology is built correctly and validation is concerned with
building the correct ontology [32]. A detailed discussion
about ontology evaluation methods, metrics, and approaches
is beyond the scope of this paper; however, it can be found in
[31]. For evaluating SmartOntoSensor, we have used the �rst,
second, and fourth methods along with comparison using
multimetrics approach, accuracy checking, and consistency
checking, which are discussed in detail in the subsequent
sections. A top-level terminological requirements ful�llment
(by providing concepts) comparison of SmartOntoSensor
and other sensors and sensor networks ontologies is shown in
Table 6. A tick in the table indicates the capability of ontology
to describe the stated aspect in some form and absence of a
tick indicates either the absence or insu�cient information of
the aspects.
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Table 4: An excerpt of SmartOntoSensor object properties.

Domain Object property Range Quanti�er Cardinality

SOS:Smartphone SOS:hasCPU SOS:CPU Exis. & univ. Min 1

SOS:Smartphone SOS:hasOperatingSystem SOS:OperatingSystem Existential Min 1

SOS:Smartphone SOS:isPlacedOn SOS:Halmet | SOS:Sel�Stick Universal Max 1

SSN:Sensor SOS:measure SOS:QualityType Exis. & univ. Min 1

SSN:Sensor SOS:produces SSN:“Sensor Output” Existential Exactly 1

SOS:PhysicalSensor SOS:hasTypeOfOperation SOS:TypeOfOperation Existential Exactly 1

SOS:PhysicalSensor SOS:calibration SOS:calibration Universal Nil

SOS:LogicalSensor SOS:constructedFrom SOS:PhysicalSensor Exis. & univ. Min 1

SSN:“Sensor Output” SOS:relatedOutput SSN:“Sensor Output” Universal Nil

SSN:“Sensor Output” SOS:withAccuracy SSN:Accuracy Universal Nil

SOS:Sensor SOS:hasObservation SSN:Observation Universal Min 1

SOS:QuatityValue SOS:hasUnit SSN:“Unit of Mesasure” Existential Exactly 1

SOS:Metadata SOS:hasManufacturer SOS:Manufacturer Universal Min 1

SOS:Metadata SOS:hasVersion SOS:Version Universal Max 1

SSN:Sensor SOS:hasEnvironmentCondition CXT:EnvironmentalCondition Universal Nil

SSN:Process SOS:hasProcessType SOS:ProcessType Existential Max 1

SSN:Process SOS:hasSubProcess SSN:Process Universal Nil

SSN:Sensing SOS:hasControlStructure SOS:ControlStructure Universal Min 1

SSN:Sensor SOS:recognizeContext SOSS:Context Universal Min 1

SSN:FeatureOfInterest SOS:isContainedIn SSN:Observation Exis. & univ. Min 1

SSN:“Observation Value” SOS:identifyContext SOS:Context Exis. & univ. Min 1

SOS:Context SOS:has�eme SOS:�eme Exis. & univ. Min 1

CXT:User l SSN:Person SOS:hasPreferencePro�le SOS:PreferencePro�le Exis. & univ. Nil

SOS:Event SOS:attende CXT:User l SSN:Person Exis. & univ. Min 1

CXT:Location SOS:hasFeatures geonames:GeonamesFeatures Universal Nil

CXT:Activity SOS:hasActivityLocation CXT:Location Exis. & univ. Min 1

4.1. Gold-Standard-Based Evaluation. SmartOntoSensor is
the �rst attempt to ontologically model smartphone sensory
data and its context mapping. �erefore, no counterpart
exists in the domain for comparison with SmartOntoSensor.
However, a number of ontologies have been developed for
sensors and sensor networks that include SSN [8], CSIRO [7],
OntoSensor [5, 10], and CESN [12], which are mostly quoted
in the literature. �erefore, SmartOntoSensor is compared
with them to provide insights into its quality. Metrics and
automated tools are de�ned for evaluating quality of ontology
in some recent works such as OntoQA [33, 34]. OntoQA
is feature-based ontology quality evaluation and analysis
tool that has the capabilities of evaluating ontology at both
schema and knowledge base levels. OntoQA uses a set of
metrics to evaluate quality of ontology from di
erent aspects
including number of classes and properties, relationships
richness, attributes richness, and inheritance richness. To
evaluate the SmartOntoSensor quality, OntoQA is used.
However, the evaluation and comparison are limited to
schema level only because of the unavailability of knowledge
bases of the competing ontologies. �e overall comparison
of SmartOntoSensor with the competing ontologies using
OntoQA schema metrics is shown in Table 7.

Using the information provided in [33, 34], the inter-
pretation of results using schema metrics indicates that

SmartOntoSensor has improved ontology design with rich
potential for knowledge representation as compared to the
existing ontologies. SmartOntoSensor provides enhanced
coverage of its broader modeling domain by having larger
number of classes and relationships in comparison to existing
ontologies.�is also indicates that SmartOntoSensor is more
complete by appropriately covering the problem domain by
providing answers to almost any of the ontology domain-
related questions. OntoSensor also has shown tremendous
classes and relationships measurements; however, OntoSen-
sor mainly describes the spectrum of sensors concepts
(i.e., hierarchy of sensors classes and subclasses) and data.
SmartOntoSensor, on the other hand, includes an extensive
list of classes and relationships for describing broad aspects
of smartphone systems, sensors, observation measurements,
and context applications. �e highest relationship richness
value shows that SmartOntoSensor has diversity in types
of relations in the ontology. Instead of relying only on
inheritance relationships (usually conveying less informa-
tion), SmartOntoSensor contains diverse set of relationships
to convey almost complete information about the domain.
�e slight richness in relationships of SmartOntoSensor over
CSIRO can be microscopically viewed large due to large
number of SmartOntoSensor classes as compared to CSIRO.
�e increased number of relationships and relationship
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Table 5: An excerpt of SmartOntoSensor datatype properties.

Domain Datatype property Range Quanti�er Cardinality

SOS:Manufacturer SOS:manufacturerName String Exist. & univ. Min 1

SOS:SerialNumber SOS:serialNumber String Existential Exactly 1

SOS:Size SOS:weight Float Universal Max 1

SSN:“Sensor Output” SOS:isValid Boolean Existential Exactly 1

SOS:Smartphone SOS:hasIMEI String Existential Exactly 1

SOS:Smartphone SOS:isConsumable Boolean Universal Exactly 1

SOS:MemoryResource SOS:hasMemorySize String Existential Exactly 1

SOS:PowerSupplyResource SOS:hasPowerCapacity String Existential Exactly 1

SOS:Version SOS:versionNumber String Existential Exactly 1

SOS:O
set SOS:accXAxis Float Existential Exactly 1

SOS:SpaceTuple SOS:latitude Float Existential Exactly 1

SOS:Orientation SOS:yaw Float Existential Exactly 1

SOS:PersoanlPro�le SOS:homePage String Universal Nil

SOS:ContactPro�le SOS:phone String Universal Max 1

ontology:Location SOS:o�cialName String Exist. & univ. Min 1

SOS:QualityValue SOS:value Float Existential Exactly 1

SSN:“Unit of measure” SOS:unit String Existential Exactly 1

SOS:DataContainer SOS:path String Existential Exactly 1

Ontology:Humidity SOS:hasHumidityIntensity String Existential Exactly 1

ontology:Lighting SOS:hasLightIntensity String Existential Exactly 1

SOS:SmartphoneMetadata SOS:hasDescription String Universal Nil

SOS:DataContainer SOS:hasName String Existential Exactly 1

SOS:ContactPro�le SOS:mobile PositiveInteger Universal Nil

richness also advocate high cohesiveness of SmartOntoSen-
sor by strongly and intensively relating classes in the ontology.
�e lowest inheritance richness value proves SmartOntoSen-
sor as a vertical ontology, which is covering the domain
in a detailed manner. In other words, SmartOntoSensor
is concise by not having irrelevant concepts or redundant
representations of the semantics regarding the domain. �e
large number of classes and relationships in SmartOntoSen-
sor makes its slight di
erence in inheritance richness much
bigger in comparison with other available ontologies. �e
lowest tree balance value indicates that SmartOntoSensor can
be more viewed as a tree compared to others. �e highest
class richness value of SmartOntoSensor indicates increased
distribution of instances across classes by allowing knowledge
base to utilize and represent most of the knowledge in the
schema. In other words,most of the SmartOntoSensor classes
would be populated with instances as compared to the other.
Comparatively, SmartOntoSensor is ranked the highest due
to its larger schema size in terms of number of classes and
relationships. OntoQA cannot directly calculate coupling
measure of ontology. However, by using the coupling de�-
nition [31], SmartOntoSensor also shows high coupling by
referencing an increasednumber of classes from the imported
ontologies.

4.2. Multicriteria Approach Based Evaluation. To evaluate
semantics and understandability of terms used in ontology,
researchers have not established any common consensus on
widely acceptedmethods (i.e., tools andmetrics) in computer

science (i.e., it could be due to relatively being a new �eld)
so far. However, to evaluate ontology terminologies along
with its popularity, an approach comprising several decision
criteria or attributes is de�ned by [35] where numerical
scores can be assigned to each criterion. �e overall score
is calculated by the weighted sum of its per-criterion scores
[29]. An objective formula for terminology evaluation and
popularity measurement (shown in (1)) has been used from
[35] that is based on the objective multicriteria matrices
de�ned in [36].

Objective = � ∗ �� + 	 ∗ �� + 
 ∗ �� + � ∗ ��. (1)

In (1), � shows interoperability and is � = �/, where 
is total number of terms in ontology and � is the number
of terms �ndable in WordNet. 	 is clarity and is 	 =
(∑ 1/� �)/�, where � � shows the number of meanings of
every interoperable term in WordNet, then clarity of each
term is 1/� �, 
 represents comprehensiveness, and is 
 =
/�, where � is the number of terms in standard term
set in the domain that the ontology belongs to. � denotes
popularity and is � = �/�, where � denotes the number of
access instances of the ontology and � is the total number
of access instances of all the ontologies in the same domain.
�e weights ��, ��, ��, and �� represent the weight of
interoperability, clarity, comprehensiveness, and popularity,
respectively, with condition that these weights satisfy the
equation �� + �� + �� + �� = 1. WordNet is a large lexical
database of English words that is linking words by semantic
relationships and has been used by several of the ontology
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Table 7: Statistics of SmartOntoSensor and other sensors and sensor networks ontologies using OntoQA.

Ontology Classes Relationships Relationships richness Inheritance richness Tree balance Class richness Rank

SSN [8] 47 52 59.09 2.4 1.76 66.18 IV

OntoSensor [5, 10] 286 219 46.39 2.63 1.66 59.37 II

CESN [12] 35 18 39.13 2.54 1.53 71.01 V

CSIRO [7] 70 70 65.42 2.84 1.36 39.65 III

SOS 259 382 65.52 2.23 1.19 84.67 I
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Figure 6: Objective analysis of SmartOntoSensor using multicrite-
ria approach.

development researches for terminology de�nition, analysis,
and �ltering such as [34]. Using the guideline from [34],
WordNet is used for the evaluation of terms interoperability,
clarity, and comprehensiveness, and literature citation index
is used for evaluation of popularity. During analysis, multi-
words terms in SmartOntoSensor are broken into individual
words and stemmed to receive more accurate metrics values.
Results obtained by [35] using the same formula are extended
by the inclusion of SmartOntoSensor results and shown in
Figure 6.

Analyzing results indicates that SmartOntoSensor has
acceptable levels of terms interoperability and comprehen-
siveness, medium clarity, and lowest popularity. Overall,
SmartOntoSensor shows reasonable analysis results, signi-
fying superiority over the others due to rich set of terms
(i.e., classes and properties) but slightly less than OntoSensor
due to lowest popularity value. Certainly, care has been
taken while calculating the results, but the approach involves
human e
orts (due to unavailability of automated tools),
where the chances of errors in the process cannot be ignored.

4.3. Accuracy Checking. To demonstrate the correctness and
utility of SmartOntoSensor, accuracy checking is performed
to determine that the asserted knowledge in the ontology
agrees with the experts’ knowledge in the domain. Ontology
with correct de�nitions and descriptions of classes, proper-
ties, and individuals will result into high accuracy [31]. Recall
and precision rates are the two primary InformationRetrieval
(IR) measures that are used for evaluating the accuracy of
ontology [31]. Recall and precision rates are de�ned and
shown in (2) and (3), respectively [13], and SmartOntoSensor

is required to maximize both recall and precision rates for its
acceptability.

recall rate = (number of relevent items retrieved

total number of relevant items
) , (2)

precision rate

= (number of relevent items retrieved

total number of items retrieved
) . (3)

Accuracy of SmartOntoSensor is determined by comput-
ing the recall and precision rates for the functional require-
ments (represented in competency questions) by executing
the SPARQL queries on the SmartOntoSensor knowledge
base. To form knowledge base, SmartOntoSensor is instan-
tiated with relevant information from USC Human Activ-
ity Dataset (USC-HAD) (http://www-scf.usc.edu/∼mizhang/
http://www-scf.usc.edu/∼mizhang/), manuals, reports, and
documentations using Protégé 4.3. Based on these instances,
SPARQL query language is used through Protégé SPARQL
Query plug-in to query knowledge base for retrieving rel-
evant results. �e scenarios (built using competency ques-
tions) used for proof-of-concept assume utilizing low-level
sensory data of heterogeneous sensors for mapping them to
high-level queries. For example, a possible source of detecting
and monitoring signatures of human fall is tracking vector
forces exerted during fall and location changes. �erefore,
mapping fall concept to a concept which could be determined
by accelerometer, gyroscope, and GPS sensors through rela-
tionship SOS:isDetectedBy can enhance human fall detec-
tion. �e scenarios used for proof-of-concept include (1)
using microphone and GPS low-level sensory data to search
locations having high noise pollutions and (2) using low-
level sensory data to detect a user’s context and automatically
initiate a respective service (i.e., application). �e actual
running SPARQL queries for each of the scenarios are shown
in Algorithms 1 and 2, respectively.

Using assistance of low-level sensory data, the testing
queries resulted in acceptable precision and recall rates by
retrieving relevant data (i.e., all of the locations having greater
sound levels and all of the sensors having measurement
capabilities of acceptable levels). �erefore, it has been
observed that SmartOntoSensor is of potential e
ectiveness
of integrating heterogeneous sensory data to answer high-
level queries.

4.4. Consistency Checking. OWL-DL is used as the knowl-
edge representation language for SmartOntoSensor content.

http://www-scf.usc.edu/~mizhang/datasets.html
http://www-scf.usc.edu/~mizhang/datasets.html
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX sos: <http://www.semanticweb.org/shoonikhan/ontologies/2015/9/SmartOntoSensor#>
SELECT ?name ?latitude ?longitude

WHERE { ?mic sos:hasMicrophoneValue ?output.
?output sos:hasSoundOutput ?soundvalue.
?output sos:relatedOutput ?GPSoutput.
?GPSoutput sos:latitude ?latitude.
?GPSoutput sos:longitude ?longitude.
?GPSoutput sos:isCoordinatesOf ?location.
?location sos:o�cialName ?name.
FILTER (?soundvalue > "65.0"∧∧xsd:�oat)

}

Algorithm 1: SPARQL query for retrieving locations having noise intensity greater than 65 dB.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
PREFIX cxt: <http://a.com/ontology#>
PREFIX sos: <http://www.semanticweb.org/shoonikhan/ontologies/2015/9/SmartOntoSensor#>
SELECT ?context ?service

WHERE { {
?acc sos:hasAccelerometerValue ?o
set.
?o
set sos:accXAxis ?xaxis.
?o
set sos:accYAxis ?yaxis.
?o
set sos:accZAxis ?zaxis.
FILTER (((?xaxis >= "-10.9"∧∧xsd:�oat) && (?xaxis <= "0.4"∧∧xsd:�oat)) &&
((?yaxis >= "-0.5"∧∧xsd:�oat) && (?yaxis <= "0.6"∧∧xsd:�oat)) &&
((?zaxis >= "-15.0"∧∧xsd:�oat) && (?zaxis <= "18.0"∧∧xsd:�oat))).
?o
set ssn:hasValue ?obsvalue.
?obsvalue sos:hasObservationLocation ?obsloc.
?obsvalue sos:identifyContext ?context.
?context sos:hasActivityLocation ?cxtloc.
?cxtloc sos:hasCoordinates ?activityloc.
}
FILTER (?obsloc = ?activityloc).
?context sos:startService ?service.

}

Algorithm 2: SPARQL query for detecting a context and service using low level sensory data.

A signi�cant feature of the ontologies described using OWL-
DL is that they can be processed using reasoners [13, 37].
Using the descriptions (conditions) of classes, a reasoner can
determine whether a class can have an instance or not. Using
the methodology proposed by [36] to validate consistency
of ontology, SmartOntoSensor is passed through two major
tests: (1) subsumption test to check whether a class is a
subclass of another class or not and (2) logical consistency
check to see whether a class can have any instance or not.
Fact++ 1.6.2 and RacerPro 2.0 reasoners are used because
of their strong reasoning capabilities and interoperability

with Protégé [13]. Both of the reasoners are fed with man-
ually created class hierarchy (called asserted ontology) to
automatically compute an inferred class hierarchy (called
inferred ontology) by using the descriptions of classes
and relationships. �e inferred ontology is compared with
asserted ontology and found that both of the class hierarchies
match and none of the classes is inconsistent. However, the
classes are classi�ed and repositioned by the reasoners in
case of either having many super-classes or being subjected
to some logical constraints. �erefore, both of the tests are
signi�cant and SmartOntoSensor is logically consistent and
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Figure 7: SmartOntoSensor asserted and inferred class hierarchies a	er using reasoner.

valid. Figure 7 depicts a snippet of the SmartOntoSensor
asserted and inferred class hierarchies a	er reasoning.

4.5. Application-Based Evaluation. Ontologies can be plugged
into applications, which would largely in�uence outputs of
an application for a given task. �erefore, ontologies can be
simply evaluated by analyzing results of using applications. In
the coming sections, we have demonstrated a general archi-
tecture for context-aware applications that uses SmartOn-
toSensor and the development of a real-world smartphone
context-aware application using the architecture.

4.5.1. Application Architecture. To demonstrate the feasibility
and veri�ability of SmartOntoSensor in real-world context-
aware applications, we have developed a multilayer archi-
tecture shown in Figure 8. �e architecture comprises four
layers: sensors layer, information layer, semantic layer, and
application layer, respectively, which are concisely described
in the following headings.

(1) Sensors Layer. �e sensors layer comprises smartphone
sensors (i.e., physical and logical) that would provide not
only raw sensory data from environment but also additional
related information for e
ective context recognition such as
BlutoothID of a nearby object to determine location and
proximity of a user.

(2) Information Layer. �e information layer extracts and
receives raw sensory data and processes it into informa-
tion. Information layer consists of two sublayers: collection
engine and data aggregation and association. �e collection
engine acts as an interface between the sensors layer and
data aggregation and association layer and contains several
components. Sensor con�guration de�nes sensors manage-
ment activities (i.e., de�ning reading rate, etc.) and sensor
acquisitor de�nes methods of reading data from sensors such
as event-based or polling-based and from single sensor or
multiple sensors in parallel. Sensors data processing extracts
meaningful features from the sensors streams and uses
capturing engine to store the sensory and other contextual
information in a local temporary storage. �e layer can

also implement machine learning techniques to extract �ne-
grained contextual information out of sensory information.
Data is temporarily stored locally to de�ne a complete set
of data about an event. �e data aggregator and association
collects data about a context from storage and establishes
relationships with other cooccurring contexts. �is layer
clusters the data into context and subcontext groups and
also extracts data from other sources (e.g., calendar entry for
naming a context) to portray complete picture of a context.
�e complete set of data is converted into an exchangeable
format (e.g., JSON) for communication to other layers.

(3) Semantic Layer. �e semantic layer adds semantic glue to
the architecture by mapping low-level context features into
high-level semantic model (i.e., ontology). �e semantic rule
mapping and extension sublayer implements a web service
interface to receive and extract information fromwell-formed
message (i.e., JSON). �e sublayer uses direct approach to
de�ne mapping and semantic rules to instantiate individuals
in the SmartOntoSensor ontology and annotate them with
their datatype and object properties and de�ne relation-
ships between individuals within the ontology, respectively.
�e direct approach is favorable because of its simplicity,
whereas generic approach is complex requiring multiplicity
of resources (i.e., vocabularies, classi�cation algorithms, and
domain-speci�c ontologies). However, the architecture sup-
ports generic approach by providing the required resources
either at the information layer or at semantic layer. In case of
direct approach, new rules are needed to be de�ned for new
concepts. Rules are de�ned in event-condition-action format.
For example, see Algorithm 3.

�e semantic engine framework denotes a Semantic
Web framework (e.g., AndroJena for Android-based smart-
phones) that provides the capabilities of hosting ontolo-
gies (e.g., SmartOntoSensor) and inferencing and reason-
ing mechanism to detect inconsistency in ontologies and
deduces new knowledge on the basis of existing ones,
features for updating ontologies with new individuals and
annotations and extending ontologies by de�ning new classes
and properties, triple store for storing data in RDF format,
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Figure 8: Architecture for smartphone context-aware applications using SmartOntoSensor.

IF EXIST event/sensors/GPS THEN
{

CREATE INDIVIDUAL OF CLASS GPS IN
SMARTONTOSENSORWITH NAME event/sensors/GPS/@locationname
IF EXIST event/sensors/GPS/@LatitudeValue THEN
{

SET DATATYPE PROPERTY hasLatitude TO
event/sensors/GPS/@LatitudeValue

}
IF EXIST event/sensors/GPS/@LongnitudeValue THEN
{

SET DATATYPE PROPERTY hasLongnitude TO
event/sensors/GPS/@LongnitudeValue

}
}

Algorithm 3: Example of event-condition-action format.
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Table 8: Hypothetical exemplary contexts and their corresponding modes values.

Context Audio volume Screen brightness Font size Vibration Write disk

Location:House High Normal Normal No Phone storage

Location:O�ce Normal Normal Normal Yes SD card

Location:Meeting Silent Bright Normal Yes SD card

Activity:Sitting Low Low Small No Phone storage

Activity:Walking Normal Normal Normal Yes Phone storage

Activity:Running High Bright Extra large Yes Phone storage

Figure 9: Changing modes by ModeChanger using contextual information from SmartOntoSensor.

and SPARQL query engine for dealing with users’ initiated
SPARQL queries.

(4) Application Layer. �e application layer represents the
context-aware applications, which can exploit the full poten-
tial of the architecture in general and SmartOntoSensor
in speci�c to automatically recognize context and initiate
services accordingly. �e architecture provides a composite
framework, which can be used by a wide variety of developers
for developing any type of context-aware applications. As
with the passage of time lifestyles changes and new types
of data sources (i.e., sensors) can emerge, new mapping and
semantic rules are needed to be de�ned accordingly.Mapping
and semantic rules applications can be provided as either a
separate application or an integral part of a context-aware
application.

4.5.2. ModeChanger Application. Using the architecture
shown in Figure 8, we have developed a prototype appli-
cation called ModeChanger. A smartphone mode de�nes
the number and nature of features, resources, and services
available to consume at a time instant. Modern smart-
phones’ operating systems support a number of operation
modes that can be explicitly adjusted by users to de�ne
a smartphone’s behavior according to a context. Currently,
the available modes are airplane/�ight mode, normal mode,

audio mode, and brightness mode. �e context-dependent
mode changing can bene�t frommanipulating and accessing
context information. �e application can ease human-phone
interaction and adjusts smartphone modes using contextual
information.�e prototype application is aimed for Android-
based smartphones running with Ice Cream Sandwich 4.0.3
or higher and is developed in Java programming language
using Android SDK tools revision 22.6.3 with Eclipse IDE
and SensorSimulator-2.0-RC1 running on a desktopmachine.
�e target code is deployed and tested on Samsung Galaxy
SIII running with Android Jelly Bean 4.1.1 operating system.
�e application runs inconspicuously in the background as
a service and utilizes SmartOntoSensor to deduce contextual
information using low-level sensory data and automatically
adjusts modes by invoking low-level services. �e fuzzy logic
controller is used to direct the overall adjustment process
according to contexts. To adjust a smartphone’s behavior, the
application adjusts audio volume, screen brightness, font size,
vibration, and default write disk according to the identi�ed
context. Table 8 lists a few hypothetical exemplary contexts
and their corresponding modes values. �e application is
tested closely and found that the application can successfully
di
erentiate between di
erent user contexts in real-time by
mapping low-level sensory data into high-level contexts and
trigger services accordingly. Figure 9 presents screen shots



22 Journal of Sensors

of ModeChanger changing modes according to changing
contexts.

4.6. Experimental Method Base Evaluation. Using the guide-
lines of [38], an empirical study is designed to evaluate
the e
ectiveness of SmartOntoSensor. �e empirical study
is composed of experiments for evaluating SmartOntoSen-
sor from the aspects: (1) requirements coverage, (2) goals
and design characteristics, (3) explicitness and usability,
(4) reusability, (5) stability, (6) modeling mistakes, and (7)
ModeChanger application. �e data for the empirical study
is collected from the participants using a questionnaire. �e
total number of participants in the study is 17 having substan-
tial experience and knowledge about ontology development
and evaluation, knowledge of OWL, and problem domain.
�e participants are voluntarily selected from the master
(M.S.) and Ph.D. students specializing in the areas of Web
Semantics and Wireless Sensor Networks in the Department
of Computer Science, University of Peshawar. However, to
do justice with the study, one-day workshop on ontology
development in general and SmartOntoSensor development
in speci�c was arranged for the participants. Furthermore,
the participants were provided the SmartOntoSensor source
code and ModeChanger application was installed on their
smartphones for observations, experiments, and practical
usage for �ve days. At the end of the time, each participant
(individually) �lled out a questionnaire composed of 35
questions that are comprehensive enough to analyze Smar-
tOntoSensor from the abovementioned aspects. Questions
in the questionnaire are propositions whose answers are
selected from a 5-level Likert-Scale, ranging from “strongly
disagree” to “strongly agree.” Table 9 represents statistical
information of the participants’ responses to the questions in
percentage. About 71.4% of the participants (17.8% strongly
agree and 53.6% agree) responses agreed in e
ectiveness
of SmartOntoSensor and showed their con�dence, 13.5% of
the participants (3.9% strongly disagree and 9.6% disagree)
responses did not, and 15.1% of the participants’ responses
remain neutral.

�e Likert-Scale data is ordinal, where the order of the
values is signi�cant and important but the exact di
erence
between the values is not really known. To analyze the
ordered scale 5-level Likert-Scale responses data using Chi-
Square descriptive statistics, the �ve response categories (i.e.,
strongly disagree, disagree, neutral, agree, and strongly agree)
are broken down into two nominal categories (i.e., disagree
and agree) by combining the lower level three categories
and upper level two categories, respectively. Chi-Square is
important statistic for analysis of categorical data. Table 10
represents the division of �ve-level Likert-Scale response
categories into two nominal categories, percentage values
in the nominal categories, and in the total. Chi-Square test
is executed on the nominal categories using SPSSS 16.0 to
show the e
ectiveness of SmartOntoSensor. �e null and
alternative hypotheses are, respectively, as follows:

(H0) SmartOntoSensor is not an e
ective ontology for
smartphone-based context-aware computing.

(H1) SmartOntoSensor is an e
ective ontology for
smartphone-based context-aware computing.

Results of the Chi-Square test are shown in Table 11. �e
top row in the table shows Pearson Chi-Square statistics �2 =
5.950�2 and � < 0.001. �e null hypothesis (H0) is rejected,
since � < 0.05 (i.e., in fact � < 0.001). �erefore, the
alternative hypothesis (H1) stands true, which signi�es that
SmartOntoSensor is an e
ective ontology for smartphone-
based context-aware computing.

5. Applications of SmartOntoSensor

SmartOntoSensor is an attempt to provide semantic model
by associatingmetadata with smartphone and sensory data to
be used in potential context-aware smartphone applications.
It has a broad spectrum of applications and can �nd place
anywherewhere smartphone sensors are employed.However,
a few of the broad application areas of SmartOntoSensor
could be as follows.

5.1. Linked Open Data. �e Linked Open Data (LOD) uses
Semantic Web technologies to provide an infrastructure
for publishing structured data on the web regarding any
domain in such a way that is formal and explicit and can
be linked to or linked from external datasets [39] to increase
its usefulness. Information captured in SmartOntoSensor can
be linked with data sources on LOD including GeoData and
DBpedia, and Internet of �ing (IoT) objects, which are
discoverable and accessible through LOD cloud. �e Smar-
tOntoSensor concepts can be automatically annotated with
information from other spatially and thematically related
sensors to provide a scalable and semantically rich data
model.�is way information can be integrated from di
erent
communities and sources for a number of reasons includ-
ing drawing conclusions, creating business intelligence, and
automated decision making. �e large-scale data generated
by SmartOntoSensor and its linkage with LOD will result
into Linked Big Sensors data providing a novel platform for
publishing and consuming smartphone sensors data, which
can be queried, retrieved, analyzed, reasoned, and inferred for
solving real-world problems [39].

5.2. Lifelogging. Lifelogging is a type of pervasive computing
that uses digital sensors to capture and archive a uni�ed
digital record of peoples’ lifetime experiences in multimedia
format for augmenting human memory. Researchers have
shown smartphones as an ideal platform for potential lifelog-
ging systems due to its technological advancements, sensing
capabilities, and being a constant companion of users [40].
Lifelogging systems can use SmartOntoSensor for semantic
annotation of captured lifelog information together with
sensory information and contexts derived from low-level
sensory data. SmartOntoSensor can allow for semantic-based
reasoning on the captured lifelog data and their metadata
for deducing new semantics and relationships among lifelog
objects. Furthermore, the ontology can enhance retrieval
of lifelog information for augmenting memory in real-time
by allowing users to concisely express their queries and
obtain precise answers using semantics of the contained data
and queries. Lifelog information can be further enriched by
exploiting the potential of SmartOntoSensor for linking and
extracting data from data sources in the LOD cloud.
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Table 9: Participants responses to the questions in questionnaire.

Questions ∗ sample Likert-Scale options Frequency Percent Valid percent Cumulative percent

35 ∗ 17

Strongly disagree 23 3.9 3.9 3.9

Disagree 57 9.6 9.6 13.4

Neutral 90 15.1 15.1 28.6

Agree 319 53.6 53.6 82.2

Strongly agree 106 17.8 17.8 100.0

Total 595 100.0 100.0

Table 10: Division of 5-level Likert-Scale response categories into nominal categories and their percentage values within nominal categories.

Nominal categories Category wise distribution
Five levels of Likert-Scale response categories

Total
Strongly disagree Disagree Neutral Agree Strongly agree

Disagree
Count 23 57 90 0 0 170

% value within disagree 13.5% 33.5% 52.9% .0% .0% 100.0%

Agree
Count 0 0 0 319 106 425

% value within agree .0% .0% .0% 75.1% 24.9% 100.0%

Total
Count 23 57 90 319 106 595

% value within total 3.9% 9.6% 15.1% 53.6% 17.8% 100.0%

Table 11: Results of the Chi-Square test using SPSS 16.0.

Descriptive statistics Value df � value
Pearson Chi-Square 5.950�2a 4 .000

Likelihood ratio 711.941 4 .000

Linear-by-linear association 425.035 1 .000

� of valid cases 595
a0 cells (.0%) have expected count less than 5.�eminimum expected count
is 6.57.

5.3. Smart Environment. In a smart environment, smart-
phones can serve as smart objects because of their small
ubiquitous nature, having sensor capabilities to detect envi-
ronment, and communication capabilities to communicate
with other objects through local networks or the Internet
under the Internet of �ings (IoT) domain in order to
create a machine to machine ecosystem [41]. �e increasing
use and need for personal smart objects such as indoor
or outdoor sensors and actuators have created the need
to develop applications which a user may use to log and
interact with these devices under the prism of the Internet
or IoT. �e SmartOntoSensor ontology can be a key for
the automatic smart environment applications. Smartphone
applications can leverage SmartOntoSensor for recording and
mapping sensory data captured from smartphone sensors and
sensors in an environment and transferring the captured and
inferred data to a web database that could be shared with
others (i.e., friends in a social network, etc.). Smartphone
smart applications can use SmartOntoSensor for inferring
users’ contexts and automatically directing/controlling smart
objects in environment accordingly. Similarly, SmartOn-
toSensor can be important resource for Google’s Android at
Home [42] that uses IoT for allowing individuals to log into
their accounts and control their smart objects at home.

5.4. Activity Recognition. Smartphones o
er a unique oppor-
tunity to sense and recognize human activities from loca-
tion, proximity, and communication data [43]. Making a
smartphone aware of users’ activities �ts into the larger
framework of context awareness. Researchers have demon-
strated successful applications of statistical machine learning
models for smartphone-based activity recognition. However,
activity recognition systems, despite producing signi�cant
accuracy in recognizing activities, su
er from a number
of problems including application of a small number of
sensors, requiring an extensive amount of training data, and
addressing a small set of coarse-grained activities. Similarly,
some activities are hard to recognize due to either using type
and number of sensors, duration of an activity, or statistical
classi�cation algorithms used [44]. Recognizing a large set of
activities with minimal processing requirements is essential
for satisfying the diverse applications of smartphone-based
activity recognition systems. SmartOntoSensor, by capturing
and fusing data obtained from on-board sensors and external
sensors as well as sources, would enable us to infer a �ne-
grained classi�cation and recognition of not only a large
set of activities but hard-to-recognize activities as well with
minimal processing requirements.

5.5. Augmented Reality (AR). AR is the combination/
registration and alignment of virtual and physical objects
as well as their interaction in three dimensions in real-time
[45]. Smartphones can serve as a charming blend for AR
systems due to their advanced computational capabilities,
user interface, and sensors and provides feasibility of inte-
grating all of the solutions in one place such as MARA and
MIT sixth-sense project [45]. SmartOntoSensor can serve
as a bottom layer for helping upper layer AR systems. Data
contained in SOS can be used by AR system for numerous
purposes including registration/authentication, localization,
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viewing, indoor/outdoor navigation guidance, context recog-
nition, and annotating objects with sensory and contextual
information.

6. Conclusion

�e potential power of smartphone sensing has been realized
due to widespread adoption of the sensor-enabled smart-
phone technologies by people across several demographics
and cultures. Smartphone technological advancements and
integration of high-valued sensors have pushed development
of smart sensing applications by the research community,
academia, and industry for solving real-world problems.
However, the integration and utilization of huge amount of
heterogeneous data generated by heterogeneous smartphone
sensors need semantic representation as a prerequisite for
their unambiguous and precise interpretation and advanced
analytical processing. As a solution, ontology can be deemed
as a lethal weapon by containing detailed de�nitions of
concepts regarding smartphone and sensors as well as their
properties to solve the integration, processing, interpretation,
and interoperability issues. Ontology would assist smart-
phone context-aware applications in querying a sensor or
group of sensors for extracting low-level data for performing
high-level tasks. Although a number of sensors and sensor
networks ontologies are presented by the researchers, none
of them is complete enough to satisfy the requirements and
usage of smartphones context-aware applications. However,
some of these ontologies (e.g., SSN) can be reused to develop
a comprehensive smartphone sensors ontology.

In this paper, the development of ontology-based smart-
phones and sensors repository referred to as SmartOntoSen-
sor is presented. SmartOntoSensor includes de�nitions of
concepts and properties that are partially extended from
more general and comprehensive SSN ontology, partially
in�uenced from SensorML, and partially identi�ed from the
relevant literature. SmartOntoSensor provides descriptions
about smartphone systems and deployments, sensors and
their classi�cation, sensors measurement capabilities and
properties, observations as properties of features of interests,
inputs and outputs to sensing processes, context identi�ca-
tion using sensors outputs, and invoking services according
to contexts. To the best of our knowledge this is the �rst
such e
ort in the area of smartphone sensors ontologies
to unify smartphone, sensors, and contextual information
with general world knowledge about entities and relations.
SmartOntoSensor is developed and evaluated using state-of-
the-art technologies and standards to demonstrate its utility
and value. �e test results indicate that SmartOntoSensor
has an improved ontological design for semantic modeling
of the domain as compared to the other ontologies and is
more complete by providing rich potential for representing
information about the domain to answer ontology-related
questions. Using quality and e�ciency of SmartOntoSensor,
a number of its potential application areas were also outlined.

However, SmartOntoSensor does not claim feasibility of
orthogonal and universally acceptable smartphone sensors
ontology but is an attempt to build a pragmatic smart-
phone sensors repositorywith supporting rationale and using

currently available tools for enabling the deployment of the
ontology in a variety of application domains. Despite promis-
ing lab test results and proofs-of-concepts, SmartOntoSensor
needs improvements in several aspects to claim its market
place such as (1) inclusion of more detailed and relevant
concepts and properties to increase its coverage and expres-
siveness, (2) heavily instantiating of the concepts with real-
world data to thoroughly test its quality and correctness, (3)
thorough investigation by the domain experts to indicate any
discrepancy, redundancy, and ambiguity, and (4) knowledge-
based comparison with sensors and sensor networks ontolo-
gies in addition to schema-based comparison.

�e future work includes the application of SmartOn-
toSensor in more complex real-world solutions to check
its e�ciency and performance and indicate any potential
extensions and improvements. In addition, most of the
organizations have captured sensors collected information
in their repositories in either structured or unstructured
(e.g., GeoLife GPS Trajectories) formats. �erefore, there
is a strong need for systems that can automatically ana-
lyze various structured and unstructured data sources and
extract relevant concepts and entities to extend and populate
SmartOntoSensor. �is automatic information extraction
process would help in further evaluating SmartOntoSensor
and designing more e
ective context-aware applications.
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López, “�e NeOn methodology for ontology engineering,”
in Ontology Engineering in a Networked World, M. C. Suárez-
Figueroa, A. Gómez-Pérez, E. Motta, and A. Gangemi, Eds., pp.
9–34, Springer, Berlin, Germany, 2012.

[24] S. Ali, S. Khusro, and H. Chang, “POEM: practical ontology
engineering model for semantic web ontologies,” Cogent Engi-
neering, vol. 3, no. 1, pp. 1–39, 2016.

[25] V. Presutti and A. Gangemi, “Content ontology design patterns
as practical building blocks for web ontologies,” in Proceedings
of the 27th International Conference onConceptualModeling, pp.
128–141, Berlin, Germany, 2008.

[26] X. Wang, X. Zhang, and M. Li, “A survey on semantic sensor
web: sensor ontology,mapping andquery,” International Journal
of u-and e-Service, Science andTechnology, vol. 8, no. 10, pp. 325–
342, 2015.

[27] E. Simperl, “Reusing ontologies on the Semantic Web: a feasi-
bility study,” Data & Knowledge Engineering, vol. 68, no. 10, pp.
905–925, 2009.

[28] D. Preuveneers, J. V. den Bergh, D. Wagelaar et al., “Towards
an extensible context ontology for ambient intelligence,” in
Proceedings of the 2nd European Symposium on Ambient Intel-
ligence, pp. 148–159, Eindhoven, Netherlands, 2004.

[29] J. Brank, M. Grobelnik, and D. Mladenic, “A survey of ontology
evaluation techniques,” in Proceedings of the 8th International
Multi-Conference Information Society, pp. 166–169, 2005.

[30] T. J. Lampoltshammer and T. Heistracher, “Ontology evaluation
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