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ABSTRACT Smartphones and smartwatches, which include powerful sensors, provide a readily available
platform for implementing and deploying mobile motion-based behavioral biometrics. However, the few
studies that utilize these commercial devices for motion-based biometrics are quite limited in terms of the
sensors and physical activities that they evaluate. In many such studies, only the smartwatch accelerometer is
utilized and only one physical activity, walking, is investigated. In this study we consider the accelerometer
and gyroscope sensor on both the smartphone and smartwatch, and determine which combination of sensors
performs best. Furthermore, eighteen diverse activities of daily living are evaluated for their biometric
efficacy and, unlike most other studies, biometric identification is evaluated in addition to biometric authen-
tication. The results presented in this article show that motion-based biometrics using smartphones and/or
smartwatches yield good results, and that these results hold for the eighteen activities. This suggests that
zero-effort continuous biometrics based on normal activities of daily living is feasible, and also demonstrates
that certain easy-to-perform activities, such as clapping, may be a viable alternative (or supplement) to gait-
based biometrics.

INDEX TERMS Authentication, biometrics, data mining, gait recognition, identification, sensors, smart-
phone, smartwatch, ubiquitous computing.

I. INTRODUCTION

The ability to identify or authenticate a person is critical
to maintaining the security of digital and non-digital assets.
This security is often provided by passwords or physical
tokens (e.g., ID card), but these can easily be stolen or dupli-
cated [1]. Biometric methods, which are tied to a person’s
unique physical or behavioral characteristic, generally do not
share these disadvantages [2]. Common physical biometric
systems are based on a person’s fingerprints or iris. Such
systems can sometimes be difficult to use and behavioral
biometrics provides an important alternative. Motion-based
biometrics is an especially attractive alternative because pop-
ular mobile devices, such as smartphones and smartwatches,
contain motion sensors that can form the basis of a biomet-
ric system. Biometrics using these devices can be used as
a primary mechanism for performing authentication and/or
identification—or can function as part of a multi-factor
system.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiquan Qiao.

The study described in this article evaluates the use of the
accelerometer and gyroscope sensors on commercially avail-
able smartphones and smartwatches for behavioral biometric
authentication and identification, using eighteen activities of
daily living. A different model is induced for each activity.
This study is unique in that it evaluates a large number of
activities of daily living for their biometric potential using
a smartphone and smartwatch. Most other work focuses
on a single activity (most often gait), while the few stud-
ies that assess more than one activity cover less than a
half-dozen activities.

The evaluation of a large number of diverse activities for
daily living is important for several reasons. One reason is to
identify specific activities that form effective biometric sig-
natures and hence can be used individually as the basis for a
biometric system—just like gait is the basis of many existing
biometric systems [3]–[9]. In this case, the subject would be
asked to perform an action ‘‘on demand,’’ which eliminates
the issue of potentially not knowing which biometric model
to apply. The interest in looking for new and novel activities
to use for biometrics was motivated by a study that showed
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that the acoustic signature from finger-snapping provides a
useful biometric signature [10].
A second reason for evaluating a large number of activi-

ties is that if activities of daily living generally yield good
biometric signatures, then it may be feasible to build a sys-
tem that continuously performs biometric authentication (or
identification) as the subject goes about his or her normal
daily routine. Such a system would typically employ a two-
stage approach, where an activity recognition system first
recognizes the activity that is being performed, and then the
biometric model for that activity is applied. Such an approach
should be feasible since it was recently demonstrated, using
the same data used in this study, that each of the eighteen
activities can be recognized with an accuracy between 91.8%
and 99.3% [11].
A biometric system based on the research described in this

study can be implemented on a smartphone or smartwatch
and thus could be used to secure those devices. Alternatively,
these mobile devices can be used solely to collect the data,
which is then sent to another entity (e.g., laptop, car, smart
home, etc.), which subsequently applies the biometric model
to validate the subject’s identity. The wireless communication
capabilities built into smartphones and smartwatches allow
them to secure other devices.
This study makes several significant contributions, as it

provides the most comprehensive study of smartphone and
smartwatch-based biometrics using activities of daily living.
Specifically, it answers the five following important research
questions:

1. What is the relative value of a smartphone, smart-
watch, and combination of the two devices for motion-
based biometrics?

2. What combination of motion sensors perform best?
3. How well can motion-based biometrics perform for

authentication and for identification?
4. How do diverse activities of daily living perform for

biometrics? Do they perform well enough to permit
continuous biometrics based on normal daily activities?
Are any of them viable alternatives to gait?

5. How does the amount of training data impact biometric
performance?

The focus of this article is on answering the five research
questions just posed—not to advance the state of the art
in biometric techniques. The techniques used in this article
are relatively straightforward, but they nonetheless produce
results that are competitive with other published studies. The
current studymakes very substantial extensions to a biometric
study from 2010 [12], which employed only a smartphone
and included only four simple activities, and a subsequent
study from 2015 [7] that employed only a smartwatch and
considered only the walking activity. This article also extends
a preliminary study [13] that used the same devices and
sensors but executed fewer experiments and provided much
less analysis and discussion.
This article is organized as follows. Section II describes

background and related work. Section III then describes the

process for collecting the mobile sensor data and transform-
ing it into a form suitable for data mining. The method-
ology used to build and evaluate the biometric models is
described in Section IV, while the results from applying
those models are described and analyzed in Section V.
The biometric effectiveness of each of the eighteen activi-
ties is discussed in Section VI. The article concludes with
Section VII, which summarizes the main conclusions, iden-
tifies areas for future work, and compares the current study
to prior work to show that the current study is the most com-
prehensive on smartphone and smartwatch-based behavioral
biometrics.

II. BACKGROUND AND RELATED WORK

This section provides context for the study described in this
article by providing relevant background and related work.
The discussion of related work is fairly extensive in order
to demonstrate that the current study goes well beyond what
was done in earlier studies—in terms of the number of
activities evaluated, the types of biometrics tasks (authenti-
cation and identification), the number of subjects, and the
use of the accelerometer and gyroscope on both a smart-
phone and smartwatch. Key characteristics of the related
work are summarized in Table 9, which appears in the con-
clusion, and those summaries are used to show how the study
described in this article goes beyond what was done in prior
studies.

A. PHYSIOLOGICAL AND BEHAVIORAL BIOMETRICS

Biometric methods can be divided into physiological bio-
metrics and behavioral biometrics [14], [15]. Physiological
biometric methods rely on physiological traits such as fin-
gerprints, iris, ear shape, DNA, vein pattern, or face [16].
The most popular physiological traits are fingerprints, which
account for more than half of all commercial biometric
systems [15]. Fingerprints are effective but are far from
perfect—with EER values in the 2%-7% range [17]. The
study described in this article concerns behavioral biometrics.
Behavioral biometrics are based on behavioral characteristics
that can be extracted from user actions, and include gait (i.e.,
walking), handwaving, keystrokes, signature, touchscreen
contact, and voice [18]. Many of these user actions can be
measured by smartphones and smartwatches and are covered
in this section.

B. GAIT-BASED BEHAVIORAL BIOMETRICS

Gait is the most studied activity for behavioral biomet-
rics. Gait biometrics [19] has been implemented using three
different sensing modalities: vision-based, floor-based, and
wearable sensor-based. Vision-based biometrics [16] requires
video equipment but does not interferewith the subjects and is
unobtrusive. However, the equipment requirement means this
approach is only suitable for fixed locations (e.g., an airport).
Floor-based systems also require special equipment, in the
form of pressure sensors, and are even more geographically
restrictive than the vision-based systems since the subjects
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must walk on the instrumented area. One example of such a
system was able to identify 15 subjects correctly 93% of the
time [20].
Wearable sensor-based solutions are not limited to fixed

locations but require each subject to be fitted with the
sensors. This can be quite intrusive, especially when sen-
sors are placed on multiple body locations. Gafurov and
Snekkenes [21] attached custom-designed sensors with
tri-axial accelerometers to the ankle, hip, pocket, and arm,
and achieved an Equal Error Rate (EER) of 5% (ankle),
13% (hip), 7.3% (pocket), and 10% (arm). Several other
studies, all conducted before 2009, similarly attached sensors
to body position(s) to perform gait biometrics [22]–[24].
The intrusiveness issues can be largely avoided if the
sensing is provided by commercial smartphones and
smartwatches.

C. GAIT BIOMETRICS USING SMARTPHONES AND/OR

SMARTWATCHES

This section covers research on gait biometrics using
commercial smartphones and smartwatches. Four studies uti-
lize only the smartphone accelerometer to perform biomet-
ric authentication using gait. Derawi et al. [3] achieved an
EER of 20% using dynamic time warping to implement
distance-based similarity, while Nickel et al. [4] achieved
an EER of 10% using Support Vector Machines and Hidden
Markov Models. Another study evaluated the impact of vary-
ing walking speed and achieved an EER of 3.6% with ‘‘nor-
mal’’ speed, an EER of 1.5% with ‘‘fast’’ speed, and an EER
of 14.1% when ‘‘normal’’ speed was used for training and
‘‘fast’’ speed for evaluation [5]. Hoang et al. [6] developed a
method to allow authentication models to be developed and
deployed on different smartphone models, and achieved an
authentication accuracy of 91% when training and testing on
different phone models.
There is less research on smartwatch-based gait biomet-

rics since smartwatches are a more recent development.
One study used four different discriminant-based methods
and achieved an EER of between 1.4% and 4.5% when
using the accelerometer and an EER of between 6.3% and
9.6% when using the gyroscope [7]. Unlike the other stud-
ies mentioned in this section, this study also performed
biometric identification. With 51 subjects and using only
10 seconds of data for evaluation, identification accuracies
between 66.8% and 84.0% were achieved when using the
accelerometer, and between 52.4% and 70.5%when using the
gyroscope. Another study showed that by using a Microsoft
Band 2 (not a smartwatch but worn in similar way), gait-
based authentication can achieve an EER between 0.13% and
0.69% using the accelerometer sensor and an EER between
3.12% and 7.97% using the gyroscope sensor [8]. A final
study placed a Shimmer 3 sensor unit on the wrist and in
the pants pocket of 15 test subjects, thereby simulating a
smartphone and smartwatch [9]. The system achieved an
EER of 2.5% in the pocket and as low as 2.9% at the
wrist.

D. NON-GAIT BEHAVIORAL BIOMETRICS USING

SMARTPHONES AND/OR SMARTWATCHES

There are several common actions used for behavioral bio-
metrics other than walking, and in this section we focus on
those that utilize a smartphone or smartwatch. Most of the
non-gait activities involve the subject touching the smart-
phone screen. One such study performed authentication using
‘‘soft touchscreen’’ (stouch) gestures such as: flick, spread,
pinch, drag, and tap [25]. Using only the smartphone touch
sensors the best performance yielded a false acceptance rate
of 12% and a false rejection rate of 15%. Another study
utilized the ‘‘soft keystroke’’ (skey) dynamics associated with
the virtual keyboard to perform authentication, and used the
detailed information provided by smartphones, such as the
precise touch location, duration of touch, and pressure [26].
With 5 (15) keypresses the system achieved a false accep-
tance rate of 32.3% (14.0%) and false rejection rate of 4.6%
(2.2%). Another keystroke-related study achieved a false
acceptance rate and false rejection rate of 3-4%, when the
only activity involved the subject inputting a 4-digit PIN
code [27]. This study used the touch sensors, but also used the
accelerometer, gyroscope and magnetometer to measure the
motion and orientation of the smartphone as the PIN codewas
entered.

Two studies used the smartphone microphone to perform
biometric authentication. One used samples from the smart-
phone phone calls and achieved an EER of 25% [28], while
the other study used the acoustic properties of the finger
snapping action to perform authentication and achieved an
EER of about 6% [10].

One final non-gait-based study shares perhaps the most in
common with the current study. It used smartwatch sensors to
identify people based on their motion when handwriting spe-
cific prompts [29]. An accuracy of 90% was achieved when
using the accelerometer, 85% when using the gyroscope, and
95% when using both sensors. The results were only slightly
worse when each subject wrote out their signature instead
of a predefined prompt. Authentication performance was not
evaluated.

E. BIOMETRICS USING MULTIPLE ACTIVITIES OF DAILY

LIVING

Most of the studies described thus far have limited overlap
with the study described in this article in that they utilize
only a single activity for biometrics. This section describes
two studies that utilize a smartphone to perform biometrics
using multiple activities; however, these studies are much
more limited than the current study in that they analyze only
a few activities and also do not employ a smartwatch.

The first study used the smartphone accelerometer to per-
form authentication and identification based on four activ-
ities: walking, jogging, climbing up stairs, and climbing
down stairs [12]. Only limited experiments and analysis
was completed for the authentication task. Authentication
models were induced for only five subjects and the models
were based on a combination of all four physical activities
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without activity labels; the resulting average FAR was 14%
and FRR was 5%. Identification experiments utilized the full
set of 36 subjects with each of the four activities in isolation
and then with all the activity data combined. The result-
ing accuracies were: 84% (walking), 83% (jogging), 66%
(upstairs), 61% (downstairs), and 72% (combined activities).
The second study performed authentication using a

smartphone accelerometer and gyroscope for six activities:
walking, sitting, standing, running, climbing up stairs, and
climbing down stairs [30]. A smartphone was placed on five
body positions to assess the impact of position. The waist
and thigh positions, which are the most reasonable positions
for a smartphone, yielded authentication accuracies in the
low-90s, while the arm and wrist positions, which simulate
a smartwatch, yielded authentication accuracies in the mid-
80s.

III. DATA COLLECTION AND TRANSFORMATION

This section describes all aspects of the data collection and
transformation process. The data that was collected was used
for this biometric study and for separate studies on activity
recognition [11], [31]. This dual usage helped to defray the
cost of the time-consuming data collection process.

A. THE EIGHTEEN PHYSICAL ACTIVITIES

This study includes eighteen routine physical activities, most
of which are performed daily. For the purposes of this study,
a physical activity is defined as a specific identifiable action
with an associated starting and ending time. Some of the
physical activities in this study (e.g., eating pasta) are not
practical for a biometrics system that requests the subject
to perform an activity on demand, but would be useful for
a continuous biometrics system that operates as the subject
performs their normal daily activities. Other activities, how-
ever, such as clapping and writing, are very easy to perform
and could be done on an on-demand basis. Section VI, which
discusses the overall biometric effectiveness of the activities,
considers the practicality of the activities in the context of
being performed on demand.
Table 1 lists the 18 activities included in this study. They

are organized into three groups. The first grouping contains
activities that are not primarily focused on hand movements.
The other two groupings are primarily hand-based and are
partitioned based on whether the activity involves eating. For
each activity the appropriate equipment or foodwas provided.
The eating activities, as well as the typing, writing, and sitting
activities, were performed while seated; all other activities
were performed while standing. The walking and jogging
activities were performed outside, while the stairs activity
was performed by repeatedly walking up and down several
flights of stairs. The folding clothes activity was performed
utilizing a table.
The activities listed in Table 1 were chosen for a variety

of reasons. The following activities were chosen because
they were included in prior studies: writing [29]; typ-
ing [26], [27]; walking [3]–[9]; and jogging, stairs, sitting,

TABLE 1. Eighteen physical activities.

and standing [30]. The clapping activity was selected because
it is easy to perform, can be done quickly, and the authors
speculated it would yield good biometric performance. The
remaining activities were selected partly because the data was
already available from a prior activity recognition study [31].
Some of those activities represent basic sports activities
(kicking a soccer ball, dribbling a basketball), while others
(brushing teeth, folding clothes) were selected as represen-
tative activities of daily living. The five eating activities
were selected to investigate the feasibility of automatic food
tracking applications. While some of the activities included
in this study were selected based on their suitability for
activity recognition research, they nonetheless are relevant to
the current biometrics study since they can help assess the
viability of developing a continuous biometrics system based
on a person’s normal daily activities.

B. THE DATA COLLECTION PROCESS

Smartphone and smartwatch sensor data were collected from
51 subjects, comprised mainly of undergraduate and graduate
university students between the ages of 18 and 25. The data
collection process was approved by the university’s Institu-
tional Review Board (IRB) and each subject provided writ-
ten informed consent before participating in the study. Each
subject performed the eighteen activities listed in Table 1 for
3 minutes each, with a smartphone in their right pants pocket
and a smartwatch on their dominant hand. Participants used
a Google Nexus 5/5X or Samsung Galaxy S5 smartphone
running Android 6.0 (Marshmallow), and an LG G Watch
running Android Wear 1.5. The data collection process for
each subject took on average 70 minutes to collect the
54 (18×3) minutes of activity data.
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The data collectionwas conducted primarily in a laboratory
environment under the supervision of a researcher. However,
for a few simple activities (walking, jogging, stairs), the sub-
jects were given general instructions and allowed to perform
the activities either outside the building or in the staircases
within the building. The activities that require two people,
kicking a soccer ball and playing catchwith a tennis ball, were
conducted with the active participation of the researcher. The
use of the laboratory setting may introduce a bias into the data
collection process, but was necessary to ensure a high-quality
data set.
The time-series sensor data was collected by a customized

Android application. The application logs data from any com-
bination of the sensors available on an Android phone and/or
Android Wear smartwatch. For this study the accelerometer
and gyroscope data from both the smartphone and smartwatch
were collected at a rate of 20 Hz (prior work [32], [33] shows
that higher rates are not necessarily beneficial for motion-
based predictive models). However, due to the nature of the
Android OS, the sampling rate is only taken as a suggestion,
so actual sampling rates sometimes differed. At the end of a
data collection session, the raw time-series sensor data was
transferred from the smartphone to a lab machine via a USB
connection.

C. THE RAW SENSOR DATA

The raw time-series sensor data is stored in separate files.
Each file contains the data from one sensor (accelerometer or
gyroscope) on one device (smartphone or smartwatch) for one
subject. Thus there are four files associated with each subject,
although the sensor data from these four files will have been
collected during the same time period and can be linked
via the timestamp information. Each sensor measurement is
recorded on a separate line in the data file with the following
format:

< subject-id, activity, timestamp, x, y, z>

The subject-id identifies the test subject, activity is a code
that identifies the physical activity performed, timestamp is
the Unix time at which the sensor value was recorded, and
the x, y, and z values represent the sensor values for the
x, y, and z spatial axes. The format of the recorded sensor
data is identical whether the data is from the accelerometer
or gyroscope on either the smartphone or smartwatch. The
accelerometer measures linear acceleration in meters/s2 and
the gyroscope measures angular velocity in radians/s. The
raw sensor data used in this study is publicly available
as the WISDM human activity recognition and biometrics
data set from the UCI Repository [34]. Fig. 1 provides
a graphical representation of the smartphone accelerome-
ter data for the walking and jogging activities. The y-axis
corresponds to the vertical direction and, as one would
expect, has the largest magnitude. Also as expected, the jog-
ging activity exhibits a higher frequency than the walking
activity.

FIGURE 1. Graphical plot of the smartphone’s triaxial accelerometer data
for the walking activity (top) and the jogging activity (bottom).

D. THE TRANSFORMED DATA

Many classification algorithms do not handle time-series data
directly, but instead require the data to be in the form of
labeled examples, where each example is described by a fixed
number of features. In order to generate data in this form,
the data is partitioned into 10-second non-overlapping seg-
ments, and the time series data in each segment is described
using a set of forty-three high level features. A 10-second
window is used because it is sufficiently long to capture
key elements of a person’s movements, including several
repetitions of basic movements like walking and stair climb-
ing, and facilitates fast biometric identification. Prior activity
recognition experiments also demonstrated that a 10-second
window size outperforms other window sizes [35], and using
the same window sizes for both activity recognition and
biometrics facilitates the two-stage biometric approach dis-
cussed in Section I. Finally, longer periods of sensor measure-
ments can still be utilized by basing the biometric decision
on several examples—a strategy that is evaluated in this
study.

The forty-three features are described below. The value in
brackets denotes the total number of features of the given
type (most features apply to each of the three spatial axes).
Given the sampling rate of 20Hz and a window size of 10 sec-
onds, there are 200 raw sensor readings for each example.
In prior biometric work we did experiment with using more
sophisticated features, such as by using Fourier analysis, but
such features did not improve the results. None of the feature
values were normalized.

• Average [3]: average sensor value (each axis)
• Standard deviation [3]: standard dev. (per axis)
• Average absolute difference [3]: average absolute differ-
ence between each of the 200 sensor readings and the
mean of the 200 readings (per axis)
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• Average resultant acceleration [1]: the average of the
square root of the sum of the square of the x, y, z axis
values.

• Binned distribution [30]: the range (max–min value)
is determined for the window, 10 equal-sized bins are
formed, and the fraction of the 200 values within each
bin is recorded (per axis)

• Time between peaks [3]: Time between peaks in the
sinusoidal waves formed by the data as deter-mined by
a simple heuristic algorithm (per axis)

Each transformed example is tagged with the test subject’s
identifier and the activity that was performed, so that the
appropriate activity is used for each experiment. The publicly
available data set also includes the scripts for transforming the
time-series data [34].
The transformation process just described generates an

example using the data from only a single sensor. That
process can be used to evaluate the four single-sensor config-
urations: phone-accel, phone-gyro, watch-accel, and watch-
gyro. Given that one goal of this study is to identify the
combination of sensors that yields the best results, the fol-
lowing five sensor combinations are also evaluated:

Phone: phone-accel + phone-gyro

Watch: watch-accel + watch-gyro

Accels: phone-accel + watch-accel

Gyros: phone-gyro + watch-gyro

All: phone-accel + phone-gyro

+watch-accel + watch gyro

The transformed examples for the various sensor combina-
tions are generated by concatenating the 43 features associ-
ated with each sensor. Hence the Phone, Watch, Accels, and
Gyros sensor combinations each contain 86 features, while
the All sensor combination has 172 features.

IV. EXPERIMENT METHODOLOGY

This section describes themethodology used to execute all the
experiments. Section IV-A describes the classification algo-
rithms used to build the biometricmodels, while Section IV-B
describes how data from a test subject are used to make an
authentication or identification decision. The methodology
used to construct and evaluate the authentication and identi-
fication experiments is described in Sections IV-C and IV-D,
respectively.

A. CLASSIFICATION ALGORITHMS

Three classification algorithms are used to generate the
authentication and identification models that are evaluated in
this study: k Neighbors, Decision Tree, and Random Forest.
We employ the implementations of these algorithms from
Python’s scikit-learn module, an open source library for
data mining and analysis [36]. Unless otherwise specified,
the default parameters are used. For k-Neighbors the num-
ber of neighbors is set to 5, using uniform weights and the

Minkowski distance metric. For the Random Forest classifier,
the maximum number of features considered is the square
root of the number of features in the data, and the number
of decision trees in the forest is set to 10.

B. DECISION MAKING USING EVALUATION DATA

The authentication and identification tasks both require a
sample of data from a subject to make an authentication or
identification decision. The simplest strategy is to use a single
‘‘test’’ example to make the decision. Given the method for
transforming the raw time-series data into examples, these
decisions are based on 10 seconds of sensor data. However,
for some biometric applications it may be practical to utilize
more than 10 seconds of data to make a decision. In this
study we also evaluate authentication and identification per-
formance using 50 seconds of data, where the decision is
based on a simple majority voting scheme applied to five
10-second examples (using more than five samples does
not significantly impact performance). Results are presented
for both the non-voting and voting strategies. Based on the
application demands one can decide whether to use voting or
not—or perhaps use voting with only 30 seconds of data. The
10 second window size should be reasonable for most bio-
metric applications, and if a faster decision time is required
then behavioral biometrics is not appropriate.

C. AUTHENTICATION EXPERIMENT METHODOLOGY

The authentication task involves distinguishing an authorized
subject from an imposter. Hence authentication is a classi-
fication problem involving two classes. For authentication,
each authorized subject must have their own model, which
means that in this study fifty-one authentication models are
evaluated. Each authentication model is based on a single
activity, so this is repeated 18 times (once per activity), and
each experiment is replicated for the 3 classification algo-
rithms and the 9 sensor combinations, so that a total of 24,786
(51×9×18×3) experiments are executed.

Each model is trained using data from the subject to be
authenticated and data from ‘‘other’’ subjects that are com-
bined into a single class. In real world situations, data from
actual imposters will not be available, so it is critically impor-
tant to ensure that the ‘‘imposters’’ in the training set and
test set do not overlap. Also, training data for the authenti-
cation models must be partitioned carefully, since a training
set with a high degree of class imbalance will be biased
against authenticating a valid user. We partition the data as
follows. The data for the subject to be authenticated is divided
equally between the training and test sets, such that each set
has 90 seconds of the subject’s data (i.e., for the selected
activity). Then eighteen other subjects are randomly selected
and 30 seconds of data for that activity are randomly chosen
for each subject. Data from nine of these subjects is placed in
the training set, while data from the other nine are placed into
the test set; this yields 270 (9 × 30) seconds of ‘‘other’’ data
for the training and test sets. The resulting training class ratio
is 90:270, or 1:3.
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FIGURE 2. Graphical plot of FAR and FRR with an EER value of 0.068.

The training set utilizes a class ratio of 1:3, where the
subject to be authenticated is the minority class. This was
done for several reasons. First, this ratio is used in other
biometric studies [7], [12]. Second, empirical results showed
that the 1:3 class ratio performed best. Class ratios with lower
levels of class imbalance, including 1:1 and 1:2, led to slightly
poorer performance—probably because they included less
imposter data. Meanwhile, class ratios with higher levels
of class imbalance also led to poorer results, because the
high level of imbalance led to too many predictions of the
‘‘imposter’’ class. One-class learning (e.g., one-class SVM),
which would not require the use of any imposter data and
hence avoid the class imbalance problem altogether, is worthy
of future consideration.
In this study, authentication performance is evaluated using

Equal Error Rate (EER), a common metric for com-paring
authentication models [23]. This metric is calculated as the
point where the False Acceptance Rate (FAR), the rate at
which the model incorrectly accepts an imposter as a legit-
imate user, equals the False Rejection Rate (FRR), the rate
at which the model incorrectly rejects a legitimate user. FAR
and FRR can be altered by varying the probability threshold
used for assigning a classification. Fig. 2 shows the actual
FAR and FRR curves for the walking activity using All sen-
sors and the Random Forest algorithm. In this case the EER
value is approximately 0.068, which is the y-coordinate at
which point the two curves intersect.

D. IDENTIFICATION EXPERIMENT METHODOLOGY

The methodology for executing the identification experi-
ments is much simpler than for the authentication experi-
ments, since we do not need to map the data from multiple
subjects into a single class. Instead, each subject represents
a different class—for the identification data set there are
fifty-one classes. In this case the training set must have data
from all the subjects and hence the subjects in the training
and test set should overlap. The training and test data is
partitioned using stratified 10-fold cross validation, so that
the training and test sets both have the same percentage of

TABLE 2. Summary authentication EER over 18 activities.

data from each subject. Identification models are built per
activity. As with the authentication experiments, each of these
experiments are also executed for each of the three classifica-
tion algorithms and for each of the nine sensor combinations.

V. RESULTS

This section presents and analyzes the results of all of the
experiments conducted in the study. The results are presented
first for the authentication experiments and then for the iden-
tification experiments.

A. AUTHENTICATION RESULTS

This section provides the results for all the authentication
experiments. Table 2 aggregates the results over all eighteen
activities in order to identify the best overall classification
algorithm for authentication. The best EER value, for each
sensor combination and labeling method (i.e., single exam-
ple versus voting), is underlined. The results demonstrate
that the Random Forest algorithm performs best for every
sensor combination except for watch-gyro when there is no
voting. Given the superiority of the Random Forest algo-
rithm, the remainder of this section focuses on the experi-
mental results for that algorithm. Some prior work on activity
recognition similarly showed that Random Forest performs
best [31].

The detailed authentication results for the Random For-
est algorithm, where decisions are based on a single 10-
second example (i.e., without voting), are provided in Table
3. Results are provided for each of the eighteen activities and
each of the nine sensor combinations. The last row in the table
provides the average performance over all eighteen activities.
The relative value of each of the nine sensor configurations
can be determined by comparing the values in the different
columns.

Given that lower EER values are best, Table 3 shows that
Accels and All are the best overall configurations, with Accels
having a slight edge (11.3% vs. 11.5% average EER and
better performance for 11 of the 18 activities). The next best
sensor configurations arePhone andPhone-accel, which both
have an average EER of 12.0%. The other five sensor con-
figurations have a much higher average EER—at least 19%.
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TABLE 3. Authentication EER using a one 10S example (RF).

From these results we conclude that if both a phone and watch
are available, the best choice is to use the accelerometers
from both devices. However, if only a phone is available,
one can still do nearly as well by using either both phone
sensors or only the phone accelerometer. If only a watch
is available, then both watch sensors should be used, but
performance will suffer significantly. The results also show
that the gyroscope on either device performsmore poorly than
the accelerometer.
Performance can be improved by using a longer sample of

data for making the authentication decision. Table 4 provides
the results for experiments identical to those used to populate
Table 3, except that the authentication decision is based on
majority voting using five examples (i.e., 50 seconds of data).
The results largely parallel those of Table 3, with the main
difference being that the EER values are lower in Table 4.
As before, over the 18 activities the All and Accels sensor
configurations yield the best results. Voting improves the
average results forAccels by 18% (9.3% vs. 11.3%), while for
All it improves performance by 20% (9.3% vs. 11.5%). The
walking activity, which is the most commonly used activity
formotion-based biometrics, improves by 10% forAccels and
14% for All.

The voting results demonstrate that having a larger sample
of data from a subject for evaluation (i.e., test data) allows for
better authentication performance. Similarly, more training
data should also have a positive impact. Fig. 3 provides a
learning curve for authentication performance, averaged over
all eighteen activities, where the x-axis measures the amount
of training data per activity and the y-axis measures perfor-
mance in terms of EER. The results show that performance

TABLE 4. Authentication EER using voting with 5 examples (RF).

FIGURE 3. Learning curve that plots EER averaged over all eighteen
activities versus the amount of training data per activity. The
authentication models are generated using the Random Forest algorithm
and the phone and watch accelerometer data (Accels) without voting.

is quite sensitive to the amount of training data. Notably,
even with 170 seconds of training data the performance has
not reached a plateau—suggesting that substantial improve-
ments might be possible if additional training data could be
acquired.

B. IDENTIFICATION RESULTS

The identification task is a multi-class classification prob-
lem, which for this study includes fifty-one classes.
Table 5 presents the identification results that are based on
one 10-second test example. The results are only for the
Random Forest algorithm since the other algorithms pro-
duced inferior results. Specifically, the average accuracy over
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TABLE 5. Identification accuracy using one 10-second example (RF).

the eighteen activities, without voting and using the Accels
sensor combination, is 94.7% for Random Forest, 91.8% for
Decision Tree, and 77.8% for kNN.
As with the authentication results, Table 5 shows that aver-

aged over the 18 activities, the Accels and All sensor combi-
nations perform best, with identification accuracies of 94.7%
and 94.8%, respectively. The phone device alone can provide
fairly good performance (92.7%), but the watch alone pro-
vides much weaker performance (71.7%). As with authen-
tication, the gyroscope sensors consistently perform worse
than the accelerometer sensor. The identification results are
quite promising, given that with fifty-one classes the strategy
of random guessing would yield an accuracy below 2%. Note
that while the biometric performance does vary by activity,
the differences are quite modest: for the Accels sensor con-
figuration the performance per activity ranges from 90.5%
(standing) to 96.6% (clapping, eating pasta) and for the All
sensor configuration the values range from 89.9% (standing)
to 98.0% (jogging). The relative performance of each activity
for biometric identification is discussed in additional detail in
Section VI.
Table 6 provides the identification results when using a

voting strategy with five 10-second examples. As was the
case with the authentication results, the voting strategy yields
a substantial improvement for identification performance.
In fact, for both the Accels and All configurations, the major-
ity of the activities yield perfect (100%) performance. The
Accels and All sensor configurations also again perform best
over the eighteen activities. With the voting strategy, one
can achieve substantially better results when just using the

TABLE 6. Identification accuracy using voting (RF).

phone—a 98.9% accuracy versus only 92.7% without voting.
Performance with the watch is also much more competitive
(88.3% with voting versus 71.7% without voting), but still
does not perform nearly as good as with the phone sensors.

Identification accuracy will be impacted by the amount
of training data available. The learning curve for the iden-
tification task is provided in Fig. 4, which plots accuracy
versus the number of minutes of training data per activity.
The learning curve results are based on averages over all
eighteen activities and all fifty-one subjects, using Random
Forest and the Accels sensor configuration. The figure shows
that diminishing returns begin to set in once there is about
one minute of training data per activity—but nonetheless
the performance continues to gradually improve past this
point and does not reach a plateau even with 140 seconds of
training data. These results are encouraging since it indicates
that good performance is possible with a modest amount of
training data.

VI. BIOMETRIC EFFECTIVENESS OF ACTIVITIES

One contribution of this research is that it evaluates a
large number of physical activities, whereas almost all
motion-based biometrics research, as described in Section II
and demonstrated later in Table 9, focuses on a single activity.
In this section we evaluate the relative value of each activity
for use in biometrics. In making this determination the practi-
cality of the activity is considered along with its performance
as a biometric signature. In the context of assessing practical-
ity we assume that the activity will be performed on-demand.
In this context an activity is practical if it is easy to perform

133198 VOLUME 7, 2019



G. M. Weiss et al.: Smartphone and Smartwatch-Based Biometrics Using Activities of Daily Living

FIGURE 4. Learning curve that plots identification accuracy averaged over
all eighteen activities versus the amount of training data per activity.
Identification models are generated using the Random Forest algorithm
and the phone and watch accelerometer (Accels) data without voting.

by a large segment of the population and does not require
unusual equipment.
Biometric effectiveness is determined separately for

authentication and identification, since each yields different
biometric performance results. Performance is based on the
results without voting, since the improvements associated
with voting obscure many of the underlying performance
differences. In all cases biometric performance is measured
using Random Forest and by averaging the results for the
Accels and All sensor configurations, since these are consis-
tently the two best-performing sensor configurations. Since
the types of activities in each of the three main activity
groupings are quite different, we rank the activities within
each group separately. Table 7 provides the rankings, from
best to worst, for the activities in each activity group, with
the actual performance value denoted in parentheses.
From the non-hand-based activity group, walking per-

forms best and jogging performs second best for both authen-
tication and identification. This is notable since walking
is currently the most commonly used activity for motion-
based biometrics. While jogging performs nearly as well,
it is not nearly as practical as walking due to the amount
of physical exertion required. Interestingly, sitting performs
reasonably well for both tasks even though it does not entail
much motion—the minor shifts in position that occur must be
distinctive.
The next activity grouping is the general hand-oriented

activities. From this grouping, teeth, dribbling, catch, and
folding are the least practical on-demand activities because
they require equipment or materials that are not routinely
available. Typing, clapping, and writing are more practical,
especially since typing and writing are common in the busi-
ness environments that most often require authentication.
For example, it certainly would be practical to type on a
computer keyboard in order to authenticate one’s identity to
gain access to the associated computer. Clapping, because
it requires no equipment and can be performed by almost

TABLE 7. Identification accuracy without voting (RF).

everyone, is intriguing as a potential new activity for bio-
metrics. Clapping is similar in spirit to the finger snapping
activity studied elsewhere [10], although that work relied on
acoustic properties to form the biometric signature.

The eating activities are not useful for ‘‘on-demand’’ bio-
metrics, and hence are not discussed in detail. But it is
important to note that these activities have biometric perfor-
mance that is consistent with the other activities, and hence
they should help enable a system that performs continuous
biometrics based on activities of daily living. The activities
that are most commonly performed further demonstrate that
continuous biometrics based on one’s normal daily routine
should be feasible. For example, walking is an activity that
is generally performed every day and yields good biometric
performance, while typing and sitting are very common activ-
ities for today’s workforce.

In summary, for on-demand biometrics, the best activities,
based on performance and practicality, are: walking, typing,
and clapping—with writing lagging a bit due to poorer per-
formance. The good biometric performance of the sitting and
typing activities suggest that it will be possible to perform
continuous biometric authentication while someone is seated
at a computer. The relatively good biometric performance of
all eighteen activities further suggests that it may be possible
to perform continuous biometrics while a person performs
their normal daily routine (although the eighteen activities
certainly do not cover all possible activities).

As mentioned earlier, a system that performs continuous
biometrics as one performs their normal daily activities will
typically require two stages. The first stage identifies the
activity from the sensor data using an activity recognition
model, while the second stage applies the biometric model
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TABLE 8. Activity recognition performance (accuracy %).

for the corresponding activity. A recent study [11] utilizes
the same data set and activities as the study described in this
article. The activity recognition results from that study for
the Random Forest algorithm are summarized in Table 8. The
results are based on personal activity recognition models built
using data from the intended subject (personal models vastly
outperform impersonal/universal models built from a panel
of subjects [31]). The collection of labeled training data can
be done by the subjects themselves, as was demonstrated by
the self-trainingmode implemented in theActitracker activity
recognition system [37]. Table 8 shows that if the subject
has a smartphone and smartwatch then an average accuracy
of 94.4% can be achieved using either the All or Accels sensor
configuration—and that each activity can be recognized with
at least 91% accuracy. With only one of the two devices it is
still possible to achieve an average accuracy of about 89%.

VII. CONCLUSION

This study demonstrates that motion-based biometrics using
activities of daily living is feasible using a commercially
available smartwatch and/or smartphone. It also answers
the five research questions posed in Section I. To estab-
lish the research contributions of this study, Section VII-A
analyzes the differences between the current and prior stud-
ies, and shows that the prior studies are not as compre-
hensive and do not answer the five research questions.
The main conclusions of the study are then summarized in
Section VII-B and areas for future work are discussed in
Section VII-C.

TABLE 9. Summary of the most relevant biometrics work.

A. DIFFERENCES WITH PRIOR RESEARCH STUDIES

The key characteristics of the most relevant related work
are summarized in Table 9. The table is organized into four
main groupings that are separated by solid lines. Dashed lines
identify subgroupings. The last line in the table summarizes
the characteristics of the current study.

The first grouping, which consists of the seven studies
described in Section II-C, covers gait biometrics research that
utilizes a smartphone or smartwatch. The first four entries
utilize only a smartphone, while the last three utilize a smart-
watch. Only one of these seven studies utilizes both a smart-
phone and a smartwatch—and in that case the two devices are
only simulated. Also, only two of the studies include the gyro-
scope, and even the studies that utilize more than one device
and sensor only considered each in isolation. Furthermore,
only one of these studies [7] considered the identification
task and none of them analyzed the impact of the amount
of training data on biometric performance. The seven studies
also only considered the walking activity, whereas the current
study considers eighteen activities. We can conclude that
none of these seven studies fully cover any of the five research
questions posed in Section I.

The six studies included in the second grouping, which are
described in Section II-D, cover non-gait biometrics that uses
a smartphone and/or smartwatch. These studies differ from
the current study in several important ways. Four of the six
studies do not use the accelerometer or gyroscope and do
not implement motion-based biometrics, so they have little in
common with the current study. Beyond that, only one study
evaluates the identification task [29] or utilizes a smartwatch,
and none of the six studies analyze more than one activity.
Hence none of these six studies fully addresses any of the
five research questions that are the focus of the current study.

The two studies most similar to the current study include
the walking activity and either three [12] or five [30]
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additional activities of daily living. This is much less that the
eighteen activities evaluated in the current study and, more
importantly, none of the additional activities include diverse
hand-oriented activities such as typing, writing, brushing
teeth, and eating. Overall, one can conclude that the current
study is very different from prior research and is unique in its
ability to address five research questions posed in Section I.

B. SUMMARY OF CONCLUSIONS

This study shows that the best biometric performance occurs
when using the smartphone and smartwatch together, with
the accelerometer sensor on both devices performing about
as well as when the accelerometer and gyroscope on both
devices are used. The study also demonstrates that substan-
tial improvements in biometric performance are achieved
by using 50 seconds of data for evaluation rather than just
10 seconds of data. Biometric performance is also quite
sensitive to the amount of training data. The performance
for the authentication task improves rapidly as more train-
ing data is added, and the improvement was continuing
when the maximum of 170 seconds of data per activity
was reached. Identification performance similarly improved
rapidly but began to reach a plateau with 2 minutes of train-
ing data per activity. Overall, it appears that good perfor-
mance is achievable using relatively little training data. Also,
while most studies focus solely on authentication, this study
showed that identification is feasible using activities of daily
living—at least with fifty-one subjects.
The research in this article also showed that while different

activities have varying levels of biometric effectiveness, all
perform reasonably well and within a relatively narrow range.
Thus, biometric authentication and identification is feasible
with activities other than walking. When considering the
practicality of the activity, walking, typing, and clapping are
the best overall activities for on-demand biometrics. Given
that all the eighteen activities that were evaluated are use-
ful for biometrics, continuous biometrics using the naturally
occurring activities of daily living should be feasible. Prior
activity recognition research demonstrated that it is possible
to identify the eighteen activities used in this study with good
accuracy [11], [31], so it is feasible to implement a two-stage
approach—where activity recognition is used to identify an
activity and the associated biometric model is then applied to
authenticate or identify the subject.

C. FUTURE WORK

The research described in this article can be extended in
several important ways. One key way would be to include
many more activities and implement the two-stage biomet-
ric system described earlier, which would employ activity
recognition in the first stage. A further step would be to
fully implement continuous biometric authentication as a
subject performed their normal daily activities. Regarding
the research methods employed, it would be interesting to
apply and evaluate the use of one-class learning for bio-
metric authentication using the smartphone and smartwatch.

The current methodology employed neither feature normal-
ization nor feature selection, and there would be value in try-
ing both of these (although neither is likely to have any effect
on Random Forest, the best performing algorithm). Finally,
there has been great success in applying deep learning to
complex problems, and while the amount of data employed in
this study is not enormous, deep learning has the potential to
improve the biometric performance by automatically learning
new feature representations.

One of the goals of this research is to progressively move to
a behavioral biometrics system that operates continuously as
a subject performs their normal daily activities. The presumed
approach involves a two-stage process, where an activity is
recognized and then the biometrics model for that activity is
applied. An alternative approach is possible, where a gen-
eralized activity-based model is formed that works for all
activities. This would be an interesting area of future research.
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