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The 1918 influenza pandemic infected 27% of the global 
population and claimed 50 million lives1. As of February 2022, 
the COVID-19 pandemic had infected 6% of the global popu-

lation and claimed close to 6 million lives, both of which are prob-
ably gross underestimations2,3. Advances in genomic sequencing, 
versatile vaccine platforms and manufacturing at scale have led to 
the development of several vaccines and their rollout at an unprec-
edented pace4. However, at the beginning of the COVID-19 pan-
demic we were in a disconcertingly similar situation to 1918, with 
no known antiviral therapy and an untested public health response 
to rapid tracking of new infections and timely enactment of out-
break control measures at a global scale. Pre-existing pandemic pre-
paredness plans5 from bodies like the World Health Organization 
focused on manual clinical case reporting, contact tracing and 
nonpharmaceutical interventions, but to this day continue to over-
look the power of digital tools to rapidly scale detecting and trac-
ing the virus and monitoring the effectiveness of interventions6,7. 
Previous studies had demonstrated the utility of digital health tools 
like smartphone apps for infectious disease outbreaks8,9, yet the 
COVID-19 pandemic highlighted a persistent reliance on analog 
keystones such as in-person nasal swabs for COVID-19 testing10, 
fax machines11 for case reporting and paper vaccination cards12.

With over 6 billion global smartphone users, apps have the poten-
tial to generate population-wide, real-time and highly informative 
data13. Private sector companies already collect geolocation, demo-
graphic, personal interest, previous purchase and other types of data 
for targeted marketing strategies14. However, to successfully realize 
the potential of smartphone apps in the public health domain, the 
challenges of digital health illiteracy15, structural inequities16,17 and 
data privacy18,19 require investigation and mitigation. As soon as 
the initial case reports of COVID-19 were published from Wuhan, 
China20,21 and supported by preliminary studies on the potential of 
multilayer data collection for public health purposes22–24 there were 
widespread attempts to use smartphone apps and wearables—with 
varying levels of success.

Here we review and provide an assessment of the major digital 
app projects. The projects were selected based on coverage in both 
scientific and lay media and to highlight consistent constraints and 
challenges based on the authors’ discretion. We divide the field into 

three major categories: (1) outbreak epidemiology, (2) individual 
screening and (3) contact tracing.

Outbreak epidemiology
Traditional clinical diagnosis-based viral illness surveillance in the 
United States is delayed by 1–3 weeks25, giving outbreaks the chance 
to spread to susceptible populations before they are even identi-
fied. Smartphone app-collected data can be near real time, pull data 
from large numbers of people and have the potential to speed up 
the identification and localization of viral illness hotspots. This is 
important not only in regard to public health officials investigating 
outbreaks rapidly and increased public health prevention measures, 
but also for users to better understand their individual risk to make 
informed decisions about their day-to-day activities in an ongoing 
pandemic. We have divided epidemiology into (1) active user par-
ticipatory surveillance, (2) passive user population-level tracking, 
(3) individual risk assessment and (4) viral illness forecasting.

Participatory surveillance. Phone and text message-based surveys 
have been used in rural regions to collect syndromic surveillance 
data where web-based applications may be unavailable, and have 
shown potential in supplementing traditional surveillance data26. 
Numerous syndromic reporting platforms, such as Flu Near You27 
in the United States, InfluenzaNet28 in Europe, Reporta in Mexico29 
and others that allow citizen scientists to self-report influenza-like 
illness symptoms into a web- or app-based reporting platform have 
shown promise in matching the timing and magnitude of viral 
illness activity.

Given the overlap of symptoms between influenza and  
COVID-19, many of these participatory surveillance digital apps 
pivoted to tracking COVID-19. An app-based platform in Brazil30 
collected syndromic data from 861 participants and found that 
the participatory data matched spatial and temporal trends of tra-
ditional surveillance for COVID-19. This platform could be used 
to identify communities that should receive priority testing, and 
to improve surveillance in regions without health care facilities 
that traditionally collect surveillance data. A study among Swiss 
health care workers31 found that self-reported symptoms through a 
web-based platform could help monitor COVID-19 and other viral 
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illness activity. Similarly, the COVID Symptom Survey, launched 
in the United Kingdom and United States, enrolled over 4 million 
users and helped inform the symptomatology of COVID-19 (ref. 
32). In addition to improving surveillance timeliness, these platforms 
can also be used to conduct research on risk factors, vaccine effec-
tiveness, burden of disease and more29. The challenge with these 
participatory apps is recruitment, selection bias of participant pop-
ulation to those with access to these platforms, individual survey 
fatigue with routine symptom reporting, bias towards more report-
ing when someone is sick rather than healthy, and a lack of specific-
ity of symptoms to a particular viral illness.

Population-level tracking. Passive crowdsourcing of viral ill-
ness outbreak data from social media, lay media and web que-
ries33 can generate large-scale data that may also provide earlier 
warning signals than provided by traditional clinical surveillance. 
Healthmap’s Outbreaks Near Me34 platform automatically monitors, 
organizes and visualizes the location and time of infectious disease 
outbreaks reported globally from electronic media. This enables 
near-real-time visualization and identification of media-reported 
clusters by region, which can help public health responders iden-
tify new outbreaks more rapidly than relying on traditional surveil-
lance data35. The challenge is that, by the time the media report on 
unusual local outbreaks, viruses may have already spread within the 
community.

Kinsa Health’s FLUency program provided connected smart 
thermometers to schools to allow parents to track their child’s 
individual risk, and schools to identify grade-level trends for viral 
illness outbreaks, via an app. The Kinsa thermometers had >2 mil-
lion users, with publications indicating that the program improved 
real-time tracking of influenza-like illness36–38 and even predicted a  
COVID-19 outbreak in Florida39. Further validation of their 
COVID-19 map algorithms is necessary, especially for adjudica-
tion against case rates reported by public health departments as 
well as clinical trials showing how they may impact outbreaks from 
spreading within schools. This is especially relevant as new variants 
emerge and with varying uptake of vaccination and nonpharmaceu-
tical interventions among children.

Although smartphone apps have been used for outbreak track-
ing, the primary digital resources for COVID-19 activity were web 
dashboards such as the Johns Hopkins University (JHU) Covid 
Map2 and Outbreak.info40. The JHU Covid Map provides more geo-
graphically granular data than typically provided by government 
public health sources, showing county-level data in the United 
States and province-level data in China. Outbreak.info is unique in 
that it provides genomic surveillance data to enable rapid tracking 
of the emergence of new variants throughout the globe. Many of 
these apps and web dashboards (Table 1) harnessed the power of big 
data, but also demonstrated potential sources of bias41. A powerful 
confounder was the influence of media hype and increased interest 
in a topic rather than specific reports or searches from sick individ-
uals, resulting in misinformation. The impact of population-level 
tracking apps on morbidity and mortality reduction, public health 
resource allocation, prevention measures and individual risk reduc-
tion needs further evaluation.

Individual risk assessment. Several apps were intended to provide 
users with individual risk assessment based on population tracking 
in their area. The Safer-Covid42 app gives users information about 
individual risk based on age, location and type of activity, to help 
users make informed decisions about their daily risk. Although this 
app is backed by the “latest available research from the National 
Institutes of Health (NIH), CDC and others”, further transpar-
ency around the algorithm used is needed for validation. China’s 
Health Code43 surveillance app categorized citizens into three cat-
egories based on their risk assessment derived by mining location, 

payment platform and contacts data. Individuals in high-risk cat-
egories were barred from entry into certain public places, buildings 
and transit systems. Ideally, these individual risk assessments would 
also enhance use of nonpharmaceutical interventions such as mask 
wearing, social distancing, increased testing or stay-at-home mea-
sures. Future work needs to evaluate factors impacting their uptake, 
continued use and prevention of transmissions, especially in the 
context of potential breaches of data privacy.

Notably, none of the apps has assessed how users understand 
risk communication presented in the apps and how this informa-
tion may impact individual or population behavior and choices. 
Identification of areas where individuals are participating in 
high-risk behavior, such as lower masking, increased mobility or 
low vaccination uptake, may also improve forecasting of regions 
most likely to experience increased viral illness activity.

Viral illness forecasting. At the beginning of the pandemic, pub-
lic prevention measures relied on multiple forecasting intiatives44 
based on incident-case tracking and mathematical models, but few 
have truly been adjudicated with real-world data. These models had 
wide-ranging predictions and continued to be trained on clinical 
surveillance data that had their own limitations, such as changing 
testing strategies throughout the pandemic, variation in access to 
care/interventions across regions and changing syndromic defini-
tions as the pandemic evolved. These challenges need further inves-
tigation to help inform public health pandemic strategy, rather 
than hinder it. Other interesting approaches to outbreak forecast-
ing include surveillance at the pathogen level (Table 1). However, 
given the huge variations in predictions arising from different mod-
els over the course of the pandemic, real-time tracking may prove 
a complementary, or even superior, strategy for informing public 
health strategy.

Recommendations. The ideal outbreak tracking app would col-
late data from multidimensional data sources to provide users with 
(1) individual feedback on their probability of current infection or 
infection risk, (2) real-time infection rates in their local communi-
ties, work or school settings and (3) future predicted risk in their 
community based on forecasting models. This information needs to 
be useful to participants to maintain participation and engagement, 
with individualized action items or access to resources such as home 
testing, while also aggregating the data to inform early and localized 
public health action.

Individual screening with symptom checkers
Once an initial definition of the COVID-19 disease syndrome had 
been established20,21, multiple individual screening and symptom- 
checker apps were developed. In the early days of the pandemic, apps 
for symptom checking played a crucial role because not all infected 
individuals were tested for objective confirmation, due to either lack 
of access or scarcity of testing resources such as nasal swabs and 
testing reagents45. Notably, the US Centers for Disease Control and 
Prevention COVID-like illness case definition also evolved as the 
pandemic progressed, requiring updates and education. Individual 
screening apps could have readily been updated to keep up with new 
knowledge on the infection and might have even helped inform case 
definition updates by including symptoms that were not commonly 
reported initially or became more prevalent with new variants. In 
the text below we divide screening symptom-checker apps into  
(1) active or (2) passive based on the need for user engagement, 
including some notable hybrid approaches as well (Table 2).

Active screening. Active-screening apps require the participant to 
actively interact with the tool on a frequent basis. Their primary 
limitation is the self-reported nature of the data, requiring the indi-
vidual to actively participate in the study and report symptoms on 
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a daily basis. For these apps, reliance on continuous user reporting 
consistently ran into the challenges of smaller-than-expected sam-
ple sizes due to survey fatigue, waning user retention and partici-
pant bias, limiting the ability to make meaningful conclusions about 
local viral illness trends.

The first successful app of this kind was the ZOE Covid 
Symptom Tracker46, which crowdsourced daily symptom infor-
mation from active and sick participants in the United States and 
United Kingdom. Regardless of the aforementioned limitations, in 
the Covid Symptom Study the ZOE app was downloaded by 2.6 mil-
lion users in 28 days and cemented the high positive predictive value 
of anosmia (loss of smell) and ageusia (loss of taste) in the symp-
tomatology of COVID-19 (ref. 47). The performance of the devel-
oped algorithm in the identification of COVID-19 cases showed a 
sensitivity and specificity of 0.65 (0.62–0.67) and 0.78 (0.76–0.80), 
respectively; the area under the receiver operating area curve 
(ROC-AUC) was 0.76 (0.74–0.78). Further prospective evaluation 
is needed to determine the accuracy of predicted infections versus 
true positives, especially as the prevalence of concurrent seasonal 

respiratory viruses changes. Another early active symptom-checker 
app was the Apple COVID-19 (ref. 48) web app that helped people 
determine whether they needed a test. Although the app was widely 
used, there are no publications reporting the data collected to date.

Passive screening. To overcome the subjectivity of symptom 
surveys and the burden introduced by active screening, passive 
and objective biosensor data from wearables were used to detect 
COVID-19 and other viral illnesses. Passive screening by wearables 
requires minimal involvement of the individual, and initial studies 
demonstrated their potential to understand ambulatory physiology 
and identify subclinical forms of disease49. With an established set 
of symptoms for screening, wearable sensor manufacturers focused 
on expanding their indications to detect COVID-19.

The Digital Engagement & Tracking for Early Control & 
Treatment (DETECT)50 study app used a hybrid active and passive 
approach by incorporating Fitbit or any wrist sensor (smartwatch 
or fitness band) connected to Apple HealthKit or Google Fit data, in 
addition to symptom questionnaires. Over 72 days this app enrolled 

Table 1 | Digital epidemiology and tracking apps for COVID-19

App Country(ies) Developer(s) No. of users Outcomes 
published

Data sources

Active participatory surveillance

COVID Symptom Survey United States and 
United Kingdom

ZOE >4 million Yes Crowdsourcing

Cantonal Hospital of St. Gallen and 
the Eastern Switzerland Children’s 
Hospital

Switzerland Hospital 1,004 Yes Crowdsourcing

Aarogya Setu India Government of India >20 million 
downloads

No Crowdsourcing

Passive population-level tracking

FLUency/Healthweather United States Kinsa >2.5 million No Kinsa smart thermometer 
and JHU COVID-19 Data 
Repository

Outbreaks Near Me United States and 
Canada

Boston Children’s 
Hospital, HealthMap, 
Flu Lab and Ending 
Pandemics

>6.4 million No Crowdsourcing

Individual risk assessment

SAFER COVID United States CareEvolution N/A No Crowdsourcing

Health Code China Alipay and We Chat 900 million No Mining personal data 
related to location, payment 
platforms and contacts

Web-based dashboards

JHU Covid
Map

Global JHU N/A Yes, detected 
incident cases of 
COVID-19 before 
most countries

Web searches, social media 
mining and adjudication 
with local departments of 
public health

Outbreak.info Global Open source academic 
collaboration

N/A No Epidemiologic data, 
genomic data and published 
research

Global.health Global Open source academic 
collaboration

62 million No Epidemiological case data

Pathogen maps

Next Strain Global Open source N/A Feasibility, yes; 
outcomes, no

Multiple research groups

Spillover Global UC Davis, Global 
Virome Project

N/A No Global Virome Project

N/A, not available.
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>35,000 users and was the first to demonstrate that passive sen-
sor data improved prediction of COVID-19 in symptomatic cases 
when added to subjective symptom data23. The algorithm based on 
self-reported symptoms alone showed an AUC of 0.71 (0.63–0.69) 
in the detection of COVID-19 cases and, when combined with indi-
vidual wearable data, the performance increased substantially to 
an AUC of 0.80 (0.73–0.86; Fig. 1). The proposed algorithm now 
integrates a broader range of signals and provides an explainable 
framework to highlight the most important features triggering 
detection51. Analysis of resting heart rate (RHR) for symptomatic 
COVID-19-positive individuals in the DETECT cohort showed an 
average initial increase in RHR, followed by transient bradycardia 
and prolonged relative tachycardia that was sustained and resolved 
3 months after symptom onset52.

In follow-up studies, novel variations in biometrics have been 
identified for people who have received COVID-19 vaccinations53. 
In the DETECT cohort, individual RHR baseline increased in the 
days after vaccination with a peak on day 2 and return to normal on 
day 6. In individuals who received the Moderna Spikevax (mRNA-
1273, elasomeran) vaccine, in particular those who had previously 
tested positive for COVID-19 and individuals aged <40 years, a 
stronger effect was noted after the second vaccination dose than 
after the first (average change 1.6 versus 0.5 beats per minute). 
These studies exploiting continuous passive data from personal sen-
sors could potentially be used to identify inflammatory reactions 
and other prognostic measures, which might shed light on variation 
in vaccine-induced immune responses.

Other notable projects like the Stanford Wearables Study54 con-
comitantly developed a similar approach, supporting the use of 
wearables to detect COVID-19 even in presymptomatic individu-
als55–57. Another example is the Corona-Datenspende app, which 
was used by >500,000 Germans. This app had impressive engage-
ment due to its passive nature and led to the development of a fever 
map to identify regions in Germany with a higher than normal 
number of fever cases58. The Corona-Datenspende cohort also dem-
onstrated prolonged changes in vital signs for COVID-19-positive 
individuals, replicating and validating the results published on post-
acute SARS-CoV-2 infection by the DETECT study51,53.

More sophisticated sensors can now monitor respiratory rate 
and heart rate variability to improve detection accuracy, and some 
even have the ability to help distinguish between COVID-19 

and other viral illness59,60. Another creative approach is to coopt 
wearables already in use for other applications to gather data on  
COVID-19: for example, the Ava bracelet—a wearable device previ-
ously adopted as a fertility tracker—was used to monitor vital signs 
during SARS-CoV-2 infection61.

Recommendations. Taking all of the above considerations into 
account, the ideal sensor-based screening app should integrate several 
aspects currently presented in multiple apps. First, to be accessible to 
an under-represented and underserved population, it should be able 
to integrate the information from any sensor, including that from 
less sophisticated mobile devices with limited features. Similarly, the 
app should adapt not only to the desired level of participation of the 
individual, allowing the participant to easily self-report information 
on contact with positive individuals, test results or vaccine status, but 
also be able to function in the absence of this information. The data 
from the app should be interpretable, highlighting the most impor-
tant features used in the detection51. Most importantly, it should 
enable the detection of COVID-19 in real time based on past data57. 
Furthermore, the ideal app should be regularly updated to identify 
not only COVID-19 cases, but also other infectious and noninfec-
tious factors impacting one’s health, becoming a passive screening 
companion for the individual that can trigger questions or ask for 
feedback from the individual only when necessary.

Wearable technology continues to evolve, with smartphone 
camera apps now measuring facial plethysmography to detect vital 
signs62 and face masks using synthetic biology to allow SARS-CoV-2 
virus detection, enabling real-time testing and reporting through 
associated apps63. The next generation of digital apps for symptom 
tracking will continue to add another layer of objective granular 
biofluid chemistry data, such as sweat, saliva and gut microbiome, 
to supplement wearable sensor vital signs and subjective question-
naires9. From a care delivery standpoint, further investigation is 
needed to determine whether variation in biometric changes actu-
ally leads to testing and adjudication with a positive COVID-19 test 
in an individual and their known social contacts.

Contact tracing
As COVID-19 testing capabilities enabled the identification of 
greater numbers of SARS-CoV-2-positive cases, most national 
COVID-19 apps transitioned from case tracking to contact tracing. 

Table 2 | Individual screening apps with active and passive symptom checkers

App Country(ies) Developer No. of users Outcomes published Data sources

Apple COVID-19 United States Apple N/A No Web dashboard

COVID Symptom Tracker United Kingdom and 
United States

ZOE 4.7 million Symptoms can be used to 
predict COVID-19

Zoe app

DETECT United States and 
Australia

CareEvolution 39,000 in United 
States, 3,000 in 
Australia

Sensor data can be used to 
detect COVID-19 (with or 
without symptoms)

Fitbit, Apple watch, 
Google Fit

Stanford Wearables 
Study

United States Device-agnostic 5,200 (latest 
preprint, 3,246)

Sensor data can be used to 
detect COVID-19 (also in 
presymptomatic individuals)

Any consumer 
wearable

Fitbit United States Fitbit 187,000 Sensor data can be used to 
predict hospitalization

Fitbit

Whoop United States Whoop 99,000 Respiratory rate changed in 
COVID-19+ individuals

Whoop

Evidation United States Device-agnostic 7,000 Sensor data changes are 
different between COVID-19 and 
other viral illnesses

Any consumer 
wearable

Coronadatanspende Germany Robert Koch Institute 500,000 Validation of DETECT algorithm 
on blog

Survey plus any 
wearable
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Contact tracing was the most ubiquitously used COVID-19-related 
smartphone app function, despite the dearth of real-world out-
comes. The standard of care for local departments of public health 
was to manually conduct systematic interviews of infected indi-
viduals and then notify their exposed contacts64. With the rapid 
spread of COVID-19 and the relatively limited manpower available 
at public health offices, contact tracing apps provided a scalable 
alternative. An Oxford University study had already demonstrated 
that contact tracing could be an effective outbreak mitigation strat-
egy, but only on mathematical models24. Smartphone apps were a 
natural choice because smartphones can interact with each other, 
thereby detecting proximity between individuals using technolo-
gies like Bluetooth Low Energy systems and others. Additionally, 
global position systems, proximity to cell towers, Internet protocol 
addresses and international mobile equipment identity numbers 
could help geolocate movements of specific individuals65.

Contact tracing, however, comes at a substantial cost to data pri-
vacy and security. Private sector companies aggregate and use these 
data for marketing purposes, but the pros and cons of preserving 

data privacy by tapping into this network during a pandemic con-
tinue to be debated. During the pandemic adoption and public 
acceptance and implementation of contact-tracing apps depended 
on local geopolitics, existing technology infrastructure and cul-
tural differences. China66, South Korea66,67 and Taiwan68, due to 
geographic proximity to the incident cases of COVID-19, initially 
overlooked privacy concerns and retrospectively mined data from 
private sector organizations such as mobile payment platforms, 
social media, public transit records and closed-circuit television 
footage for outbreak tracking and tracing. Realizing the potential of 
collecting these data in real time through smartphone apps, many 
contact-tracing and exposure-notification apps were developed but 
ran into the rate-limiting step of requiring downloading and activa-
tion to be functional69.

In April 2020, Google and Apple joined forces to develop 
the Google Apple Exposure Notification (GAEN) system70 that 
allowed health agencies to provide exposure notifications with-
out the requirement of an app download. The GAEN system was 
intended for public health use but did raise major privacy concerns,  
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Fig. 1 | DETECT study results23. a–d, The DETECT study evaluated the added utility of wearable data to symptom questionnaires. a, Screenshot of symptom 
questionnaire on the DETECT study platform. b, The algorithm based on self-reported symptoms alone had a ROC-AUC value of 0.72. c,d, Passive wearable 
data from any wrist sensor connected to the Apple HealthKit or Google Fit (c) was then added to the subjective symptom questionnaire, and demonstrated 
a ROC-AUC value of 0.80 (d). CI, confidence interval; SE, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive value.
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leading to the development of privacy-preserving frameworks that 
contact-tracing apps could opt to follow. Most contact-tracing apps 
can be divided into (1) centralized, where matching and notification 
are done at a central server or (2) decentralized, where matching 
and notification are done by the individual smartphone (Fig. 2). We 
discuss these in turn below.

Centralized approaches. China’s Health Code app had >900 million  
users in >200 cities43 while India’s Aarogya Setu app had 50 million  
users within 13 days71, demonstrating the reach and speed of 
smartphone apps in large populations when promoted by a central 
authority. Other examples of centralized contact tracing apps are 
Singapore’s TraceTogether72 and Australia’s COVIDSafe73, which 
were downloaded by 17 and 25% of the nations’ populations, respec-
tively. Although there was significant outreach for all these cen-
tralized approaches, none met their targets and all had substantial 
challenges, including app download issues, hoax apps, incompat-
ibility with other apps, lack of access to smartphones in vulnerable 
populations and, most critically, data privacy and security con-
cerns and fears of invasive government surveillance74,75. Amnesty 
International even called out Bahrain’s BeAware, Kuwait’s Shlonik 
and Norway’s first Smittestop contact-tracing apps as “endangering 
the privacy and security of their populations”76. In Saudi Arabia, 
the Tawakkalna contact-tracing app became required for school 
entry for any child >12 years77. Notably, despite the higher national 
penetrance levels with centralized apps, there are still no outcomes 
publications as to whether these approaches were successful in miti-
gating waves of the pandemic. Although most unitary states and 
some democracies still use a centralized approach, most nations 
have pivoted to decentralized approaches.

Decentralized approaches. An example of the pivot from central-
ized to decentralized—and the most well-studied contact-tracing 
app—is the United Kingdom’s National Health Service (NHS) 

COVID-19 app. From its launch on 24 September 2020 to the 
end of December 2020, the app was downloaded onto 21 million 
phones and sent out 1.7 million notifications in England and Wales  
(Fig. 3). In a rare-outcomes evaluation publication on digital contact 
tracing, every 1% increase in the number of NHS COVID-19 app 
downloads led to a 0.8–2.3% reduction in the number of COVID-19  
infections78. Additionally, approximately one case was averted for 
each user consenting to notification of their contacts; in abso-
lute numbers, Wymant et al.78 suggest that 100,000–900,000 cases 
were averted by the NHS COVID-19 app over the 13-week study. 
The main limitations of the Wymant et al.78 study are confound-
ing factors that are encountered in any observational study, notably 
sociodemographic factors such as urbanization and socioeconomic 
status among others. However, the report clearly demonstrates that 
digital contact-tracing apps can be a powerful supplement to non-
pharmaceutical interventions during a pandemic.

Despite the availability of many other contact-tracing national-, 
state- and organization-level apps, the only other app with pub-
lished outcomes is the SwissCovid app. In a city-level (Zurich, 
Switzerland) retrospective analysis, 537 app users received a positive 
SARS-CoV-2 test result, 324 of whom had received and entered an 
upload authorization code79. This code triggered an app notification 
for 1,374 proximity contacts and led to 722 information hotline calls, 
with an estimated 170 calls receiving a quarantine recommendation. 
In this case, although there is a positive signal for contact-tracing 
apps leading to quarantine recommendations and even identifica-
tion of SARS-CoV-2, it represented only up to 5% of those captured 
by manual contact tracing, suggesting that contact tracing should 
not replace, but instead supplement, manual contact tracing to push 
nonpharmaceutical interventions.

In the United States, due to the lack of a national contact trac-
ing app, most states released their own versions of decentralized 
contact-tracing apps. A recent investigation on the uptake of US 
digital contact tracing80 showed that, as of May 2021, a total of 
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36.7 million Americans had opted into exposure-notification apps. 
Furthermore, although there have been no rigorous outcomes pub-
lications looking at the effectiveness of contact-tracing apps in the 
United States, media coverage has reported them as not worth the 
risk to privacy81.

Initial studies had suggested a target adoption rate of 60% for 
contact-tracing apps for pandemic mitigation; however, none of the 
US states hit this target82. Notably, although the NHS COVID-19  
app also did not meet the generally accepted adoption target of 
60%, it was still considered remarkably successful at 29%, suggest-
ing that further investigation of target adoption rates is needed. In 
this respect, some studies have reported alternative indices for mea-
surement83 to test association with hard outcomes while others have 
looked at data-driven testing programs informed by close-contact 
notification84. However, there is a dire need to better understand 
the utility of digital contact tracing in public health, and to ascer-
tain and optimize the adoption rate necessary to justify the potential 
risks to privacy.

Although prepandemic laws like the Health insurance Porta
bility and Accountability Act, the European Union’s General 
Data Protection Regulation and other local regulations such as 
the California Consumer Privacy Act provided some guidance, 
no overarching federal or global regulations specifically mention 
contact-tracing apps85,86. Data privacy concerns prompted the devel-
opment of privacy-preserving frameworks like the Decentralized 
Privacy-Preserving Proximity Tracing and Pan-European 
Privacy-Preserving Proximity Tracing that contact-tracing apps 
could opt to follow; at this present time, however, there is no 
accountability. Despite these initial steps, data privacy concerns 
continue to be the primary reason for low participation rates and 
the most common reason that countries have hit the pause button 
on contact-tracing app rollouts. Exacerbating the ethical debate was 
the use of apps and wearables for quarantine compliance. Examples 
include mobile geofencing in Taiwan, trackable wristbands in 

India and South Korea, trackable tokens in Singapore and even 
ankle shackles in Australia, none of which have outcomes reported 
in the literature available to justify such measures87. Overall, 
peer-reviewed studies are needed to evaluate the effectiveness of 
digital contact-tracing apps in other regions to justify the extent to 
which the technology was used during COVID-19.

Recommendations. The ideal contact-tracing app would work in 
real time, preserve data privacy, comply with local regulations, lead 
to actionable and measurable outcomes, be on local devices to avoid 
bandwidth issues and, for public health purposes, not require opt-
ing in. In addition, although contact tracing has largely been based 
on contact proximity, it should also take into account local biomet-
ric, pathogen and environmental data to improve and potentially 
rank the type of exposure and avoid issues like the ‘pingdemic’88. 
Although this may seem like a moonshot, with federated learning 
approaches enabled by edge computing and the evolution of decen-
tralized blockchain technology, the solution might be closer than 
we think.

Discussion and outlook
Despite the widespread use of smartphone apps as public health 
tools during the COVID-19 pandemic, and with vast amounts of 
data aggregated, very few reports have been published detailing 
outcomes that can inform pandemic strategy. Outbreak-tracking 
apps that harness big data from multiple sources can provide 
real-time data about viral illness trends that can be updated fre-
quently, but may be subject to confounders including greater media 
coverage and participation bias. Individual-risk apps are available 
but have no data on case reduction or increased use of nonphar-
maceutical interventions. Symptom-checker apps and wearables 
show promise with advances in sensor functionality for infection 
screening, but a need still exists for truly passive and unobtrusive 
individual screening systems that become a part of daily life and can  
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function as a supplementary public health tool during a pandemic. 
Contact-tracing apps are abundant, but only a few have associated 
peer-reviewed publications reporting outcome data that demon-
strate the success of contact tracing and exposure notification; in 
this context, is there enough evidence to justify the risks to data 
privacy and security of such apps? Furthermore, to begin a rigor-
ous evaluation of the efficacy of contact-tracing apps we need first 
to ensure the representativeness of the data and data standards. 
Although contact-tracing apps are abundant, use was less frequent 
in Africa and South America, highlighting the challenge of global 
inequity—especially as many low-to-middle-income countries still 
do not have the ability to fully vaccinate their populations. Given 
the ubiquity of these apps, further investigation is necessary around 
barriers to adoption, optimal privacy preservation within different 
geopolitical environments, effective implementation (engagement 
and retention) with cultural inclusivity, and overall effectiveness 
(considering varying technology infrastructures).

As we transition to the current state of the pandemic, with 
countries debating reopening and reclosing public spaces, it would 
be ideal to rapidly identify new COVID-19 hotspots and vaccina-
tion epidemiology to continue our fight against the SARS-CoV-2 
and its variants. COVID-19 testing has expanded from a limited 
number of real-time PCR and antibody tests at local departments 
of public health to being democratized and made freely available 
at retail pharmacies and pop-up tents/stores, and even for home 
use89. Many of these home tests have accessory apps to display and 
share results. With varying vaccine/booster acceptance rates in 
different areas of the world, apps can be used to battle vaccine hes-
itancy90 as we continue to push vaccine and booster uptake. Myths 
around vaccinations and their side effects can be rebutted using 
data and evidence from apps that monitor the physiologic effects 
of vaccines and infection in a cohort over time53. Furthermore, 
in the age of smartphone apps it is a travesty that paper vaccina-
tion cards, which can easily be falsified, were selected as the most 
common proof of vaccination. Digital vaccination apps should be 
promoted and can be used for vaccination tracking to finally solve 
the true percentage of vaccinated individuals required for herd 
immunity.

Data privacy and participant bias are consistent challenges 
of any global digital public health intervention. Although 
privacy-preserving frameworks exist, universal adoption with a 
top-down approach will always be a challenge. It might be time 
for developers of smartphone and wearable apps to build privacy 
preservation and deidentification options at the edge (that is, user 
level). Ethical frameworks and committees should be developed to 
oversee the use of these technologies at a global scale91. Accessibility, 
despite the global penetration of smartphones, will also never be 
100%, especially in lower-income, rural and low-technical-literacy 
populations. Furthermore, retention within health apps continues 
to be a challenge and can potentially skew data, with certain popu-
lations under-represented in biomedical research more likely to 
drop out without culturally customized initiatives for engagement. 
Another evolving challenge in the current phase of the pandemic is 
notification fatigue, which is the result of too many poorly work-
ing apps that are unnecessarily alerting the individual or notifying 
them to self-isolate, sometimes even creating a pressure not to get 
tested despite having symptoms. This pingdemic effect demon-
strates that even digital tools that work effectively have limitations 
when it comes to behavioral health. An outbreak-tracking app may 
mark every neighborhood as a hotspot, a symptom-tracking app 
may ask you to take a test every day or multiple times a day and a 
contact-tracing app may ask you to isolate all the time. Outcomes 
evaluations could inform how risk and outbreak communication 
can be tailored to have maximal impact.

This Review’s primary limitation is also its conclusion—
that there is a glaring need for more published reports detailing 
outcomes-related investigations analyzing the efficacy of COVID-
19 apps. Although we have attempted to provide a global review of 
major digital app projects, the final selection of projects was limited 
to what has been highlighted by both scientific and lay media cover-
age and the authors’ discretion.

In infectious disease, digital health tools and apps now open new 
opportunities for both individuals and public health systems. For 
asymptomatic individuals, apps make it possible to know when vital 
signs have changed from baseline, raising awareness of the potential 
for being infected; for public health authorities, the development of 
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a cluster of individuals from app data can enable early detection of a 
possible outbreak. They also have relevance in the context of phar-
macologic intervention; with the FDA clearance of subcutaneous 
monoclonal antibodies for the prevention of COVID-19 for indi-
viduals with known exposure and oral therapies for symptomatic 
individuals with COVID-19, app data could better guide the use of 
relevant treatment regimens. The combination of wearable sensor 
data notification and rapid home antigen testing results also prom-
ises to provide greater confidence in infection diagnosis, thereby 
facilitating the more efficient initiation of contact tracing.

Looking forward, the integration of the functionality of several 
different apps into a single, user-friendly one would be a substan-
tial practical advantage. Through digital tracking of continuous 
vital signs via wearable sensors, along with relevant clinical data, 
there now exists the potential for remote monitoring of patients 
with COVID-19, obviating hospital admission. This would require 
assessment and validation through large, prospective clinical trials 
that compare remote monitoring with standard care, to prove non-
inferiority and safety of digital surveillance. At the population level, 
an obvious and attainable future direction is to build public health 
systems with multidimensional inputs that include mobility data, 
comprehensive and fully encrypted electronic health data, wear-
able or environmental/atmospheric sensors for infectious agent 
wastewater surveillance, genomic sequencing data and real-time 
analytics (Fig. 4). These layers of orthogonal data would provide an 
enhanced view for any individual with a smartphone and web access 
as to their specific risk level, along with a better path to predict-
tion of new outbreaks. These represent exciting directions and chal-
lenges to develop, but there is little sign that they are being pursued 
and, despite the data being available, there is inadequate reporting 
of outcomes from apps in peer-reviewed publications. It is time to 
respect and optimize the power of these digital health tools.
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