
Chapter 26
Smartphone-Based Indoor Positioning
Technologies

Ruizhi Chen and Liang Chen

Abstract Global Navigation Satellite Systems (GNSS) have achieved great success
in providing localization information in outdoor open areas. However, due to the
weakness of the signal, GNSS signals cannot be received well indoors. Currently,
indoor positioningplays a significant role inmanyareas, such as the Internet ofThings
(IoT) and artificial intelligence (AI), but given the complexity of indoor spaces and
topology, it is still challenging to achieve an accurate, effective, full coverage and real-
time positioning solution indoors. With the development of information technology,
the smartphone has become more and more popular. With a large number of sensors
embedded in smartphones, it is thus possible to achieve low cost, continuity, and
high usability for indoor positioning. In this chapter, we focus on indoor positioning
technologies with smartphones, and in particular, emphasize the technologies based
on radio frequency (RF) and built-in sensors. The pros and cons of the technologies
are reviewed and discussed in the context of different applications. Moreover, the
challenges of indoor positioning are pointed out and the directions for the future
development of this area are discussed.

26.1 Introduction

Positioning is one of the core technologies of location-based services (LBS). It also
plays a significant role in many applications of the Internet of Things (IoT) and
artificial intelligence (AI). With the extensive urban development of recent years,
indoor positioning is becoming more and more important. According to a report
by the U.S. Environmental Protection Agency, people spend 70–90% of their time
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indoors (Weiser 2002). A wide area of applications has emerged for indoor emer-
gency rescue (Federal Communications Commission 2015), precision marketing in
shopping malls, asset management and tracking in the smart factory, mobile health
services, virtual reality games, and location-based social media (Sakpere et al. 2017;
Davidson and Piché 2016; Ali et al. 2019). By 2025, the global indoor LBS market
is expected to reach USD 18.74 billion (Globe Newswire 2019).

Global navigation satellite systems (GNSS) have achieved great success in posi-
tioning in outdoor open areas, and positioning accuracy is able to achieve a sub-meter
level with various assisted technologies (Kaplan and Hegarty 2005). However, due
to the weakness of signal power, GNSS signals cannot be received indoors suffi-
ciently to provide continuous and reliable positioning. In many cases, especially
in deep indoor areas, GNSS signals can even be totally blocked. Although various
technologies have been developed for indoor positioning, which includesWiFi, Blue-
tooth, ultra-wideband (UWB), pseudolites, magnetic fields, sound and ultrasound,
and pedestrian dead reckoning (PDR), it is still challenging to achieve an accurate,
effective, full coverage and real-time positioning solution indoors (Maghdid et al.
2016). The main reasons are the constraints of spatial layout, topology, and the
complex signal environment indoors (Zafari et al. 2019). To be more specific, the
reasons are summarized as follows.

The indoor environment is complex and radio waves are often reflected, refracted,
or scattered by obstacles indoors, which leads to non-line-of-sight (NLOS) propa-
gation. NLOS propagation can cause a large deviation error in the positioning and
seriously affect the localization accuracy.

Indoor space layout and topology are frequently changed and the number of
people in the indoor space varies, for example, between peak and off-peak hours.
Thus, signal propagation and the fields of sound, light, electricity, and magnetism
can all be changed accordingly. Such changes will greatly affect the results when
using the positioning methods with the feature or field matching.

The unpredictability of indoor pedestrian motions, such as frequent changes in
speed and direction (Morrison et al. 2012), and motion without any predefined paths
(Saeedi 2013) also increases the difficulty of continuous estimation of pedestrian
position.

With the development of information technology, the smartphone has become
more and more popular. As shown in Fig. 26.1, the smartphone has a large number
of built-in sensors, such as accelerometers, gyroscopes, magnetometers, barometers,
light sensors, microphones, speakers, and cameras, as well as Bluetooth chips and
WiFi chips. Such sensors were not originally developed for the use of the positioning.
Nevertheless, for applications in the mass market, it is promising to achieve low cost,
continuity, and high usability mode for indoor positioning with the built-in sensors
in a smartphone with appropriate technology (Davidson and Piché 2016).

In this chapter, we present a survey of indoor positioningwith smartphone sensors.
The state-of-the-art technologieswill be reviewed.Wewill comprehensively compare
the accuracy, complexity, robustness, scalability, and cost of different technologies,
and comment on the pros and cons of the technologies in the context of different
application scenarios. Moreover, from the perspective of developing the technology
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Fig. 26.1 Multiple sensors embedded in the smartphone

with high accuracy, high usability, high durability, and at low cost, we further discuss
the directions of future development in this area.

The organization of the book chapter is as follows: in Sect. 26.2 we review the
technologies of the smartphone for indoor positioning in detail. In Sect. 26.3 we
summarize the difficulties in indoor positioning. In Sect. 26.4 potential future trends
in smartphone indoor positioning are discussed. Conclusions are drawn in Sect. 26.5.

26.2 The State-of-the-Art Indoor Positioning
with Smartphones

This section focuses on the state of the art of indoor positioning technology with
smartphone sensors. The positioning technology can be classified into two categories:
positioning with RF and positioning with built-in sensors.
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26.2.1 Positioning Technology of RF Signals

Currently,WiFi, Bluetooth, andwireless cellular communication signals are themain
radio-frequency signals that smartphones support for the purpose of data transmis-
sion. The methods of indoor positioning vary due to differences in carrier frequency,
signal strength, and the effective transmission distance of the signals.

26.2.1.1 WiFi Positioning Technology

WiFi is a wireless local area network (WLAN) technology based on the IEEE 802.11
family of standards (IEEE Standard for Information Technology 2013). With the
advantages of flexibility, convenience, rapid deployment, and low cost, WiFi tech-
nologies have now been widely deployed indoors and have been used for indoor
positioning. There are basically two methods used for positioning withWiFi signals:
triangulation and fingerprinting.

In the triangulation method, the smartphone measures the received signal strength
index (RSSI) of each of multiple WiFi access points (APs), and then estimates the
distances between the smartphone and each of theAPs using amodel of long-distance
path loss (Liu et al. 2007). The model is a radio-propagation model that predicts the
path loss a signal encounters inside a building or densely populated area. However,
due to the strong reflections and scattering conditions indoors, RSSI measurements
are seriously attenuated bymultipath and NLOS signal propagation. Therefore, it is a
challenging task to accurately estimate the position with RSSI measurements and the
path loss model has given the various fading effects. In the method of triangulation,
the other way to get the distance between the transceivers is to measure the time of
flight (TOF; Schauer et al. 2013). Tests have shown that indoor multipath and the
time-varying interruption service in WLAN have a great impact on the accuracy of
TOF measurement. Ranging accuracy can be improved by proper design of filters
and by smoothing of the raw measurements.

In the fingerprint positioning method (Bahl and Padmanabhan 2000), the basic
idea is to match elements in a database to particular signal-strength fingerprints in the
area at hand. The method operates in two phases: the training phase and the online
positioning phase. In the training phase, a radio map is created based on the reference
points within the area of interest. The radio map implicitly characterizes the RSSI
position relationship through the training measurements at the reference points with
known coordinates. In the online positioning phase, the smartphone measures RSSI
observations and the positioning system uses the radio map to obtain a position esti-
mate. The advantage of the method is that it does not need to know either the exact
model of the channel attenuation between the transceivers or the coordinates of the
WiFi APs. The disadvantage is that the signal is easily modified by the surroundings,
the mismatch rate is relatively high in the open space indoors, and to build and update
the fingerprint database is a time-consuming process. The fingerprinting method has
been widely investigated in the literature. Recent surveys of the RSSI fingerprint
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method can be found by Khalajmehrabadi et al. (2017), He and Chan (2015), and
Davidson and Piché (2016). In general, the methods can be divided into three types:
deterministic approaches, probabilistic methods, and pattern-recognition methods.
The main factors affecting the accuracy of WiFi positioning include inter-channel
interference from different APs (Pei et al. 2012) and hardware differences in smart-
phones (Schmitt et al. 2014). Khalajmehrabadi et al. (2017), He andChan (2015), and
Davidson and Piché (2016) give a thorough summary of the factors that affect WiFi
fingerprint positioning. Currently, WiFi positioning systems using RSSI fingerprints
include RADAR (Bahl and Padmanabhan 2000), Ekahau (ekahau.com), and Horus
(Youssef and Agrawala 2008), and the positioning accuracy is about 2–5 m.

Benefiting from the performance improvement of the WiFi receivers, commer-
cial WiFi receiver modules are now able to provide channel state information (CSI;
Wang et al. 2016). CSI givesmore details on themultipath information of the channel
attenuation than the RSSI measurements, which only provide the power measure-
ment of a received radio signal. Research shows that using CSI information to build
the fingerprint database can effectively improve the accuracy of indoor positioning
(Wang et al. 2015b; Wu et al. 2012).

With the ratification of IEEE 802.11n standardization, the technology of multiple
antennae has been introduced to WiFi transmission. Thus, angle of arrival (AOA)
can be estimated in the WiFi positioning. The literature (Vasisht et al. 2016; Kotaru
et al. 2015) simultaneously estimates the AOA and the time of arrival (TOA) to
achieve positioning results with an accuracy of decimeter or centimeter, respectively.
However, such methods are applied in the AP base station and are not applicable to a
user-centric positioning with smartphones, in which only one antenna is embedded.

The main factor that limits WiFi fingerprint positioning in massive applications
is the difficulty in effectively constructing and adaptively updating the radio map,
which is both time and labor-consuming. The methods for reducing the costs of
building and updating the radio map include crowdsourcing (Zhuang et al. 2015),
LiDAR-based simultaneous localization andmapping (SLAM; Tang et al. 2015), and
the use of interpolation (Zhao et al. 2016). In addition, with the increasing attention
to the issues of information security and personal privacy (Chen et al. 2017), the
scanning rate of WiFi signals have been adjusted to 1/30 Hz or even lower, which
increases the latency for the positioning.

26.2.1.2 Bluetooth Positioning Technology

Bluetooth is a radio-frequency signal based on the IEEE 802.15.1 protocol, which
is mainly developed for wireless personal area networks (WPAN). It operates in the
2400–2483.5 MHz range within the same ISM 2.4 GHz frequency band as WiFi
IEEE 802.11 b/g. The transmission data is split into packets and exchanged through
one of 79 designated Bluetooth channels, each of which has 1 MHz in bandwidth.
Positioning with Bluetooth Classic (prespecification4.0) has used various techniques
from proximity to trilateration to fingerprinting. The positioning accuracy is about
4 m (Chen et al. 2011a, 2013, 2015). However, in the specification, the scanning
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interval of a mobile handset to the nearby Bluetooth beacons can be more than 10 s,
within which time the indoor pedestrian could travel 15 m or more. Due to the low
scan rate, positioning using Bluetooth Classic has not proved popular (Faragher and
Harle 2015).

In 2011,BluetoothLowEnergy (BLE),whichwas originally branded asBluetooth
4.0, was created. Compared to classic Bluetooth, BLE provides an improved data rate
of 24 Mbps and coverage range of 70–100 m with higher energy efficiency (Zafari
et al. 2015). BLE also has a very short connection time (only a few milliseconds)
and then goes into sleep mode until a connection is reestablished, which achieves
low power consumption. With this property, BLE can be powered by a single battery
which could last up to five years. Compared with WiFi, which is typically placed
near power outlets, BLE, with its own batteries, is thus free to place beacons to
provide good signal geometry with optimized signal coverage. In addition, with a
much higher scan rate thanWiFi, BLE can average out the occasional outliers caused
by interference or multipath effects, and improve the tracking accuracy.

At the moment, the most popular BLE beacon ecosystems are Apple’s iBeacon,
Google’s URI Beacon and Eddystone, and Radius Networks’ Alt Beacon. Apple’s
iBeacon system (Apple 2014), based on RSSI ranging, has a positioning accuracy of
2–3 m in a typical office environment. A Bluetooth antenna array system, developed
by Quuppa(2020), can achieve a sub-meters positioning accuracy. In January 2019,
a new specification of Bluetooth 5.1 enhances location services with its new feature
of direction-finding. With this new feature, it is possible that Bluetooth devices will
be able to pinpoint physical location to centimeter accuracy indoors (How-To Geek
2019).

26.2.1.3 Cellular Positioning Technology

The cellular network is originally designed for dedicated mobile communication
systems. Nevertheless, the large cellular communication infrastructure can still be
reused for positioning purposes, providing an added value to network management
and services (Del Peral-Rosado et al. 2017). In 2G/3G/4G mobile communication
systems, cellular positioning is achieved by a localization module implemented in
the base station, which is also known as the RAN (radio access network) posi-
tioning method. The most significant advantage of cellular positioning technology
is to achieve seamless indoor and outdoor positioning, while the disadvantage is that
the positioning accuracy is relatively low, generally in tens of meters to hundreds
of meters (Zhao 2002; Lakmali and Dias 2008). Ericsson uses a long-term evolu-
tion (LTE) signal to adopt the OTDOA (observed time difference of arrival) method,
and the positioning accuracy can reach 50 m, with a reliability of 97% (Ericsson
Research Blog 2015). But the positioning results cannot meet the needs of most
indoor positioning applications.

The upcoming fifth-generation (5G) of mobile communication systems are
expected to improve positioning accuracy in cellular networks, which is a benefit
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of the key features of 5G, such as small cells, device-to-device (D2D) communica-
tion, heterogeneous networks (Het-Net), massive multi-input multi-output (MIMO),
and millimeter-wave (mm-Wave) communication (Talvitie et al. 2017). In partic-
ular, through D2D communications, mobile stations or smartphones can determine
their locations in a cooperative manner, which would not only increase the local-
ization accuracy but also decrease the time delay. The massive MIMO technologies
will offer more possibilities for accurate directional measurements. Dense networks
with small cells will lead to a large number of line-of-sight (LOS) links, and higher
signal bandwidths will improve the accuracy of range measurements, and increase
the resolution of multipath.

26.2.2 Positioning Technology Based on Embedded Sensors

Built-in sensors for smartphones include accelerometers, gyroscopes, magnetome-
ters, barometers, light intensity sensors, cameras, microphones, etc. These sensors
are not designed for positioning, but measurements from such sensors can be
used for indoor positioning with proprietary methods. The methods include PDR,
geomagnetic matching, visual positioning, audio, and sound positioning.

26.2.2.1 Pedestrian Dead Reckoning

With the advances in micro-electro-mechanical system (MEMS) technology, more
and more low-cost inertial measurement units (IMUs) are integrated into smart-
phones. Accelerometers, gyroscopes, and magnetometers are among the most
popular sensors embedded; due to their low cost, their stability and measurement
accuracies are relatively low. It is therefore difficult to use the strap-down inertial
navigationmethod. As an alternative, PDR can be applied in indoor positioning using
themeasurements from low-costMEMS sensors (Robert 2013). Inmore details, PDR
uses an accelerometer to detect the number of steps, measures the walking speed,
and determines the heading by magnetometer and gyroscope, and then calculates the
relative position of the pedestrian by computing the speed and heading (Chen et al.
2011b; Deng et al. 2016).

The PDR algorithm (Fig. 26.2) is able to provide continuous positioning results.
Without the process of integration, it is a relatively simple but effective method to use
the raw measurements from the low-cost sensors. The difficulty of PDR lies in the
heading estimation, which is affected bymagnetic interference in the indoor environ-
ment. It is, therefore, necessary to integrate with other positioning algorithms, such
as WiFi, BLE, or geomagnetic matching, which are able to provide absolute posi-
tioning results, to improve the heading estimate as well as to reduce the accumulating
errors of relative positioning from PDR (Deng et al. 2016).
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Fig. 26.2 PDR system block diagram

26.2.2.2 Magnetic Matching (MM) Positioning Technology

MMpositioning technology takes themagnetic field as the signal for a fingerprint and
fulfills the indoor positioning by matching characteristics of the magnetic field in the
indoor environment. Similar to the process of WiFi fingerprinting, MM positioning
is also divided into two steps: to set up a geomagnetic fingerprint database, and to
match geomagnetic features for positioning. Because of the spatial correlation of the
magnetic field, contour matching, for example, dynamic time warping, can be used
in the MM to achieve more robust matching results. At present, most smartphones
are integrated with magnetometers, and the magnetic field can be obtained when
the phone is turned on. So, MM positioning technology is suitable for smartphone
positioning. However, indoor magnetic field signals often change, so it is difficult to
build an accurate fingerprint database of magnetic fields in practice. The University
of Oulu in Finland proposed an indoor positioning system, named Indoor Atlas,
which combines magnetic fields with built-in sensors (Thompson 2020), which is
able to achieve a positioning accuracy of 0.1–2 m.

26.2.2.3 Visual Positioning Technology

The visual positioning for smartphones is mainly based on monocular vision since
smartphones commonly use a monocular camera. One method is based on image
matching, where the positioning is computed by matching the current photos with
the photos stored in the image database. The methods of density matching and struc-
ture frommotion (SFM) can be used to match the image features in the image feature
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database. Another method is based on visual gyroscopes and visual odometer tech-
nology (Ruotsalainen 2012; Ruotsalainen et al. 2013). The visual gyroscope uses a
monocular camera to obtain a vanishing point of each image and uses a vanishing
point change of two adjacent images to obtain the heading change rate. The visual
odometer obtains the relative translation of pedestrians by matching photos taken
in time series. The challenges of using the monocular camera as a visual gyroscope
and visual odometer are in the sharp turns for the pedestrian where there are fewer
feature points for matching in photos. The literature (Ruotsalainen et al. 2016) lists
methods for merging visual gyroscopes and visual odometers with other IMUs.

Visual positioning technology can achieve decimeter-level or even centimeter-
level accuracy in scenarios with sufficient light and image features. When an optical
camera is combined with depth cameras (such as Google’s Tango technology), the
positioning accuracy can be further increased. But, in general, the algorithm of
visual positioning is computationally complex and has high power consumption.
With further improvement in the computation performance and storage capacity of
smartphones, the method is promising in pedestrian navigation.

26.2.2.4 LED Visible Positioning Technology

Visible light positioning can be divided into two categories: the first is to locate a
specific optical signal by modulating the light source. For example, an LED lamp
emits a high-frequency flicker signal that is invisible to the naked eye, and the LED
light signal is received by the smartphone sensors to calculate pedestrian position
information. The byte light positioning system (Ganick and Ryan 2012) is based
on such a principle, and the positioning accuracy can reach the one-meter level. The
second is basedon the pattern-matchingmethod,whichuses the time–frequency char-
acteristics of ambient light to establish the environmental light fingerprint database in
advance. In the real-time positioning phase, the measured light intensity is matched
with the ambient light fingerprint database to achieve positioning (Liu et al. 2014).
The built-in camera of the smartphone can sense light intensity and high-frequency
light information, so the above optical positioning technology can be easily applied
to indoor positioning of smartphones.

26.2.2.5 Ultrasonic Positioning Technology

Ultrasonic positioning technology uses the method of round-trip time ranging. The
most popular ultrasonic positioning systems are the Active Bat system (Ward and
Jones 1997) and the Cricket system (Priyantha et al. 2000). The positioning accuracy
of the Active Bat system is within 9 cm with a 95% confidence interval. Although
the ultrasonic positioning system has high positioning accuracy, the current smart-
phones have not been equipped with dedicated ultrasonic modules for transmitting or
receiving ultrasound signals. However, the microphones in the current smartphones
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can monitor ultrasonic signals with the frequency ranging from 16 to 22 kHz. Deter-
mining the user’s location with such ultrasonic signals has already attracted much
attention in the area of smartphone positioning (Ijaz et al. 2013). In order to improve
the accuracy of ultrasound indoor positioning, the main effort is to mitigate the echo
signals, which have severe effects on the TOA detection of ultrasound.

26.2.3 Positioning Technology of Multi-source Fusion

As seen from the above, different positioning methods have their pros and cons in
different scenarios of indoor positioning. For example, RF signals may have large
coverage, however multipath interference, which is common indoors, will cause
large positioning errors. Pedestrian-track estimation based on built-in sensors does
not depend on the infrastructure indoors, but the errors from the IMUs accumulate
over time. Currently, there has not yet been any method based on a single tech-
nology that suits all different scenarios of indoor positioning. Table 26.1 compares
the performance of various technologies for the smartphone positioning in terms of
positioning accuracy, complexity, robustness, scalability, and cost. Although there
are many sources available for indoor positionings, such as sound, light, electrical
signals, and magnetic fields, different positioning sources have their own limits and
the usability depends on the actual environment in reality. For example, the method
of WiFi fingerprinting requires a wide coverage of the signals with more APs and
less radio interference, while the method of magnetic field matching requires signif-
icant magnetic features in the place of interest, where magnetic interference benefits
positioning to some extent. As to the visual positioning, it works well in a bright
environment, while it cannot work effectively in dark places.

With the improvement of computing performance and storage capacity on smart-
phones, the sensor fusion technology to integrate multiple positioning technologies
has been a hot research topic in the field of indoor positioning with smartphones.
The methods are broadly divided into loosely coupled and tightly coupled. The basic
idea of the loosely coupled method is to fuse all the positioning results from different
sensors and get the estimate of the position at a time epoch. This kind of fusion is easy
to implement, but due to the heterogeneity of sensors in the smartphone positioning,
it is difficult to analytically compute the weights on the position estimation from
different sensors, which are sent to the sensor-fusion module. The tightly coupled
method is to fuse different parameters estimated from different types of sensors
and get the positioning estimate. At present, an effective way to implement tightly
coupled fusion is based on Bayesian inference, which includes Kalman filtering (KF;
Zhang et al. 2013), unscented Kalman filter (UKF; Chen et al. 2011c), and particle
filter (PF; Quigley et al. 2010). In these methods, the state model and the measure-
ment equations are first set up, and the moving states (position and velocity) of the
pedestrian have been inferred in sequence based on the parameters estimated from
different sensors, such as position, velocity, heading angle, and step size. The liter-
ature on sensor-fusion research includes: the hybrid positioning system with WiFi
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Table 26.1 Comparison of different positioning technologies of smartphone sensors

Source Precision Robustness Complexity Scalability Cost

WiFi 2–5 m with the
fingerprint
method, while
the
triangulation
method is
affected by
different
environments

Vulnerable to
environmental,
human body,
and other
interference

Time- and
labor-consuming
in building the
fingerprint
database

High Using
existed
facilities
with no
additional
cost

Bluetooth Fingerprint
method 2–5 m,
iBeacon,
antenna array
mode <1 m

Vulnerable to
environmental
interference

Fingerprint
matching is
time-consuming
and
labor-intensive

High,
iBeacon
distance
Less than
5 m

The cost of
antenna is
relatively
high, but
low cost
with beacon
technology

Infrared One to several
meters

Direct path
required

Medium High Medium
cost. It is
necessary to
set up an
additional
receiver
Hair device

LED 1–5 m Medium Medium High Low

Ultrasonic Centimeter High Low Low Medium,
extra
receiving
module
needed

Inertial
navigation

Depending on
the
characteristics
of the sensors,
there are
cumulative
errors over time

High Medium High Low

Geomagnetic 2–5 m Vulnerable to
environmental
changes

High High Low

Computer
vision

A few
centimeters to
several meters
depending on
the methods
applied

Medium,
affected by the
strength of the
ambient light

Very high High Medium
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magnetic field and cellular signal (Kim et al. 2014); WiFi positioning fused with
PDR results (Karlsson et al. 2015; Li et al. 2016); Bluetooth module, accelerom-
eters, and barometers used for 3D indoor positioning (Jeon et al. 2015); and WiFi
fingerprinting with PDR and magnetic field matching (Zhang et al. 2017). In addi-
tion, indoor maps are commonly used to assist indoor positioning. The positioning
system can reliably achieve meter-level accuracy by integrating the map-constrained
information with WiFi fingerprint and PDR positioning results (Wang et al. 2015a).
Ruotsalainen et al. (2016) provide a solution to infrastructure-free indoor navigation
by fusing the observations from IMUs, cameras, ultrasonic sensors, and barometer
with the PF algorithm. The average positioning accuracy is about 3m.Various sensor-
fusion positioning methods are compared in Table 26.2. The test results have already
shown that the accuracy and stability of the sensor-fusion systems are better than an
indoor-positioning system with a single technology.

26.3 Difficulties in Indoor Positioning

Using the method of sensor fusion, the positioning accuracy of a smartphone is able
to reach 2–5m, and it is possible to achievewithin 1m in some specific environments.
However, in general, it is still challenging to develop a technology with low cost,
fine precision, and high usability for indoor and outdoor seamless positioning. The
main difficulties of smartphone indoor positioning are summarized as follows.

26.3.1 Complex Channel Transmission and Spatial Topology
in Indoor Environments

For the positioning with RF signals, multipath interference and NLOS transmission
are the main errors for TOA-based measurements. However, due to the complex
topology of the indoor environment, the multipath effect and the NLOS conditions
are common andmore severe indoors,which introduces large positioning errorswhen
applying traditional RF positioning technologies developed for outdoor positioning.
For example, the relocation of the appliances and furniture indoors, the increase or
decrease of goods on shelves, and variations in the layout of the venue all affect the
signal transmission and the magnetic field of the indoor environment. Such changes
are the main difficulty for indoor positioning systems to maintain high accuracy. It
is challenging to automatically sense and recognize the changes of the radio and
magnetic fields incurred by the spatial and temporal changes of indoor topology, and
thus improve the self-learning and self-adaptive ability of the positioning environ-
ment by updating the positioning database, including the WiFi fingerprint database,
the geomagnetic fingerprint database, the image feature database, and the landmark
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Table 26.2 Comparison of various available sensor-fusion positioning methods

Fusion methods References Advantages Disadvantages

WiFi/PDR Karlsson et al.
(2015), Li et al.
(2016), Wang
et al. (2015b)

Solve the instability
problems, overcome
positioning error,
and thus improve
the reliability and
robustness of indoor
positioning

The workload of
constructing the
WiFi fingerprint
database is large

WiFi/magnetic field/cellular signal Kim et al.
(2014)

Reduced cost and
labor consumption
because magnetic
fields do not require
any pre-installed
infrastructure

Magnetic field is
affected by the
environment

Bluetooth
module/accelerometers/barometers

Jeon et al.
(2015)

It realizes 3D
positioning and
achieves a
significant
improvement of the
positioning
accuracy compared
to the use of the
Bluetooth RSSI
alone

Errors
accumulate over
time

WiFi/PDR/magnetic field Zhang et al.
(2017)

The positioning
accuracy and
system robustness
are greatly
improved

The sampling
time needs to be
controlled

IMUs/camera/ultrasonic/barometer Ruotsalainen
et al. (2016)

The method
provides beyond the
state-of-the-art
performance and is
anticipated to result
in a SLAM solution

It is affected by
the light
environment

information database. Automatic update for such metrics is still a problem that has
not been solved in the field of indoor positioning.

26.3.2 Heterogeneous Source of Positioning

As shown in Fig. 26.1, there are over 12 types of sensors embedded in smartphones,
including GNSS receiver modules, short-range RF transmitters, WiFi and Bluetooth
modules, or receivers and other embedded sensors, such as accelerometers, magne-
tometers, gyroscopes, barometers, light-intensity sensors, microphones, speakers,
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and cameras. However, except for the GNSS receiver modules, other sensors and
RF signal modules are not specifically designed for the purpose of positioning.
Although many methods have been developed for these sensors to estimate the
parameters of positioning, these measurements from different sensors are in essence
heterogeneous, due to the fact that they observe different parameters of positioning
(e.g., position, velocity, heading rate), different sampling rates, and different noise,
which are in essence heterogeneous. As discussed in Sect. 26.3.1, it is possible to
integrate different sensors that are embedded in the smartphone for indoor posi-
tioning. However, in order to achieve an optimal solution to sensor fusion for indoor
positioning, the following problems have to be tackled.

26.3.2.1 Synchronization of Signal Measurements

Different smartphone sensors work independently and may have different sampling
rates. For example, the scanning rate of the WiFi RSSI signal ranges from 1/3 to
1/30 Hz, while the sampling frequency of the accelerometer can reach 180 Hz. Even
with the same sampling rate, the sampling time instant may be different too. There-
fore, in order to compute position with the sensor-fusion algorithm, a synchronized
measurement obtained from different sensors in different time instants has to be
aligned to a specific time baseline. The baseline can be the main clock time of the
smartphones in the user-centric positioning or the network time of the cloud server
in a solution of network-centric positioning. To meet the requirement of most indoor
location services, the update rate of indoor location should be greater than or equal to
1 Hz. The interpolation method works well on the time alignment of asynchronized
measurements when the user is in the low-speed motion state (the motion speed is
less than 2 m/s), which suits the scenarios of pedestrian indoor navigation.

26.3.2.2 Different Accuracy of Sensor Measurements

There are over 12 types of sensors embedded in smartphones. Different sensors have
different measurement noise and quantification errors. Besides, there are different
methods for different sensors to measure the positioning parameters, and thus, the
measurement accuracy consequently varies. For example, MEMS sensors embedded
in smartphones are low cost, and the measurement accuracy of such sensors is very
poor, so they cannot be directly used in strap-down inertial navigation. But they can
be used in step detection, and provide walking speed and length with acceptable
accuracy. The indoor environment also has a different effect on different sensors.
Some sensors or modules, such as a Bluetooth antenna array, visual positioning, or
audio positioning, can provide fine-precision measurements of distances and angles
in small-scale indoor spaces. In large-scale areas indoors, these sensors may have
much larger measurement errors, whichmight lead to the failure of the positioning. It
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is therefore important to develop positioning algorithms that have enough flexibility
to intelligently integrate different sensors with different observation accuracies.

26.3.2.3 Inconsistency in Different Smartphone Terminals

Different smartphone manufacturers may use different chipsets or components for
the receiver modules or embedded sensors. Thus, the measurements from different
smartphones may be biased due to the differences in the hardware of terminals. For
example, different mobile phones have differences in the signal strength measure-
ment of the same WiFi base station. Some deviations are actually quite large, which
largely affects the positioning accuracy for fingerprinting-based positioning. Such
inconsistencies also happen to cameras andMEMS sensors in different smartphones.
A process of self-calibration can improve the consistency of the measurements from
different smartphones to someextent.However, suchdifference or deviation is critical
when considering fine-precision indoor positioning with accuracy within 1 m.

26.3.3 Limited Computing Resources on Mobile Terminals

As a handset, a smartphone is limited in its computing and storage capacity and
power supply. Although the computing performance of smartphones has recently
been increasing in accordance with Moore’s Law, smartphones already perform
multiple functions—phone calls, positioning, assistance with daily work, recreation,
etc.—all of which demand a portion of computing and power resources. From the
point of view of energy saving, it is therefore not suitable for the smartphone to keep
running complicated positioning algorithms for a long time. Though some complex
positioning algorithms such as visual positioning and particle filter are gradually
implemented in smartphones, more complicated algorithms related to deep learning
and AI are still inappropriate for the handset platform and will need continuing
upgrade of the computation resources in smartphones in the future.

26.4 The Development Trends of Indoor Positioning
Technology

Indoor positioning is one of the hot research topics in academia and industry. Google,
as one of the leading IT companies, has promoted visual positioning service (VPS) as
its core technology, which fully demonstrates the importance of indoor positioning
in the future application of AI. Other internationally renowned IT companies, such
as Apple, Baidu, Huawei, and Alibaba, have all listed indoor positioning as one
of their strategic technologies. From the perspective of developing the technology
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with high accuracy, high utility, and low cost, the future directions of smartphone
indoor positioning may include new positioning sources, effective fusion methods
on heterogeneous positioning technologies, and cooperative positioning based on
geographic information systems (GIS).

26.4.1 Explore New Positioning Sources for Fine-Precision,
High-Utility Smartphone Indoor Positioning

More andmore sensors are integrated into smartphones, providing the opportunity to
develop new positioning technologies. Among them, audio positioning is one of the
promising methods to achieve high-accuracy indoor positioning with smartphones.
The position is determined bymeasuring the TDOA from the sound transmitter to the
smartphone. The frequency for audio positioning can be set between 16 and 21 kHz,
which is within the working frequency of the microphone, while above the frequency
of audible sound. The advantage of sound positioning is that the requirement for time
synchronization is not as strict as that for RF positioning. Because the speed of sound
in the air is about 340m/s, the time difference between acoustic transmitters is within
0.1 ms. At this time, the error of acoustic positioning is within 3.4 cm, although that
is a quite large error for RF positioning.

Light-source coding and positioning is another candidate method for high-
accuracy positioning with smartphones. The location of the smartphone is deter-
mined based on an LED light installed on the ceiling with on/off signals as the
positioning source. By rotating the LED light, such a code has a unique pattern
in each sector, which can be utilized by smartphone light sensors for positioning
(Fig. 26.3). By measuring the relative position of the mobile phone in the sector,
positioning accuracy of 5–10 cm can be achieved without changing the hardware of
the mobile phone.

In terms of RF signal, Bluetooth 5.1 and 5G signals will play an important role
in indoor positioning. Bluetooth technology has the characteristic of low power
consumption, andBLE5.1 has enhanced the indoor positioningwith an angle-finding
property, which will achieve sub-meter. 5G-based wireless positioning technology
is likely to become one of the core technologies for future indoor positioning, as
it has explicitly announced indoor and outdoor positioning accuracy to be better
than 1 m (Koivisto et al. 2017; Laoudias et al. 2018). UWB signals have recently
been integrated into Apple’s smartphone. It is believed that UWB positioning in
smartphones will attract more interest in applications.

Visual positioning based on cameras is still a promising method to achieve high
accuracy with decimeter-level or even centimeter-level positioning errors, provided
that the ambient lights and image features are sufficient. By integration with a depth
camera, the visual positioning accuracy can be further improved, which has been
verified inGoogle’s Tango technology.However, the computation complexity is high,
in particular in the processes of feature detection, image matching, and AI-related
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Fig. 26.3 Positioning with light coding

algorithms. With the 5G wireless communication systems coming into operation,
their property of large bandwidth and low latency will allow smartphones to upload
their photos to a cloud server, and get the positioning results from the server in real-
time. It is, therefore, possible that all complicated algorithms will be computed in a
high-performance cloud server.

Table 26.3 briefly analyzes the promising indoor positioning technologies
mentioned above. Affected by the complex environment of indoor positioning,
different positioning methods have their advantages and disadvantages in terms of
positioning accuracy, reliability, availability, etc. In order to achieve continuous posi-
tioning estimates, fine-precision positioning technologies should intelligently fuse
with each other.

26.4.2 Fusion of Heterogeneous Positioning Sources

At present, the technical development trend in the field of indoor positioning is to
use a reliable estimation method to effectively integrate two or more positioning
sources, to improve the accuracy and availability of the smartphone positioning
system. In terms of the sensor fusion for indoor positioning, a complete solution
needs to be developed, which should integrate the steps of heterogeneous hardware
calibration, high-accuracy position estimation from a single technology, and the
intelligent sensor-fusion method with the heterogeneous smartphone sensors. One
possible way is to consider using the control points in the tightly coupled fusion
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Table 26.3 Characteristics and function of future technologies for indoor positioning

Advanced technology Characteristics Function Accuracy

Visual positioning It is basically
SLAM
technology and
able to perceive
changes in
surroundings and
image features. It
needs ambient
lights and
sufficient features

It provides
fine-precision
positioning and
attitude
estimation for
multi-source
hybrid
positioning and
provides initial
information for
PDR. It is also
able to update the
database from
crowdsourcing

Decimeter
accuracy in the
scenarios of
significant image
features

RGB-D depth camera positioning The depth
information can
be obtained and
by using the
method of angle
and distance
intersection, it is
able to achieve
decimeter level
positioning
The current price
and power
consumption are
high, but in the
future, it is likely
to be more
popular in mobile
phones

The reliance on
ambient light and
image features is
reduced. So, it
can be used as a
complement to
visual
positioning with
optical cameras

Decimeter

Light-source code positioning Fine precision
and low power
consumption on
the smartphone
side, and suitable
for indoor open
areas

As one of the
main methods
for smartphone
positioning in
open areas
indoors

Decimeter

Fine-precision positioning based on
new RF signals

Wide coverage
and high
availability, but
suffers severely
from multipath
and NLOS errors

Provides
fine-precision
positioning
results in a large
space and the
mainstream
method of
positioning with
high availability

Sub-meter

(continued)
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Table 26.3 (continued)

Advanced technology Characteristics Function Accuracy

Sound indoor positioning Independent of
lighting and
wireless base
station; but needs
special sound
transmitters for
positioning

Complement to
the technology
with visual and
RF positioning.
But not effective
for car parking in
the underground
where the sound
cannot penetrate
into cars

Decimeter

method, where the control points are estimated from the high-accuracy positioning
techniques mentioned in Sect. 26.2. To achieve a hybrid positioning solution with
stability and reliability, it is also important to design appropriate filteringmethods and
cross-validation methods to identify the errors from heterogeneous measurements,
in the case that the positioning sources are sufficient.

26.4.3 GIS-Based Semantic Constraint Location
and Semantic Cognitive Collaboration Positioning

Currently, the research topics of GIS have gradually shifted from outdoors to indoors.
Indoor GIS can on the one hand enhance the position estimates with indoor maps and
indoor features, and on the other hand, fully utilize the potential value of indoor land-
marks, providing semantic positioning capabilities with space constraints. However,
all these supports are insufficient due to the lack of high-accuracy coordinates in
current indoor GIS. Therefore, to establish a basic indoor GIS for a fine-precision
intelligent indoor positioning system, the following key technologies need to be
considered and properly addressed: (1) an indoor GIS model with a unified space–
time reference system; (2) a simultaneous indoor modeling and positioning method
with high-accuracy real-time coordinate computation; (3) an automatic update and
instantaneous modeling method for maps using crowdsourcing; and (4) real-time
visual positioning and 3D modeling with indoor semantics. At present, a new direc-
tion of indoor GIS research includes GIS-based semantic constraint positioning and
semantic cognitive positioning.

26.5 Conclusions

Indoor positioning is one of the core technologies in the era of IoT, AI, and
future super-AI (robots + human). Currently, smartphone-based indoor positioning
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technologies include RF positioning and sensor-based positioning. Many different
methods have been developed for indoor positioning. However, all these technolo-
gies developed so far have their own shortcomings because they are affected by the
complexity of space topologies, the heterogeneous data, and the limited computation
capability from mobile terminals, and thus, are limited for developing a ubiquitous
positioning solution. In order to meet the requirements of low cost, high accuracy,
high usability, and high durability for mainstream applications, it is necessary to
develop precise positioning solutions that are capable of adaptively fusing accurate
observables, including visual images, light signals, acoustic signals, and RF signals.
These precise locations can serve as the control points to prevent the propagation of
positioning errors. To achieve full coverage, positioning solutions such as pedestrian
dead reckoning and magnetic matching are needed to be integrated with the system.
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