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Abstract: For appropriate treatment, accurate discrimination between seborrheic dermatitis 

and psoriasis in a timely manner is crucial to avoid complications. However, when they occur 

on the scalp, differential diagnosis can be challenging using conventional dermascopes. Thus, 

we employed smartphone-based multispectral imaging and analysis to discriminate between 

them with high accuracy. A smartphone-based multispectral imaging system, suited for scalp 

disease diagnosis, was redesigned. We compared the outcomes obtained using machine 

learning-based and conventional spectral classification methods to achieve better 

discrimination. The results demonstrated that smartphone-based multispectral imaging and 

analysis has great potential for discriminating between these diseases. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Seborrheic dermatitis and psoriasis are common chronic inflammatory skin diseases that 

present with erythematous scaly skin lesions. Approximately 3% of individuals worldwide 

currently experience these diseases, and more than 3 million individuals are treated in the 

USA and United Kingdom each year. Seborrheic dermatitis typically occurs on the scalp or 

the face, usually manifesting as oily and greasy inflammation. Its symptoms include itching, 

reddish skin, and flaking on greasy skin areas [1]. Conversely, psoriasis, which is now 

considered as a multifactorial immune-mediated disease, is manifested by itching, reddish 

skin, and silvery-white scaly plaques on the scalp, face, or extremities [2,3]. 

Although neither seborrheic dermatitis nor psoriasis is fatal to humans, both diseases are 

associated with significant physical and psychological burden. Accurate/preemptive diagnosis 

of these diseases is thereby crucial to control their symptoms and predict their prognosis, in 

terms of their chronic and relapsing properties and associated comorbidities, such as 

metabolic syndrome [4,5]. For this purpose, an advanced tool capable of diagnosing the 

diseases at home, a local hospital, or elsewhere with high accuracy would be beneficial for 

better treatment and management. However, using a conventional dermascope, the 

discrimination between seborrheic dermatitis and psoriasis has been clinicopathologically 

very challenging. In particular, when these diseases occur only on the scalp, the differential 

diagnosis between them is more challenging even among experienced physicians owing to 

their similar features [6,7]. 
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Recently, dermatologists have been exploring new methods for better diagnosis of 

seborrheic dermatitis and psoriasis. Among them, a videocapillaroscope, which provides high 

magnification, has been used to examine and classify the morphological shape of the 

capillaries to distinguish the diseases accurately [8,9]. However, the shape of the capillaries is 

immensely sensitive to external environments, and as a result, the outcomes have been shown 

to vary [10]. Moreover, the diagnosis using the device can be only realized by dermatologists 

in a hospital. Thus, it may not be suited for preemptive diagnosis of the diseases under 

ubiquitous environments. Therefore, development of more advanced tools is needed for better 

mobile diagnosis of seborrheic dermatitis and psoriasis on the scalp. 

Spectral imaging and analysis techniques have been widely used for the non-invasive 

diagnosis of diseases occurring on the skin and scalp [11,12]. In particular, they offer high 

sensitivity and specificity in the detection of various diseases, which is not possible using 

monochrome and RGB color [13–16]. For this reason, spectral imaging and analysis may also 

be applicable in discriminating between seborrheic dermatitis and psoriasis on the scalp with 

high accuracy, since it can differentiate slight spectral differences between diseases with 

different biological compositions. However, conventional spectral imaging systems are 

relatively bulky; thus, they need to be miniaturized and combined with information 

technology (IT) for self-diagnosis of these diseases. Therefore, for the expedient self-

diagnosis of seborrheic dermatitis and psoriasis on the scalp, a new type of multispectral 

imaging system based on IT as well as a relevant spectral analysis technique is needed. 

Thus, we built a smartphone-based multispectral imaging system for scalp care and 

investigated the potential of various multispectral imaging and analysis methods to 

discriminate between seborrheic dermatitis and psoriasis on the scalp using the system. The 

smartphone-based multispectral imaging system consisted of an external CMOS camera and a 

light-emitting diode (LED) array, including narrow bandpass filters. The system was 

connected to a smartphone for image acquisition, image transfer, and image analysis in a 

server and classified image display [17]. After evaluating the performance of the system, it 

was employed to discriminate between seborrheic dermatitis and psoriasis on the scalp of 

patients. Moreover, to achieve a more accurate diagnosis of the diseases, various machine 

learning-based and conventional spectral imaging and analysis techniques were applied for 

spectral classification, and their outcomes were compared. 

2. Methods 

We built a smartphone-based multispectral imaging system with an external CMOS camera 

for the diagnosis of seborrheic dermatitis and psoriasis on the scalp. This system consisted of 

a multispectral imaging module, which included an LED array, various optical components, a 

CMOS camera (See3CAMCU50, E-CON SYSTEMS) connected to the smartphone, and an 

interface circuit for synchronization between the CMOS camera and the LED array, and a 

system control/image analysis module, which included a smartphone (SM-G935, 

SAMSUNG) and a server [Fig. 1(a)]. 

The LED array included nine white LEDs (Iws-351-white, ITSWELL). Eight of the LEDs 

were utilized for multispectral imaging, and one LED was utilized to examine the regions of 

interest. After a linear variable filter (LF102499, DELTA OPTICS) was diced to construct 

narrow bandpass filters, each diced linear variable filter was placed prior to each LED to 

select the wavelengths of the light emitted from the LED. The sizes of the diced filters were 

measured to be 3.8 mm (width) × 3.3 mm (height) × 2.5 mm (thickness). The center 

wavelengths of the filters were ~453 nm (FWHM: 9.3 nm), ~493 nm (FWHM: 11 nm), ~520 

nm (FWHM: 12.3 nm), ~545 nm (FWHM: 13.3 nm), ~580 nm (FWHM: 15.6 nm), ~605 nm 

(FWHM: 16.2 nm), ~638 nm (FWHM: 16.6 nm), and ~663 nm (FWHM: 16.8 nm) [Fig. 

1(b)]. The filtered light emitted from the selected LED was illuminated onto the skin regions 

of interest on the scalp after passing through a polarizer oriented in the vertical direction. The 

reflected light from the skin passing through another polarizer, oriented in the horizontal 
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2.1 Spectral classification using conventional linear distance measures and machine 
learning techniques 

To discriminate between seborrheic dermatitis and psoriasis on the scalp, machine learning 

techniques, including the support vector machine (SVM), logistic regression (Logi), and 

multilayer perceptron (MLP) techniques, and conventional linear distance measurement 

methods, such as the Euclidean distance (ED) and spectral angle mapper (SAM), were 

applied for spectral classification. Before the obtained image cube was applied for spectral 

classification, it was preprocessed via calibration, as shown previously [19]. For spectral 

classification of the spectral signature of every pixel, the similarity between the spectral 

signatures and reference signatures, extracted from the skin lesions of interest, was calculated 

using the trained model based on the machine learning techniques and the distance 

measurement methods [20,21]. 

In the conventional linear distance measurement methods, the smaller the similarity values 

of each reference, the closer it is to the reference signatures. The similarity between the 

spectral signatures and reference signatures calculated using the ED and SAM can be 

demonstrated as the straight distance (ED) and the angle (SAM) between two vectors [Figs. 

2(a) and (b)] [19]. However, their construction model procedures are quite different from the 

machine learning-based techniques. For spectral classification using the machine learning 

techniques, a training data set, which includes the ground truths in advance, was first trained 

using the methods to construct models suited for the classification of two reference signatures 

with high accuracy, unlike the traditional methods with fixed models for calculating the 

similarities. The spectral signature was considered to be a vector, and the similarity was 

calculated using an equation derived from their own function in the machine learning 

techniques. In the machine learning techniques, the process for constructing each machine 

learning model was different from each other. For example, Logi uses the sigmoid function 

for building an optimized model for the binary classification [Fig. 2(c)], whereas the SVM 

finds the best hyperplane, which can distinguish the given data set successfully with low 

errors [Fig. 2(d)]. Conversely, the node, known as neuron, in the MLP model receives some 

features from the previous nodes by multiplying its weights with the activation function, and 

then the final output of the transferred values is compared to the ground truths [Fig. 2(e)] 

[22]. The machine learning models were implemented into the server using Scikit-learn 

library. Here we determined the key parameters for each method to achieve the best outcome 

using a grid search method [23]. For the logistic regression, the inverse of regularization 

strength parameter was determined to be 0.0303. For the support vector machine, the kernel 

type was linear, and the penalty parameter C was 0.1. For the multilayer perceptron, the 

hidden layer size was 4, 4, 4, the activation function was ‘Identity’, the learning rate was 1.0, 

and the optimizer type was ‘Adam’. 

For the training and testing of the machine learning models, 18000 spectral signatures 

obtained from the lesions of interest were utilized as the training set, while the unused 2000 

spectral signatures were utilized as the test set. In addition, 10-fold cross-validation was 

performed to assess the generalization of the models [20]. The cross-validation technique is a 

conventional validation technique for quantitatively evaluating the outcomes of a trained 

model. 
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For the quantitative analysis of the models, the ROC-AUC, accuracy, sensitivity, and 

specificity of the models were compared. All the models showed great performance in the 

discrimination between the diseased and normal skin regions. Among them, the SAM model 

yielded the best outcomes in the discrimination between the diseased and normal skin regions, 

unlike in the discrimination between psoriasis and seborrheic dermatitis. The ROC-AUC, 

accuracy, sensitivity, and specificity of the SAM model were 0.98, 95, 90, and 100 for the 

discrimination between psoriasis and normal skin. Further, the ROC-AUC, accuracy, 

sensitivity, and specificity were 1.00, 100, 100, and 100 for the discrimination between 

seborrheic dermatitis and normal skin (Tables 2 and 3). The ROC-AUC and accuracy of the 

SAM model were higher than those of the other models. 

Table 2. Quantitative analysis of the constructed model for psoriasis versus normal skina 

Model ROC-AUC Accuracy(%) Sensitivity(%) Specificity(%) 

ED 0.81 82.5 80 85 

SAM 0.98 95 90 100 

Logi 0.96 95 90 100 

SVM 0.94 95 90 100 

MLP 0.92 95 90 100 

busing the Euclidean distance (ED), spectral angle mapper (SAM), logistic regression (Logi), support 

vector machine (SVM), and multilayer perceptron (MLP) with reference spectral signatures in the 

discrimination between psoriasis and normal skin on the scalp (total number of patients = 40, number 

of patients with psoriasis = 20, and number of normal subjects = 20). ROC-AUC, area under the 

receiver-operating characteristic curve 

Table 3. Quantitative analysis of the constructed model for seborrheic dermatitis versus 

normal skinc 

Model ROC-AUC Accuracy(%) Sensitivity(%) Specificity(%) 

ED 0.96 90 95 85 

SAM 1.00 100 100 100 

Logi 0.99 97.5 95 100 

SVM 0.99 97.5 95 100 

MLP 0.99 95 90 100 

cusing the Euclidean distance (ED), spectral angle mapper (SAM), logistic regression (Logi), support 

vector machine (SVM), and multilayer perceptron (MLP) with reference spectral signatures in the 

discrimination between seborrheic dermatitis and normal skin on the scalp (total number of patients = 

40, number of patients with seborrheic dermatitis = 20, and number of normal subjects = 20). ROC-

AUC, area under the receiver-operating characteristic curve 

4. Discussion 

In this study, we demonstrated the potentials of mobile multispectral imaging and analysis for 

discriminating between seborrheic dermatitis and psoriasis on the scalp. The developed 

system was capable of obtaining multispectral images within the wavelength range of 453 - 

663 nm. The multispectral images were recorded using developed android applications. An 

image cube could be transferred to a server for discriminating between seborrheic dermatitis 

and psoriasis on the scalp, followed by the display of the resulting image on the smartphone. 

Moreover, it allowed self-monitoring of the diseased regions on the scalp through the 

smartphone. A previous report has shown that a smartphone-based multispectral imaging 

system has the potentials for diagnosing various skin lesions. However, the previous system 

showed some limitations in the examination of skin lesions [19]. For example, when the 

system was applied to examine skin lesions on the scalp, patients could not monitor the skin 

lesions of interest on a smartphone display. To address this limitation, an external CMOS 
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camera was incorporated to the developed system for the self-diagnosis of skin lesions on the 

scalp rather than utilizing the camera in the smartphone. This enabled diseased regions on the 

scalp to be monitored in the smartphone display. 

When the performance of the developed system was evaluated, a frequency line set at 45 

cycles per millimeter could be clearly resolved in the vertical and horizontal directions by the 

system. In our previous study, the smartphone-based system was able to resolve a frequency 

line set at 51 cycles per millimeter [19]. The spatial resolution achieved by our proposed 

system was slightly lower than that by the previous system. It could be improved by utilizing 

a better external CMOS camera and a lens with a higher numerical aperture. Conversely, the 

system we developed herein also showed a slightly better performance than did the LCTF-

based multispectral imaging system in multispectral imaging and analysis as shown in Fig. 4. 

The spectral classified images obtained using the LCTF showed more shot noise regions, 

more misclassified regions at the boundary of the letters, and lower contrast than did those 

obtained using our system. These might be because of the low signal-to-noise ratio in the 

detection of light owing to the low light transmission capability of the LCTF system. 

In the discrimination between seborrheic dermatitis and psoriasis on the scalp using the 

system, the machine learning-based classification methods showed a relatively better 

performance than did the conventional spectral classification methods, particularly the SAM 

(Fig. 5). The spectral classified images of the psoriasis regions exhibited only a few 

misclassified regions, while most regions correctly indicated psoriasis. Therefore, via a 

simple quantification of the spectral classified images and appropriate threshold, such as 

calculating the ratio of the number of psoriasis and seborrheic dermatitis pixels, we could 

determine whether the skin lesions were psoriasis. Also, in the classified images for the 

seborrheic dermatitis [Fig. 5(a), bottom], we could still distinguish and classify the diseased 

regions as seborrheic dermatitis. The images of the patients with seborrheic dermatitis and 

psoriasis were obtained at a quite early stage; thus, it was challenging to classify between 

them even by an experienced clinician. Thus, these results suggest that the smartphone-based 

multispectral imaging and analysis may have a potential use for discriminating between 

seborrheic dermatitis and psoriasis in mobile environments. 

For spectral classification, the ED, SAM, SVM, Logi, and MLP classification models 

were adopted. The machine learning models have previously been successfully utilized for 

detecting various diseases, including ovarian cancer [24], colonic and gastric cancers [25], 

prostate cancer [26], and Alzheimer’s disease [27]. In previous studies, the machine learning 

models yielded strong classification outcomes for the detection of diseases. As in a previous 

study, three of the machine learning models constructed via multispectral imaging herein 

showed acceptable classification performance. The SVM model achieved the highest 

accuracy in the discrimination between them; it also had a better ROC-AUC (0.76) than the 

multilayered perceptron model (Table 1). In the comparisons between the three machine 

learning-based models and two conventional classification models, the sensitivities of the 

former were higher than those of the latter. The ROC-AUCs achieved by the machine 

learning models were also higher than those by the conventional classification models (Table 

1). These results suggest that the machine learning-based models may provide better 

sensitivity and specificity compared with the conventional classification models; however, 

further clinical studies with larger numbers of patients are needed to confirm this. 

In this study, to validate the performance of the constructed model under such conditions, 

10-fold cross validation was performed owing to the relatively small number of patients with 

seborrheic dermatitis and psoriasis. This method has been typically utilized to evaluate the 

generalization and reproducibility of the machine learning-based models statistically. The 

specificity and sensitivity of the constructed models for discriminating between seborrheic 

dermatitis and psoriasis on the scalp were considerably high. Therefore, these results and 

consistent trends may provide confidence in the ability of multispectral imaging and analysis 
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in discriminating between seborrheic dermatitis and psoriasis on the scalp based on the 

proposed models. 

5. Conclusions 

In conclusion, we employed multispectral imaging and analysis for discriminating between 

seborrheic dermatitis and psoriasis on the scalp using the smartphone-based multispectral 

imaging system we developed on the basis of various classification models, such as the ED, 

SAM, SVM, Logi, and MLP. The developed system was capable of performing multispectral 

imaging and analysis of lesions on the scalp for self-monitoring via a smartphone display. 

Herein, the machine learning methods (Logi, SVM, and MLP) for spectral classification 

showed a sensitivity of 65, 75, and 75 and specificity of 80, 70, and 70, respectively. The 

conventional methods (ED and SAM) showed a sensitivity of 70 and 70 and specificity of 70 

and 75, respectively. Herein, the machine learning-based models yielded better outcomes than 

did the conventional methods, demonstrating the potential as a mobile detection device. 

Taken together, these results suggest that the multispectral imaging and analysis based on the 

machine learning techniques using the developed system would be a valuable tool for clinical 

diagnosis nearly in any setting; however, extensive clinical trials with a large number of 

patients are needed to confirm this. 
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