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Featured Application: This study aimed towards making close-range photogrammetry more ac-
cessible and affordable for on-site construction management applications that involve data mod-
eling and measurements extractions by utilizing smartphones directly without a pre-calibration
procedure. This article is expected to provide a thorough assessment of the quality and geomet-
rical accuracy of smartphones’ photogrammetric results compared with a digital compact camera.
This work is a part of ongoing research on adapting photogrammetry as a tracking and forecast-
ing technique for earthmoving operations in heavy construction projects.

Abstract: Close-range photogrammetry (CRP) has proven to be a remarkable and affordable tech-
nique for data modeling and measurements extraction in construction management applications.
Nevertheless, it is important to aim for making CRP more accessible by using smartphones on-site
directly without a pre-calibration procedure. This study evaluated the potential of smartphones as
data acquisition tools in comparison with compact cameras based on the quality and accuracy of their
photogrammetric results in extracting geometrical measurements (i.e., surface area and volume). Two
concrete specimens of regular shapes (i.e., beam and cylinder) along with an irregular-shaped sand
pile were used to conduct this study. The datasets of both cameras were analyzed and compared based
on lens distortions, image residuals, and projections multiplicity. Furthermore, the photogrammetric
models were compared according to various quality criteria, processing time, and memory utiliza-
tion. Though both cameras were not pre-calibrated, they both provided highly accurate geometrical
estimations. The volumetric estimation error ranged from 0.37% to 2.33% for the compact camera
and 0.67% to 3.19% for the smartphone. For surface area estimations, the error ranged from 0.44% to
0.91% for the compact camera and 0.50% to 1.89% for the smartphone. Additionally, the smartphone
data required less processing time and memory usage with higher applicability compared with the
compact camera. The implication of these findings is that they provide professionals in construction
management with an assessment of a more direct and cost-effective 3D data acquisition tool with a
good understanding of its reliability. Moreover, the assessment methodology and comparison criteria
presented in this study can assist future research in conducting similar studies for different capturing
devices in construction management applications. The findings of this study are limited to small
quantification applications. Therefore, it is recommended to conduct further research that assesses
smartphones as a photogrammetric data acquisition tool for larger construction elements or tracking
ongoing construction activities that involve measurements estimation.

Keywords: close range photogrammetry (CRP); geometrical accuracy; photomodels quality;
self-calibration; digital camera; smartphone; surface area; volume estimation
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1. Introduction

The ability to provide accurate geometrical estimations (e.g., surface areas and materi-
als volumes) is essential in the field of construction management since they are a key for
generating accurate quantity take-off and cost estimation reports during tasks planning.
They are also essential for progress tracking and forecasting during tasks’ implementation.
Additionally, accurate progress measurements can be used as input data for simulating and
optimizing construction tasks. For instance, a crew working on an earthmoving operation
can be optimized based on its measured actual performance, thus resulting in an optimum
crew configuration with the least cost [1]. In most construction projects, conventional meth-
ods of estimation, which are time-consuming, cost-ineffective, and error-prone, continue to
be used. On the other hand, the technology of digital photogrammetry, both terrestrial and
aerial, was established to be a remarkable data collection approach for 3D data modeling
and measurements extraction in various construction applications, such as building model-
ing and documentation [2–4], progress tracking [5–9], and measurement extractions [10,11].
Although most of the research integrating photogrammetry with construction management
is focused mainly on assessing and utilizing the aerial type using UAV platforms due to
their higher efficiency to cover large areas [2,6,11], close-range photogrammetry can be
suitable for scanning relatively smaller areas and tracking indoor tasks.

Close range photogrammetry (CRP) processes ground-based overlapping images via
a structure from motion (SFM) pipeline. The processing starts by implementing the scale
invariant feature transform (SIFT) algorithm [12–14] or similar algorithms (e.g., SURF and
ORB). SIFT detects images’ features and matches those shared by overlapping images
by comparing their descriptors. Through bundle block adjustment (BBA) [15–18], the
camera calibration parameters (i.e., translating, rotation, focal lengths, the optical center,
and lens distortions) are estimated and optimized. After estimating the camera poses, the
matched features get reconstructed as 3D points by triangulating them from all overlapping
images, resulting in a sparse point cloud. The sparse cloud can be densified by generating
and merging depth maps of the overlapping images [19–21]. From the densified cloud,
a polygonal mesh can be generated using mesh triangulation algorithms (e.g., Poisson
reconstruction). For providing the polygonal mesh with a photorealistic appearance, a
colored texture map is generated.

The accuracy and quality of these photogrammetric outputs depend significantly on
the specification of the camera used for acquiring images. In most research, advanced
compact cameras with high resolution and less distortion are used. Others used pre-
calibrated cameras for which their calibration parameters were precisely determined before
data capturing. For instance, one study [22] evaluated the accuracy of CRP as a measuring
tool using a pre-calibrated digital compact camera. Nevertheless, it is important to aim
for making CRP more accessible and feasible not only by utilizing inexpensive compact
cameras but also by using smartphones directly without a pre-calibration procedure.

Nowadays, smartphones are associated with cameras that are of sufficient potential
to provide reasonably high-quality images. Smartphones are highly accessible compared
with compact cameras and can be utilized for acquiring photogrammetric images by any
worker on a construction site. Additionally, smartphones excel compact cameras in their
ability to send the collected images on-site to any processing device via Wi-Fi or Bluetooth,
thus providing near real-time measurements. Therefore, it is essential to present a study
that fully assesses the quality and accuracy of the 3D models generated from smartphone
data and compares their results with those of a compact camera.

Most of the studies that evaluated CRP generally assessed its accuracy in extracting
geometrical measurements. For instance, in the area of forestry, several studies [23–26]
evaluated the accuracy of CRP in estimating tree attributes (e.g., tree radius, circumference,
and height) extracted from point clouds generated from digital compact camera images.
Similarly, in the area of engineering, some studies assessed CRP according to its accuracy
in estimating models’ volumes [22,27,28] and deformation monitoring [29–31]. Other
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studies [32–34] in the area of cultural heritage evaluated CRP based on its quality for
modeling and documenting architectural and archaeological structures.

Only a few studies aimed to investigate smartphone’s photogrammetric accuracy in
general. For example, one study [27] evaluated CRP in estimating ground pile volume
based on video frames captured by a digital camera and a smartphone. Their accuracy
comparison was based only on the volumetric error. Another study [35] evaluated smart-
phones based on their potential and accuracy in modeling geomorphological structures.
Another study [36] investigated the geometric accuracy of pre-calibrated smartphones’
cameras for which their internal parameters were determined. Even though pre-calibrated
cameras in general result in more accurate results, calibrating a digital compact camera or a
smartphone is a time-consuming step that requires a precise procedure and needs to be
conducted for each camera intended to be used.

This study evaluated the potential of smartphones as an on-site data collection tool
for data modeling and geometrical measurements extraction in comparison with a digital
compact camera. The photogrammetric outputs (i.e., sparse cloud, dense cloud, polygonal,
and textured models) of both cameras were compared based on their resulting parameters,
processing time, and memory usage. Additionally, they were assessed and compared based
on various quality criteria (e.g., sparse cloud noise, cloud density, points color, and texture
representation). The accuracy of the 3D reconstruction for both data sets was examined
based on the distortion parameters, RMS reprojection errors (i.e., image residuals), projec-
tions percentage, and tie multiplicity of the reconstructed points. These assessment criteria
were selected based on previous studies [33,37–39] assessing digital photogrammetry and
according to some photogrammetric software guides [40,41] in which various quality crite-
ria and processing parameters were identified to impact the overall quality and reliability
of the 3D reconstruction process and the different resulting outputs (e.g., tie points, dense
clouds, and textured models). The study relied on the self-calibration approach conducted
within the bundle adjustment algorithm based on the provided Exif data. Therefore, both
cameras were not pre-calibrated, aiming to eliminate the camera calibration procedure
required before capturing images; thus, any digital camera or smartphone can be utilized
directly. Finally, both cameras were compared according to the estimation accuracy of the
geometrical measurements (i.e., surface area and volume) extracted from the final textured
3D models of their data sets.

2. Materials and Methods

In this study, an average digital compact camera (Nikon-D 3300) and a smartphone
(Huawei Mate 10 lite) were utilized to capture the photogrammetric data, Figure 1. The
specifications of both cameras are provided in Table 1.
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Figure 1. The capturing devices used in this study: (a) the compact camera (Nikon-D 3300) with the
utilized lens (18–55 mm); (b) the smartphone (Huawei Mate 10 lite).

Table 1. The specifications of the utilized cameras.

Specification Digital Camera
(Nikon-D 3300)

Smartphone
(Huawei Mate 10 Lite)

Camera Model D-3300 RNE-L21
Sensor Type CMOS BSI-CMOS
Sensor Size APS-C (23.5 mm × 15.6 mm) ~1/2.9” 4.8 × 3.6 mm

Camera Resolution 24 MP
6000 × 4000 (3:2)

Dual 16 MP + 2 MP
4608 × 3456 (4:3)

Pixel Size 4.04 µm ~1.06 µm
Focal Length

(35 mm equivalent) 18–55 mm 27 mm

Crop Factor 1.43 6.75
Native ISO 100–12,800 50–3200
Aperture f/3.5–f/5.6 f/1.6–f/2.2

Image Format RAW (NEF), JPEG JPG

It was important to start the assessment on construction elements with regular geo-
metric shapes for which their volumes and surface areas can be easily measured so that
measurement errors are eliminated, thus providing an accurate assessment. For this pur-
pose, two specimens of casted concrete were made using standard molds of different shapes
and sizes, i.e., a square beam (15.2 cm× 15.2 cm× 75.6 cm) and a cylinder (15 cm × 30 cm),
Figure 2. In addition, a small sand pile (5490 cm3, Figure 2c) was formed to further assess
the geometrical accuracy for irregular material.
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Figure 2. The specimens used to conduct the study: (a) standard casted concrete square beam
(15.2 cm × 15.2 cm × 75.6 cm); (b) standard casted concrete cylinder (15 cm × 30 cm); (c) sandpile
(5490 cm3).

Figure 3 presents the workflow followed by this study to assess and compare the
quality of the photogrammetric outputs along with the geometrical accuracy of the final 3D
models for both cameras’ data sets.
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2.1. Data Acquisition

Before capturing images, a number of coded targets, at least two, had to be placed near
the object of interest to be utilized as ground control points for scaling the generated 3D
data. In this study, four coded targets were placed around each specimen. Table 2 provides
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the number of images captured for each specimen. The same number of images was taken
by both cameras for each specimen. Additionally, the images of each specimen were taken
almost from the same positions, following the same track for both cameras. By doing so,
the number of images, overlapping percentage, and camera movement were held the same
for both cameras so that the accuracy and quality assessments would be entirely based on
the camera specifications. The camera settings with which the images were captured are
provided for both cameras in Table 3.

Table 2. The capturing scenario parameters.

Specimen Capturing
Device

Number of
Images

Image
Quality

Covered Area
(m2)

Square Beam DC 1
43

0.842 0.337
SP 2 0.894 0.474

Cylinder DC
24

0.835 0.409
SP 0.886 0.546

Sand Pile
DC

40
0.862 0.442

SP 0.893 0.504
1 Digital compact camera. 2 Smartphone camera.

Table 3. The cameras’ parameters with which the study images were captured.

Capturing
Parameters

Digital Camera
(Nikon-D 3300)

Smartphone
(Huawei Mate 10 Lite)

Focal Length
(35 mm equivalent)

35
(50)

4
(27)

ISO 400 50
F-stop f/8 f/2.2

Shutter Speed 1/250 1/215

Image Format RAW (NEF):
TIFF-16bit JPG

The image quality values provided in Table 2 present the average quality value ranging
from 0 to 1 of all captured images in the same data set. This value was computed using
a built-in function in Agisoft Metashape software [42]. It estimates the overall quality
of a given image based on its level of sharpness relative to the other images in the same
data set. It was shown that the average image quality of the smartphone images (SP) was
slightly higher than those of the digital camera (DC). This was due to the image format;
the compact camera images were taken with RAW (NEF) format, which prevents any auto
adjustment to the image in terms of its brightness and sharpness. However, with the JPG
format, the images’ level of brightness and sharpness were optimized automatically by a
built-in feature in the smartphone camera (i.e., autofocus). Images with quality values less
than 0.5 are recommended by Agisoft Metashape to be eliminated. In this study, all the
images captured by both cameras had quality values greater than 0.7. Table 3 also shows
that the area scanned with the smartphone camera was greater relative to the digital camera
for all specimens. This is attributed mainly to the camera focal length. The shorter the focal
length, the wider the angle of view, and the larger the captured area.

2.2. Image Processing

The collected images were transferred to a PC to be processed into the different
photogrammetric models. The specifications of the utilized PC are given in Table 4. In
this study, Agisoft Metashape Professional version 1.7.2 [42] was utilized as the image
processing software. To provide a thorough comparison between both cameras’ data sets, it
is important to examine each processing step in the photogrammetric pipeline, as presented
in Figure 3.
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Table 4. The configuration of the PC system used for processing the images.

Operating System Windows 64 bit
RAM 15.92 GB
CPU Intel(R) Core (TM) i7-7700HQ CPU @ 2.80GHz

GPUs GeForce GTX 1050
Intel(R) HD Graphics 630

2.2.1. Features Detection and Matching

Agisoft Metashape starts the image alignment process by executing the scale invariant
feature transform (SIFT) algorithm [12–14]. The SIFT algorithm detects the features of each
image and stores them as keypoints in a database. As the algorithm processes a new image,
it recognizes its features and compares them to those already stored in the database using
their descriptors. This results in finding common features that are considered as matching
points (i.e., tie points) among the overlapping images. The limit for the number of points
to be detected per image was set to 100,000 points for all data sets. Out of these detected
features, only the matched ones in two or more images were reconstructed as 3D points.
The limit of the matching points was set to 50,000, and the alignment accuracy was set to
“high” for all data sets.

2.2.2. BBA and Camera Self-Calibration

The matched features were reconstructed by implementing the bundle block adjust-
ment (BBA) algorithm that triangulates the tie points from all the overlapping images.
However, the camera poses must be computed first by estimating the camera orientation
parameters. The internal parameters can be estimated via an accurate standard camera
calibration using a calibration grid (e.g., chessboard) before image processing and then
uploaded to the software as external input data. Nevertheless, this study relied on the
auto-calibration approach conducted algorithmically within the BBA. Agisoft Metashape
exploits the Exif metadata associated with the images to extract the camera data (e.g.,
camera type, pixel size, and focal length) [43]. These data are used to extrapolate the initial
values of the calibration parameters. Therefore, the Exif metadata must be ensured that
they represent the actual settings with which the images were captured, especially in the
case of using a smartphone camera. The more reliable the Exif metadata, the more accurate
the 3D reconstruction results. The interior orientation parameters include the focal length
(f ) in pixels, the principal point (cx, cy) that is the x and y coordinates in pixels of lens
optical axis interception with sensor plane. These parameters compose the intrinsic matrix
(K), Equation (1). The intrinsic matrix along with the extrinsic matrix, whose parameters
(i.e., translation and orientation) are estimated via triangulation with BBA based on the
collinearity equations [40], form the camera matrix (P), Equation (1).

P = K
[
R T

]
, K =


f

px
0 cx

0 f
py

cy

0 0 1

 (1)

whereP is the camera matrix,K is the intrinsic matrix,R is the extrinsic rotation parameters
(i.e., Euler rotation angles), T is the translation parameters, f is the focal length, and px and
py are the pixel size in x and y directions.

Since the camera matrix (P) applied for points projection and transformation was
based on the pinhole camera model, the lens distortion had to be configured and considered
to simulate a real camera. Agisoft Metashape uses Brown’s distortion model [44,45] to
simulate lens distortions for frame cameras. The distortion parameters include the radial
distortion coefficients (K1, K2, andK3), and the tangential distortion coefficients (P1andP2).
In cases of severe distortion, four coefficients of each distortion type are needed for a
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better simulation. The software applies Equations (2)–(6) [40] to model the combination of
both distortions.

x′ = x
(

1 + K1r2 + K2r4 + K3r6
)
+
(

P1

(
r2 + 2x2

)
+ 2 P2xy

)
(2)

y′ = y
(

1 + K1r2 + K2r4 + K3r6
)
+
(

P2

(
r2 + 2 y2

)
+ 2 P1x y

)
(3)

r2 = x2 + y2 (4)

u = 0.5 w + cx + x′ f + x′ B1 + y′ B2 (5)

v = 0.5h + cy + y′ f (6)

where x and y are the undistorted point location in the normalized image coordinates
resulting from transforming a 3D point (X, Y, Z) in the real world space (<3) into the image
plane (<2); x′, y′ are the distorted point coordinates; w, h are the image width and height in
pixels; u, v are the projected point in the image coordinates on the sensor indexation system
given in pixels; r is the radial distance; B1, B2 are the affinity and skew coefficients in pixels,
both were estimated to be equal to 0 for the calibration data provided in Tables 5 and 6.

Table 5. The digital camera (Nikon D-3300, f = 35 mm) calibration parameters and their estimation
errors for the beam data set (43 images) along with their correlation matrix. For highly correlated
parameters (>0.5), their correlation values are in bold.

Value Error f cx cy K1 K2 K3 P1 P2

f 8963.51 0.346 1 −0.02 −0.76 −0.07 0.1 −0.08 −0.01 −0.48
cx 16.57 0.405 1 0.05 0 −0.01 0.01 0.97 −0.02
cy −2.84 0.517 1 −0.04 0 −0.01 0.06 0.80
K1 −0.02206 2.38× 10−4 1 −0.96 0.90 0.01 −0.04
K2 −0.02286 3.63× 10−3 1 −0.98 −0.01 0
K3 0.06284 1.68× 10−2 1 0.02 −0.01
P1 1.392× 10−4 1.49× 10−5 1 −0.02

P2
−2.401×

10−6 1.42× 10−5 1

Table 6. The smartphone (Huawei RNE-L21, f = 7 mm) calibration parameters and their estimation
errors for the beam data set (43 images) along with their correlation matrix. For highly correlated
parameters (>0.5), their correlation values are in bold.

Value Error f cx cy K1 K2 K3 P1 P2

f 3503.02 0.190 1 0.12 −0.27 −0.15 0.22 −0.18 0.1 −0.25
cx 18.59 0.147 1 −0.02 0.02 0 0 0.89 −0.02
cy −29.73 0.174 1 0.05 −0.03 0.02 0.01 0.68
K1 0.08767 2.14× 10−4 1 −0.95 0.90 0.03 −0.01
K2 −0.24273 6.66× 10−4 1 −0.98 −0.02 0.02
K3 0.19971 6.71× 10−4 1 0.02 −0.02
P1 8.69× 10−4 1.76× 10−5 1 0.01

P2
−1.12×

10−3 1.56× 10−5 1

The calculated parameters for both cameras after optimization along with their stan-
dard deviation error are presented in Tables 5 and 6. These parameters were estimated
based on the square beam data set (43 images) as an example of the self-calibration ap-
proach. The tables also present the correlation matrix reflecting the degree of correlation
among the calibration parameters. The correlation values for parameters that are highly
correlated (>0.5) are presented in bold.
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After the camera poses were estimated, the tie points were triangulated from the
overlapping images and were reconstructed as 3D points (x, y, z) with assigned pixel colors
(RGB) and an intensity value (I). This resulted in the first photogrammetric output (i.e., the
sparse point cloud) along with the computed camera positions.

2.2.3. Multi-View Stereo (MVS)

The next step was to densify the generated sparse point cloud for an accurate ge-
ometrical details representation. This was accomplished by calculating pairwise depth
maps for the overlapping image pairs using the stereo matching algorithm, taking into
consideration their relative camera parameters computed in the previous step within the
BBA. The generated pairwise depth maps were transformed into partial dense clouds
which then were merged to form the final dense cloud. The quality of generating depth
maps was set to “high” with aggressive filtering mode which resulted in sorting out outlier
points (unwanted features) that were reconstructed due to image noise and badly focused
images, thus resulting in clear and reliable 3D models.

2.2.4. Meshing and Texture Mapping Algorithms

After the dense point cloud of a given data set was generated, a polygonal mesh could
be reconstructed based on the depth maps or the point cloud data. In this study, the dense
cloud was selected as the data source for all data sets with the face count set to “high”.

The final step in the study workflow was to generate a colored texture map for each
polygonal model, hence providing a photorealistic appearance for the final 3D model. The
texture mapping algorithm obtained the texture data from all aligned images. It is worth
noting that this step is not required to obtain geometric measurements since the polygonal
mesh or even the point cloud data are enough to acquire any geometric measurements
(e.g., distance, areas, or volumes). Nevertheless, providing a textured model that conveys a
realistic appearance can be useful in many applications that require model visualization
and presentation. The mapping mode was set to “generic” and the blending mode to
“mosaic” with a texture size of 4096 pixels for all data sets.

2.3. Scaling 3D Data

When a 3D point gets reconstructed, its coordinates (x, y, z) are computed based on the
local coordinate (u, v) of the overlapping images utilized to triangulate this point. Therefore,
the size of the 3D data does not represent the actual object size. In order to extract any
geometrical measurements, the 3D data must be scaled using ground control points (GCPs).
In this study, four coded targets, 12-bit type with a center point radius of 10 mm, were used
to scale the specimens’ models, Figure 4b. The actual distances between every two targets
were measured and entered as scale bars to calibrate the 3D data. In this study, two scale
bars were created for all data sets. The first bar, between targets 1 and 2, was used to scale
the models. The second bar, between targets 3 and 4, was used to check the scaling distance
and add further statistical confidence. The same four targets with the same scaling bars
were used for all data sets.

It is important to use coded targets that can be automatically detected by the pho-
togrammetric pipeline. For instance, Agisoft Metashape identifies its own targets’ configu-
rations, precisely marks their exact center, and labels them with their associated numbers
printed next to them, Figure 4a. Some studies, for instance [27], used control points that
were manually marked. This can contribute to the overall geometrical estimation errors
due to the imprecise manual selection of the scale bars’ starting and ending points.
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Figure 4. The automatically detected targets utilized to scale the specimens’ 3D data: (a) an example
of the algorithmically detected targets on an image in the sandpile data set; (b) the four targets (12-bit,
center point radius = 10 mm) utilized in this study with their associated coded numbers.

2.4. Extracting Geometrical Measurements

After scaling and updating the 3D data, geometrical measurements can be extracted.
In this study, the volumes and surface areas of the specimens were estimated from the final
3D models. These measurements were estimated by computing the volume and surface
area of the closed polygonal mesh generated for each model. Therefore, it is crucial to
ensure that the mesh is holes free. Any holes in the polygonal mesh should be closed,
otherwise, the algorithm will fail to estimate the mesh parameters or result in a significant
estimation error. The estimated measurements were compared with the actual values to
determine the estimation errors associated with each model. Based on the estimation errors,
the geometrical accuracy was evaluated and compared for both cameras’ data.

3. Results and Discussion
3.1. Lens Distortion

The camera lens distortion and how well it is being simulated impact the accuracy of
the 3D reconstruction significantly. The estimated distortion coefficients used for adjusting
for image distortion are provided for both cameras in Tables 5 and 6. Figures 5 and 6 show
the profiles of the radial and tangential distortions associated with the captured images
of both cameras in terms of the distance in pixels from their sensor center. The values of
both distortions are zero at the sensor center of both cameras. These values start increasing
as the distance from the image center increases until they reach their maximum at the
edges. These inferences are further demonstrated in Figure 7, which presents the lens total
distortion as discrete vectors across the entire sensor area for both cameras. Each vector is
pointed out from the center of its corresponding sensor cell. The vector length represents
the total distortion value, both radial and tangential, associated with its corresponding cell.
As demonstrated in the distortion profiles and plots in Figures 5–7, the distortion associated
with the smartphone data is substantially higher compared with the data of the compact
camera. This is mainly attributed to the smaller lens and sensor of the smartphone camera.
Nevertheless, the distortions associated with the captured images can be modeled precisely
within the bundle adjustment regardless of their magnitude as long as the provided Exif
data are accurate. It is worth mentioning that a symmetrical and consistent distortion
across the sensor area is an indicator of successful self-calibration and distortion modeling,
Figure 7.
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3.2. Images Alignment and 3D Reconstruction

All the images of each data set were successfully aligned. The quality of the recon-
structed 3D points can be examined and compared for both cameras based on the resulting
parameters presented in Table 7. The number of features detected by the SIFT algorithm
is not a reliable criterion based on which the data sets of both cameras can be compared.
This is due to the difference in the cameras’ resolution and their covered area. For the
digital camera, its higher resolution results in more detected features than the smartphone.
However, the smartphone’s images were captured with a relatively shorter focal length,
resulting in a larger captured area, which results in a higher number of features, Table 2.
Nevertheless, the number of matched points can be used to compare the data sets since this
number presents only the key points successfully reconstructed within the reconstruction
bounding box. As indicated, the matched points are higher for the digital camera data.
This is mainly due to the higher resolution associated with the digital camera.
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Table 7. The 3D reconstruction parameters for both cameras’ data sets.

Specimen Capturing
Device

N◦ of Points
Detected

N◦ of Points
Matched

N◦ of
Projections

Average
Multiplicity RMSE (pix)

Square Beam DC 226,189 194,535 457,680 2.396 0.607
SP 199,752 84,572 210,912 2.472 1.2

Cylinder DC 107,530 91,634 229,964 2.531 0.79
SP 129,469 82,189 232,109 2.768 1.4

Sand Pile
DC 132,618 115,289 273,129 2.466 0.656
SP 143,124 78,321 211,129 2.561 1.17

Furthermore, the quality of the reconstruction process can be evaluated and compared
for both cameras based on the following parameters:

• The number of projections, which represents the total number of projections projected
from all overlapping images to compute and construct all the matched points. The
number of projections is correlated to the number of points successfully matched and
constructed. This correlation is given by the tie multiplicity parameter.

• Tie multiplicity (i.e., image redundancy)—that, is the average number of projections
or images contribute to calculating a given 3D point. It can be estimated by the
following ratio:

mave =
1
S ∑S

i=1(Pi) ≈
N◦ of projections

N◦ of matched points
(7)

where Pi is the number of projections used to reconstruct point (i), and S is the total
number of reconstructed points (i.e., sparse cloud size). An average tie multiplicity
value of 2.396 indicates that an average of 2.396 images were used to compute and
reconstruct a given 3D point in the bundle adjustment step by triangulating this point
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from those images into the 3D space. Higher multiplicity values propose greater
reliability of the computed 3D points, given that the more images that contribute to
constructing a 3D point minimizes its positional error. Nevertheless, if the reprojection
error associated with a given image is higher relative to the other contributed images,
it will result in a higher positional error. Therefore, the tie multiplicity value by itself
is not sufficient to judge the reliability of the computed 3D points.

• RMS reprojection error—that is, the root mean square of normalized reprojection
error (d), Figure 8. A tie point gets reconstructed as a 3D point by triangulating
its corresponding 2D point from all the images sharing that point to compute its
relative position. When the 3D point is reconstructed, it is reprojected back on each
image that contributed to its reconstruction initially. The reprojected position on the
corresponding image does not perfectly match the actual position of the original 2D
point on the same image. The Euclidean distance between the two positions (i.e.,
actual and reprojected) in the image plane represents the reprojection error (d) in that
image, Equation (8).
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The reprojection error varies within the contributed images sharing the same matched
point; therefore, the average error is expressed as the root mean square error in all those
images. It is calculated as the following:

di =

√ (
x′i − xi

)2
+
(
y′i − yi

)2 (8)

RMSE =

√√√√ 1
N

N

∑
i=1

[
(
x′i − xi

)2
+
(
y′i − yi

)2
] (9)

where di is the reprojection error on image (i) (i.e., Euclidean distance between both posi-
tions), (x, y) is the actual position of the matched point on the corresponding image plane,
(x′, y′) is the reprojected position of the reconstructed 3D point on the corresponding image
plane, RMSE is the root mean square reprojection error, and N is the number of images
sharing the detected point.

Based on the values provided in Table 7, the images captured with the digital camera
result in almost half the RMSE associated with those of the smartphone camera. This
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can be further demonstrated by plotting the image residuals across the sensor area as
valued vectors from each sensor cell for both cameras, Figure 9. The image residuals
provided in the figure were generated based on the first data set (i.e., beam images) for both
cameras. Both plots are presented with the same magnification factor of ×398 and have
the same scale bar of 1 pixel. The image residuals associated with the smartphone data
are significantly higher than those of the digital camera data. A higher RMSE value of the
reconstructed point cloud indicates a higher error in the overall geometric estimation. This
is not only because of the positional error associated with all the reconstructed 3D points in
the cloud. However, it is mainly due to the error associated with reconstructing the target
points used to scale the 3D data, Figure 8. The RMSE associated with the reconstructed
targets’ points contributes significantly to the overall geometrical measurement error.
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Figure 9. Image residuals across the area of: (a) the digital camera sensor; (b) the smartphone camera
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for the smartphone camera. The magnification factor is ×398 in both plots.

Out of all the reconstructed 3D points, the accuracy of reconstructing the targets’ center
points is crucial since the RMSE of a target point represents a positional error that might
cause inaccuracy in the scaling distance between every two targets. Therefore, they must be
examined individually to evaluate their reliability in terms of their image redundancy and
RMSE. Figure 10a provides the average projection percentage of the four targets for each
specimen. The projection percentage indicates the percentage of images that contribute to
computing a given target point out of the total input images. For instance, for the DC’s set
of images of the square beam, an average of 47% of the 43 input images were utilized to
compute each target point of the four targets.

As presented in the bar chart, the average projections percentage for the four targets is
almost the same for both cameras in each data set, which is expected given that the same
number of images were taken by both cameras from the same positions.
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3.3. Sparse Point Cloud 

Figure 10. Bar charts represent the four targets reconstruction parameters. (a) The average percentage
of projections contributed to reconstructing the four target points for both cameras in all data sets;
(b) the average RMS reprojection error of the four targets for each data set for both cameras. DC,
digital compact camera; SP, smartphone camera.

The projection percentage for both cameras is highest with the cylinder data, followed
by the sand pile and lowest with the beam data. This is due to their difference in size; the
cylinder has the smallest size, so the targets are visible in most of the captured images
which results in a higher image redundancy and vice versa in the square beam data. The
image redundancy of a given target affects the RMSE associated with that target. This
effect is evident in the other bar chart, Figure 10b, in which the average RMSE for the four
targets of the cylinder data is relatively smaller for both cameras compared with the other
two specimens.

Furthermore, the bar chart shows the remarkable variation between both cameras in
terms of the average RMSE of the four targets. The smartphone’s data sets are associated
with almost 3–4 times the error associated with those of the digital camera. This signifi-
cant difference in RMSE associated with the scaling target points reflects on the overall
geometrical measurements’ accuracy.

3.3. Sparse Point Cloud

The analysis of the resulting sparse clouds is summarized in Table 8 and Figure 11.
The third column represents the size of each sparse point cloud—that is, the number of
tie points successfully reconstructed in the alignment process. As indicated earlier, the
higher number of cloud points of the DC’s clouds compared with the SP’s is attributed
mainly to the higher resolution of the digital camera. The fourth column represents the
averaged point size in pixels of all the 3D points in the sparse cloud. The size of a given
point is the sigma value (σ) of the Gaussian blur of the scale level in the Gaussian pyramid
at which this particular point was detected within the SIFT algorithm. The point size is
approximately the same in both cameras’ data sets. The fifth column in the table provides
information regarding the colors of the points in each cloud, which are represented in three
bands (RGB). However, the depth of colors varies; with the digital camera, the depth is
16 bit, which gives a better representation of the real colors compared with the smartphone
8 bit. This difference is because of the image format with which the images were captured.
For the digital camera, the images were taken in RAW format (.NEF), which prevents any
auto adjustment or image compression. On the other hand, the JPG format compresses the
smartphone images to minimize their size, resulting in losing color data.
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Table 8. The sparse point clouds’ parameters of both cameras’ data sets.

Specimen Capturing
Device

Cloud Size
(N◦ of 3D Points)

Point
Size (pix)

Point
Color

Processing
Time (min)

Memory Usage
(GB)

Beam
DC 194,535 4.57 3B, U16 5.62 2.01
SP 84,572 4.54 3B, U8 6.03 1.33

Cylinder DC 91,634 4.86 3B, U16 3.83 1.67
SP 82,189 4.57 3B, U8 4.12 1.17

Sand Pile
DC 115,289 4.18 3B, U16 6.58 1.72
SP 78,321 4.37 3B, U8 6.26 1.37
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Figure 11. Sparse point clouds of the three specimens (square beam, cylinder, sandpile) reconstructed
from: (a–c) the digital camera data; (d–f) the smartphone data. All clouds are scaled in meters, and
the provided scale bar is in meters.

To examine the difference in color representation, the histograms of the color bands
(R, G, B) and their combination are generated for both cameras based on the beam sparse
cloud, Figures 12 and 13. The horizontal axis represents the corresponding color range
from 0 to 255, whereas the vertical axis represents the number of points in the sparse cloud
having the same color range. The points in the DC’s sparse cloud lies within a red channel
range of 50–200 with a normal distribution mean value = 141, a green channel range of
30–210 with a normal distribution mean value = 135, and within a wider blue color range
of 10–255 with a normal distribution mean value = 128. On the other hand, the color ranges
of the smartphone’s sparse points are noticeably shifted to the right on the horizontal
axis. The points are within a red channel range of 70–220 with a normal distribution mean
value = 162, a green channel range of 40–230 with a normal distribution mean value = 148,
and a blue channel range of 30–255 with a normal distribution mean value of 140. As
indicated, there is a considerable shift to the right in the color values for the SP’s sparse
cloud suggesting a higher intensity associated with its points compared with the DC’s. This
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higher intensity is attributed to the sensor sensitivity (i.e., ISO value) and the image format
(JPG) that enables an auto adjustment to the level of brightness and sharpness of a captured
image, thus making the SP’s images brighter than those of DC’s.

The last two columns in Table 8 show the processing time and memory usage required
to conduct the alignment process. The processing time is almost the same for both cameras
in each data set. Nevertheless, the memory usage is slightly higher with the digital camera
data sets due to the larger image size compared with the compressed smartphone images.

In addition to the parameters provided in Table 8, the sparse point clouds can be
analyzed and compared for both cameras based on the cloud noise. This can be achieved
by computing the roughness of the sparse clouds using CloudCompare [46]. For each
point in a sparse cloud, its shortest distance to the best fitting plane is calculated. The
best-fitting plane is computed based on the neighbor points of the corresponding point.
In this case, the neighbor points of a given point are those inside a sphere having a radius
(r) = 5 cm, taking the sparse point cloud of the square beam as an example to estimate
points roughness, Figure 14. An example of an outlier point that is considered as unwanted
noise is demonstrated in both clouds having a roughness of 4 cm. Figure 14 also presents
the points roughness histogram for both cameras. As indicated in the normal distribution
fitting of the roughness histograms, the smartphone sparse cloud is associated with a
slightly higher roughness (µ = 4 mm) relative to the digital camera sparse cloud (µ = 3 mm).

Although this approach provides a quantitative assessment of the cloud noise, it is
not precise since the nearest fitting plane figured by the algorithm might be a group of
outlier points by itself. Nevertheless, Figure 15 demonstrates a further qualitative noise
comparison between the two sparse clouds.

Figure 15a,b presents the cross sections of the square beam sparse clouds of both
cameras. As shown, the level of noise associated with the smartphone sparse cloud is
considerably higher than the digital camera cloud. This can be attributed to the relatively
smaller sensor size, lower resolution, and the image compression caused by the JPG format
associated with the smartphone camera. Nevertheless, Agisoft Metashape performs a
precise and powerful depth filtering to the sparse cloud when generating the depth maps
for point cloud densification. Figure 15c,d provides the same cross sections of the clouds
after densification. The smartphone densified cloud is noise-free and almost identical to
the digital camera cloud. The filtering mode was set to “aggressive” for both clouds.
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Figure 15. Cross sections from the square beam point clouds for a qualitative noise assessment:
(a) digital camera sparse cloud; (b) smartphone sparse cloud; (c) digital camera densified cloud;
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3.4. Dense Point Cloud

The parameters of the generated dense clouds are provided in Table 9 and Figure 16.
The size of the dense clouds associated with the digital camera data is almost 3 times the
size of the smartphone dense clouds. This significant difference indicates that the DC’s
clouds offer a better representation of the objects’ details, which results in a higher mesh
quality with a precise geometry resulting in accurate geometrical measurements.

Table 9. Dense point clouds’ parameters of both cameras’ data sets.

Specimen Capturing
Device

Cloud Size
(N◦ of Points)

N◦ of Depth
Maps

Depth Maps Dense Cloud

Time
(min)

Memory
Usage (GB)

Time
(min)

Memory
Usage (GB)

Beam
DC 17,756,572 43 7.85 3.26 8.97 4
SP 6,115,497 43 4.32 1.59 4.85 3.12

Cylinder DC 14,542,288 24 4.18 3.01 2.83 3.55
SP 5,197,385 24 3.35 1.42 2.05 2.62

Sand Pile
DC 3,600,957 33 3.08 3.12 4.23 3.34
SP 1,246,089 35 2.32 1.49 3.18 2.58
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Figure 16. Dense point clouds of the three specimens (square beam, cylinder, sandpile) reconstructed
from: (a–c) the digital camera data; (d–f) the smartphone data. All clouds are scaled in meters, and
the provided scale bar is in meters.

To quantify this difference, the cloud density can be estimated and analyzed using
CloudCompare. Taking the sand pile as an example, the volume density of its dense
clouds can be computed. The volume density is computed by dividing the number of
points enclosed by a sphere of a given radius (in this case r = 5 cm) by its volume,
Equation (10). The given sphere radius and the estimated density are expressed with the
same corresponding unit of the point cloud coordinates. In this study, all point clouds were
scaled in meters.

Dv =
N

v = (4/3× π × r3)
(10)

where Dv is the volume density, N : the number of points inside a sphere of radius r, v is
the sphere volume.

The number of points and volume density of the sandpile dense clouds are demon-
strated in Figures 17 and 18 for both cameras, along with the volume density histograms
and their normal distribution fitting. The mean density of the digital camera cloud is
µDv = 75× 106 pts/m3, whereas the smartphone cloud has a mean value of
µDv = 24× 106 pts/m3. For the number of points (N), the mean value of the DC cloud is
µN = 39, 224 pts, while the SP cloud has µN = 12, 604 pts. By comparing these values, it
can be confirmed that DC’s point cloud has a higher density that is 3 times the SP’s, which
results in a higher mesh quality and a more reliable representation of object details—thus,
accurate measurements estimations. This difference in points density is mainly caused by
the higher resolution of the DC’s images that result in more detected and reconstructed
features (i.e., points) compared with SP’s images.
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volume density histogram of the same dense cloud with its normal distribution fitting (μ = 
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Figure 18. The density of the sandpile densified point cloud generated from the smartphone data: 
(a) number of points enclosed by a sphere (r = 5 cm) and its volume density distribution; (b) the 
volume density histogram of the same dense cloud with its normal distribution fitting (μ = 
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Figure 17. The density of the sandpile densified point cloud generated from the digital camera
data: (a) number of points enclosed by a sphere (r = 5 cm) and its volume density distribution;
(b) the volume density histogram of the same dense cloud with its normal distribution fitting
(µ = 74,912,696 pts/m3, σ = 15,519,577 pts/m3). The cloud is scaled in meters.
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Figure 18. The density of the sandpile densified point cloud generated from the smartphone
data: (a) number of points enclosed by a sphere (r = 5 cm) and its volume density distribution;
(b) the volume density histogram of the same dense cloud with its normal distribution fitting
(µ = 24,072,578 pts/m3, σ = 4,679,245 pts/m3). The cloud is scaled in meters.

3.5. Polygonal and Textured Models

The parameters for the resulting models are presented in Table 10. The number of
faces of the digital camera’s polygonal meshes is almost 3 times the number of those of the
smartphone camera. This is due to the higher density associated with its corresponding
dense clouds. The output data regarding the generated textures are provided in Table 11.
Although the texture atlas size was set the same (4096 pixels) for all models with the same
mapping and blending settings, the difference in texture quality is quite established in
the images provided for the textured models in Figure 19. This difference in quality is
mainly attributed to the higher resolution of the digital camera images compared with the
smartphone images, as they are the texture data source.
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Table 10. Polygonal mesh parameters of both cameras’ data sets.

Specimen Capturing
Device

N◦ of
Faces

N◦ of
Vertices

Processing
Time (min)

Memory Usage
(GB)

Beam
DC 3,366,273 1,685,657 16.98 8.96
SP 1,025,557 514,162 7.43 5.61

Cylinder DC 2,762,640 1,383,752 9.97 8.48
SP 1,039,477 521,347 3.18 3.06

Sand Pile
DC 240,062 121,109 6.64 7.24
SP 78,999 40,619 2.56 2.57

Table 11. Generated texture parameters of both cameras’ data sets.

Specimen Capturing
Device

Texture
Size (pix) Color

UV Mapping Texture Blending

Time
(min)

Memory
Usage (GB)

Time
(min)

Memory
Usage (GB)

Beam
DC

4096

4B, U16 6.48 3.11 6.73 7.89
SP 4B, U8 5.14 2.57 0.7 1.55

Cylinder DC 4B, U16 6.38 2.93 3.58 8.16
SP 4B, U8 5.48 2.64 0.47 1.64

Sand Pile
DC 4B, U16 5.23 2.56 2.79 7.95
SP 4B, U8 4.34 2.38 0.35 1.6

By examining the processing time and memory usage parameters in Tables 9–11, it can
be generally concluded that the DC’s data require a longer time and utilize more memory
to generate the photogrammetric outputs compared with the SP’s data. This is ascribed to
the DC’s larger files that were initially generated from larger-sized images. For instance,
a smartphone image has an average size of 3.2 MB, whereas the average digital camera
image size is 19 MB. This substantial difference is mainly due to the higher image resolution
and the RAW format of the DC’s images compared with the JPG format that compresses
images resulting in smaller image size. Figure 20 presents the processing time and memory
utilization as cumulative bar charts for the whole photogrammetric workflow for easier
visualization and interpretation. The processing steps can be easily compared with each
other based on their processing time and memory utilization. For instance, building a
polygonal mesh and generating a texture map are the most time and memory-consuming
steps in all data sets.
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Figure 19. Textured models of the three specimens (square beam, cylinder, sandpile) reconstructed 
from: (a–c) the digital camera data; (d–f) the smartphone data. All clouds are scaled in meters, and 
the provided scale bar is in meters. 
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Figure 19. Textured models of the three specimens (square beam, cylinder, sandpile) reconstructed
from: (a–c) the digital camera data; (d–f) the smartphone data. All clouds are scaled in meters, and
the provided scale bar is in meters.
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Figure 20. Cumulative bar charts of the workflow processing steps for all data sets of both cameras:
(a) processing time in minutes; (b) memory usage in gigabyte.

3.6. Scale Bars

The 3D data were scaled using the created scale bars between the targets’ pairs. Two
scale bars were created: scale bar 1 between targets 1 and 2, and scale bar 2 between targets
3 and 4, Figure 4. Both bars have the same scaling distance of 12.1 cm with the same
accuracy of 1 mm in all data sets. Table 12 provides the error in the scaling distances for
both cameras’ data sets. Despite having the same scaling distance with the same accuracy,
the error in both scaling bars is much higher in the case of the smartphone data. This huge
gap is due to the RMS reprojection error and image redundancy associated with projecting
the targets’ 3D points discussed earlier, Figures 8 and 10.
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Table 12. Scaling distance errors associated with the created scale bars. The bar distance = 12.1 cm
with a set accuracy = 1 mm for both bars in all data sets.

Specimen Capturing Device Scale Bar 1
Error (cm)

Scale Bar 2
Error (cm)

Beam
DC 0.0008 −0.0004
SP −0.0037 0.0037

Cylinder DC −0.0009 0.0012
SP −0.0053 0.0053

Sand Pile
DC 0.0011 −0.0003
SP 0.0026 0.0026

3.7. Geometrical Measurements Extraction

Before extracting any geometrical measurements, it is important to compare the model
pairs (i.e., DC and SP models of the same specimen) based on their scale to assess the
difference in their size representation of the actual specimen’s size. This is achieved by
registering and aligning the two models of the same specimen together. In this study, the
four targets’ points were used as reference points to align the models’ pairs. After every
two models were perfectly aligned, the absolute distance between them was computed
using a CloudCompare plugin [47].

For each face in the compared model (i.e., smartphone’s model), its distance to the
nearest face in the reference corresponding model (i.e., digital camera model) was calculated.
For all specimens, the digital camera model was set as the reference model to which the
smartphone model was compared. Figure 21 presents the absolute distance variation for
each compared specimen, along with its color map indicating the absolute distance values.
The figure also provides the histograms for each specimen, demonstrating the absolute
distance ranges for the count of faces. All three histograms in Figure 21 have the same
number of bins (16 bins). The mean absolute distances (µ) are 0.657422, 0.963073, and
0.610173 mm, with standard deviation (σ) values of 0.660495, 1.06704, and 0.677724 mm
for the square beam, cylinder, and sandpile models, respectively. These readings report a
slight variation between the two models of the same specimen in terms of their sizes. This
difference is demonstrated in the geometrical estimations extracted from the two models of
the same specimen.

Table 13 presents the specimens’ volumes and surface areas estimated from the final
scaled 3D models of both cameras. The table provides the estimation errors calculated by
comparing the estimated measurements with the actual measurements for each specimen.
As the results indicate, the digital camera models present a better geometrical accuracy
compared with the smartphone models. Nevertheless, the estimation errors associated
with the smartphone models are insignificantly higher.

It can also be noticed that the volume estimation errors are highest with the sandpile
models. This is mainly due to the unprecise measurement of the actual volume caused
by the soil compaction and looseness factors. The soil actual volume was measured by
placing the soil in a calibrated container, which causes the soil to be slightly compact.
However, when the soil gets poured to form the irregularly shaped pile, it becomes loose,
hence resulting in a slight volume increase. On the other hand, the estimation errors are
lowest in the case of the cylinder models of both cameras, which is a result of its relatively
smaller size compared with the other two specimens. Furthermore, it can be highlighted
that the errors of surface area estimations are generally less than those of the volumetric
estimations. This suggests higher reliability of CRP in estimating surface areas compared
with volumetric estimations.
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and scale bars provided are in meters.

Table 13. The geometrical estimations accuracy of both cameras’ models.

Specimen Capturing
Device

Surface Area (cm2) Volume (cm3)

Actual Estimated Error (%) Actual Estimated Error (%)

Beam
DC

5058.56
5104.76 0.91

17466.62
17,723 1.47

SP 5154.04 1.89 17,977 2.92

Cylinder DC
1767.14

1774.97 0.44
5301.43

5282 0.37
SP 1775.98 0.50 5337 0.67

Sand Pile
DC _ 3507.68 _

5490
5362 2.33

SP 3558.57 _ 5315 3.19

The accuracy of close-range photogrammetry in extracting geometrical measurements
depends on several factors including the capturing scenario, the processing technique, the
size of the object of interest, and the geometrical estimation approach; hence, the accuracy
of CRP varies in different studies. Nevertheless, some studies were conducted with nearly
similar settings to this study. For instance, one study [27] that utilized a pre-calibrated
camera to estimate a small sand pile (v= 435 cm3) had a volumetric estimation error = 4.76%.
Another study [22] that used video frames to estimate a volume of a sand pile (3000 cm3)
stated that their models had a volumetric error between 0.7% and 2%. Despite the self-
calibration approach utilized in our study, the models of both devices (i.e., DC and SP)
provided accurate geometrical estimations compared with the results of the above studies.
Furthermore, Moselhi et al. [48] stated—based on previous research studies in the area of
construction—that digital photogrammetry, in general, can provide accurate estimations
with 1% error for volumetric measurements. Although the volumetric estimations of
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our study have errors that are slightly higher than that value (specifically, the beam and
sandpile models), they were obtained with a more accessible, cost-effective, and direct
approach compared with more accurate approaches that require expensive, pre-calibrated
digital handheld cameras or camera-mounted drones.

Generally, the error of a geometrical estimation extracted from a photogrammetric
model is attributed to several sources. One source of error is that associated with the lens
distortion of the camera utilized and not precisely modeled. Another source is the error
associated with estimating the camera orientation parameters, especially when using a
self-calibration approach based on unreliable Exif metadata. Additionally, there is the
error associated with 3D points reconstruction, especially with reconstructing the target
points used to scale the 3D data, which was described as RMSE. All these sources gen-
erally contribute to the overall estimation errors provided in Table 13, regardless of the
camera used.

4. Conclusions

As the literature indicates, there is a shortage of studies in the area of construction
management that assesses close-range photogrammetry, especially that associated with
using smartphones as the data collection tool. Thus, this paper presented a study that
assessed the potential of using a smartphone as a data capturing tool based on the quality
and geometrical accuracy of its photogrammetric outputs compared with a compact camera.
The quality and geometrical accuracy assessments were conducted based on various
criteria that were selected according to previous assessment studies and photogrammetric
software guides.

The results reveal that the smartphone data (SP) were associated with higher lens
distortion compared with the digital camera data (DC). The RMSE of the 3D reconstruction
associated with SP was found to be higher, almost twice that of the DC. On the quality
level, the SP’s sparse clouds were associated with a higher noise level compared with
the DC’s clouds. Additionally, the DC’s dense clouds had a higher points density, nearly
3 times the density of those of the SP. This difference resulted in a better geometrical detail
representation and a higher mesh quality with the DC’s models. The DC’s final textured
models had a higher quality and a better photorealistic appearance compared with the
SP’s. However, the SP’s dense clouds and textured models were of acceptable quality. The
processing time and memory utilization parameters of almost each processing step in the
photogrammetric workflow were generally less with the SP.

The geometrical accuracy assessment revealed the higher accuracy of the DC’s models
in estimating the specimens’ surface areas and volumes compared with the SP’s models.
Nevertheless, the SP’s models resulted in surprisingly accurate geometrical estimations
despite the relatively inferior specifications. The volumetric estimation error ranged from
0.37% to 2.33% for DC and 0.67% to 3.19% for SP. For surface area, the error ranged from
0.44% to 0.91% for DC and 0.50% to 1.89% for SP.

These findings confirm the reliability of the self-calibration approach employed in this
study for both cameras. They also indicate that smartphones can be utilized directly for
acquiring on-site photogrammetric data for 3D modeling and measurements extractions
for construction management applications (e.g., materials quantity take-off and progress
measurements). However, the findings of this study are limited to smaller quantification
applications since it was conducted on relatively smaller construction elements/materials.
Therefore, future research needs to be conducted for larger construction elements (e.g.,
façade, building structures, etc.) or for tracking ongoing construction activities (e.g.,
earthmoving operations, excavation tasks, etc.). Furthermore, the study only evaluated
two types of cameras (i.e., Nikon-D 3300 and Huawei Mate 10 lite); therefore, the authors
recommend conducting similar studies for different types of cameras (i.e., smartphones
with different camera specifications and different compact camera brands), thus providing
more comprehensive comparisons and full assessments. Additionally, future research can
be conducted to quantitatively examine the relationship between the camera specifications
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of smartphones (megapixels, lens size and distortions, sensor size, and focal length) with
the reliability of the resulting 3D data.
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