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Abstract—The rapid deployment of sensing technology in
smartphones and the explosion of their usage in people’s daily
lives provide users with the ability to collectively sense the world.
This leads to a growing trend of mobile healthcare systems
utilizing sensing data collected from smartphones with/without
additional external sensors to analyze and understand people’s
physical and mental states. However, such healthcare systems
are vulnerable to user spoofing attacks, in which an adversary
distributes his registered device to other users such that data
collected from these users can be claimed as his own to obtain
more healthcare benefits and undermine the successful operation
of mobile healthcare systems. Existing mitigation approaches
either only rely on a secret PIN number (which can not
deal with colluded attacks) or require an explicit user action
for verification. In this paper, we propose a user verification
scheme leveraging unique gait patterns derived from acceleration
readings in mobile healthcare systems to detect possible user
spoofing attacks. Our framework exploits the readily available ac-
celerometers embedded within smartphones for user verification.
Specifically, our user spoofing attack mitigation scheme (which
consists of three components, namely Step Cycle Identification,
Step Cycle Interpolation, and Similarity Score Computation)
is used to extract gait patterns from run-time accelerometer
measurements to perform robust user verification under various
walking speeds. Our experiments using 322 smartphone-based
traces over a period of 6 months confirm that our scheme is
highly effective for detecting user spoofing attacks. This strongly
indicates the feasibility of using smartphone based low grade
accelerometer to conduct gait recognition and facilitate effective
user verification without active user cooperation.

I. INTRODUCTION

Smart phone, PDAs, tablets, etc. have become increasingly

popular and play significant roles in our daily lives. In partic-

ular, with sensors that can be easily attached to smartphones

and the plurality of sensors embedded within smartphones,

the collected sensing data can be mined for the understanding

of people’s physical and mental health states. For example,

barometer sensor can be attached to smartphones equipped

with accelerometer and microphone to collect sensing data,

which can be mined to uncover people’s daily life activ-

ities [1]. Information about users’ daily life activities and

behaviors can further assist in the development of various

emerging applications in the healthcare domain. For instance,

walking activities and conversations extracted from collected

sensor data can be used to predict users’ physical and mental

conditions [1].

However, such healthcare systems are vulnerable to user

spoofing attacks in which an adversary can distribute his

registered device to other users such that data collected from

these users can be claimed to be his own. By doing so, the

adversary can claim potential health benefits that are allocated

to people with certain illnesses even though he may not have

any illnesses. For instance, in the social community-based

mobile healthcare systems [2] for facilitating epidemiology

research and disease propagation control, an adversary can

attract additional vaccine allocation by launching user spoofing

attacks and thus undermine the regular operations of such

mobile healthcare systems.

Nevertheless, mitigating user spoofing attacks is not an easy

task. Most smartphones only offer user verification methods

which rely on explicit manual entry of a secret PIN number.

This is insufficient as many users only go through such

a verification process once when a smartphone is switched

on [3]. In addition, verification based on PIN numbers are

not applicable to the cases when an adversary collude with

other users. Recently, new techniques utilizing biometric char-

acteristics such as fingerprints have been proposed for user

verifications. However, fingerprint readers are not available

on most smartphones, making it less suitable for mobile

healthcare systems. Further, this technique also requires an

explicit user action for verification, e.g., putting a finger on

the fingerprint reader.

In this work, we exploit users’ unique physical traits, which

are hard to forge, to mitigate user spoofing attacks in mobile

healthcare systems. Our design goal is to enable user spoofing

attack detection without relying on explicit user cooperation

or additional hardware such as a fingerprint reader. The basic

idea is to utilize a user’s gait pattern because a person’s

gait is often unique and can serve as a useful discriminator.

We design our system to be robust by taking into the fact

that several constant spontaneous sub-events embedded within

gait patterns can uniquely characterize each user and are

hard to imitate. A user may change his/her walking speeds,

but the uniqueness embedded in each gait pattern remains

unchanged. The presence of user spoofing attacks causes the

newly identified gait patterns to be dramatically different from

a user’s normal gait patterns and hence such attacks can be
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detected. To the best of knowledge, our work is the first that

utilizes gait information to detect user spoofing attacks in

mobile healthcare systems.

Specifically, we design a user verification scheme leveraging

gait patterns derived from accelerometer readings. Our frame-

work employs readily available accelerometers embedded

within smartphones instead of deploying additional hardware

for user verification. While gait recognition via accelerometer

sensors have been studied using sensors with high sampling

rates (e.g., larger than 100 Hz in [4], [5]), we focus on

addressing several unique challenges that one faces when using

low grade accelerometers in mobile healthcare systems. First,

low grade accelerometers (e.g. those in smartphones) has a

lower sampling rate (e.g., lower or equal to 50 Hz), posing

possible difficulty in capturing each user’s unique gait patterns.

Second, users’ walking speeds may vary during the verification

process, making it hard to identify step cycles accurately.

Third, the user verification process should be able to complete

with small number of measurements. To cope with these

challenges, our gait pattern based user verification scheme

consists of three components: Step Cycle Identification, Step

Cycle Interpolation, and Similarity Score Computation.

During Step Cycle Identification, we utilize the fact that a

user’s gait patterns should be repeatable, and hence walking

traces collected from a user should be highly correlated.

We thus construct a template for each user’s unique gait

pattern by identifying the first distinguishable step cycle, and

then utilize the high correlation between a user’s step cycles

to identify other step cycles within a trace. This approach

can derive step cycles more accurately than other methods

used in previous studies [4], [5], which identify step cycles

by identifying local minimas repeatedly within a trace. Our

Step Cycle Identification method has the adaptive learning

capability to update a user’s step cycle template using real-time

feedback. A user’s walking speed varies and is determined by

many factors such as his/her health conditions, age, gender,

environment, and so on. Our goal is to design a scheme that

works well irrespective of what speed a user walks at when

the accelerometer readings are collected.

Our Step Cycle Interpolation component helps to align

identified step cycles of different lengths into normalized

cycles of fixed length. This interpolation step allows our

scheme to perform gait recognition robust to various walking

speeds. Furthermore, a user’s walking profile is constructed

during a training process. And our scheme only needs the

user to upload one accelerometer trace under any speed at its

convenience for user profile construction, without requiring ex-

tensive uploading of multiple traces to cover different walking

speeds. We summarize our main contributions as follows:

∙ By exploiting the correlation relationship inherent in a

user’s walking traces, our scheme can achieve more

robust step cycle identification compared to previous

studies even when a user’s walking speeds vary.

∙ We use several techniques including automatic template

update and step cycle interpolation to remove the impact

of varying walking speeds, and preserve the uniqueness

present in the user’s gait pattern for accurate user verifi-

cation.

∙ We collect 322 accelerometer traces from multiple users

over a period of 6 months. The results show that our

scheme is highly effective for detecting user spoofing

attacks. Our technique can also be applied to other

healthcare systems which utilize human sensing data.

The rest of the paper is organized as follows. We first

present some recent researches which are related to our work

in Section II. We then present the system model for our mobile

phone enabled healthcare monitoring systems and the model

for user spoofing attacks in Section III. Next, we present our

gait based user verification scheme in Section IV. In Section V,

we validate the feasibility of our proposed detection scheme

through experiments conducted using real human walking

traces. Finally, we conclude our work in Section VI.

II. RELATED WORK

There has been active studies in designing schemes for

detecting spoofing attacks in wireless networks [6], in which

an adversary device masquerades the identity of a legitimate

device. In the mobile healthcare systems we consider in this

work, we are more interested in a user spoofing attack where

an adversarial user passes his registered device to his friend

to collect sensor data on his behalf, which is different from

the device-identity spoofing attacks considered in wireless

networks.

It may appear that cryptographic authentication schemes [7]

are effective for thwarting user spoofing attacks. However, an

adversary has access to all the security information stored in

mobile devices and hence can pass the security checks easily.

Schemes which utilize users’ unique physical or physiological

characteristics such as fingerprint [8] are attractive. These

methods rely on additional hardware or require users to take

explicit actions, and may not be suitable for mobile healthcare

systems that constantly monitor users’ behaviors.

There are also investigations which utilize users’ behavioral

traits such as gaits for user verification. In [9], a vision

based gait recognition scheme has been proposed. The system

uses several cameras for recording users’ gait information.

Some background segmentation techniques are used to extract

features from recorded images to verify a user. In floor sensor-

based approaches [10], the sensors are placed on the floor

and when people walk on the floor, the identity of a user

can be authenticated by the exerted force measured by the

sensor. However, additional hardware such as cameras and

floor sensors is also needed for these schemes to work but

such hardware may not be always available.

Furthermore, there are schemes for gait recognition through

wearable accelerometer sensors with high sampling rates [4],

[11]. The main advantage of using a wearable accelerometer

sensor for gait recognition is that it provides unobtrusive

verification of a user’s identity without requiring his explicit

actions. [12] utilizes accelerometer sensors on smart phones to

perform physical activity classification. However, they did not

use gait patterns for user verification. In [5], the uniqueness of
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the gait in case of foot motion with respect to the shoe attribute

and axis of the motion is analyzed. It is not clear how their

methods can deal with variable walking speeds. Our work is

different in that we aim to employ gait information to detect

the presence of user spoofing attacks in mobile healthcare

systems. Our approach can extract the unique characteristics

of a user’s gait pattern from sensor data collected from low

grade accelerometers embedded within smartphones, and is

robust to users’ varying walking speeds.

III. FRAMEWORK OVERVIEW

In this section, we first describe our system model and the

possible applications in mobile healthcare domain. We then

show the adversary model of the user spoofing attack. We

next provide an overview of our user verification framework.

A. System Model

We consider a healthcare monitoring system in which each

user registering for its service is given a unique user identifier

and a monitoring application which runs on a user’s smart-

phone. This monitoring application can collect readings from

embedded sensors within smartphones or external sensors

attached to smartphones. Such sensor data will be analyzed

to assess that user’s physical activity levels or physiological

conditions. For instance, a user’s physical activity level can

be assessed by monitoring his conversational activities, while

measurements of heartbeats and blood pressure can be used to

predict his psychological conditions [13]. Such sensing data

collected by the monitoring device e.g. smartphones is sent to

a system server. The server can then derive users’ physical and

mental well beings based on the rich information embedded

in the sensing data. The system server then takes relevant

followup actions based on such analysis, e.g. rewards those

users who have weight problems for increasing their physical

activity level. This type of mobile healthcare system is very

useful as it utilizes the information derived from users’ daily

lives, instead of requesting manual reporting from a user which

could be inaccurate and error-prone. Emerging applications

enabled by such mobile healthcare systems include:

∙ The medical professionals from healthcare companies can

monitor the health conditions of patients with heart dis-

eases by monitoring their heartbeats. Based on patients’

health conditions, the healthcare company can determine

the frequency at which such patients should visit the

doctors [13].

∙ Users’ behavioral patterns and physical activity levels can

be tracked by healthcare companies to facilitate early

detection of signs of depression [1].

∙ Companies that sell healthcare related applications e.g.“I

Do Move” [14] can convince healthy food companies to

provide discount coupons for users who use their health-

care applications by sharing some statistics, e.g. total

number of walking steps collected by their applications,

with these food companies.

B. Adversary Model

Such mobile healthcare system is vulnerable to user spoof-

ing attacks, in which an adversary can collect the sensing

data by passing his monitoring device, e.g. his smartphone,

to another person for a short period of time, and upload

the data collected by the other person in an attempt to gain

more health benefits. For example, users, who registered at

"I Do Move", upload their total walking steps to earn food

discount coupons once the total steps reach a certain milestone.

Malicious users can ask others to walk with their devices and

hence reach the qualifying milestone faster. Furthermore, the

adversary can distribute his monitoring device to others who

have physical or psychological problems and share similar

interest with him. The data collected from these people will

be mistakenly regarded as being obtained from the adversary.

Thus, the system may classify the adversary as a person

with certain physical or psychological problems. Additional

healthcare benefits or treatments will be mistakenly allo-

cated to the adversary. Multiple users may collude to launch

user spoofing attacks to fool the mobile healthcare system.

This attack will significantly reduce the effectiveness of the

healthcare management system and undermine the successful

deployment of mobile healthcare applications since healthcare

benefits will be given to the users who do not have physical

or psychological problems, and are thus not entitled to receive

the benefits.

C. User Verification Framework

Instead of using cryptographic-based authentication meth-

ods, we explore utilizing users’ unique physical traits which

are hard to forge for unobtrusive user verification in the

mobile healthcare systems. We build a framework that utilizes

user gait patterns extracted from accelerometer readings via

smartphones. The framework can be implemented in two ways:

server-centric and user-centric.

In the server-centric approach, pre-processed accelerometer

readings together with sensor data collected from smartphones

(and additional external sensors if any) are sent to a secure

centralized server for user verification. The user verification

is performed based on each user’s profile constructed ahead

of time. The user’s profile contains its unique gait pattern.

The details of the user profile construction are described in

Section IV. The server will then decide whether to accept the

sensor data collected from this user based on the successful

outcome of the user verification process.

In the user-centric approach, the smartphone will be re-

sponsible for performing user verification. A user’s profile

will be constructed and stored in the smartphone. If the user

verification fails, i.e., the user spoofing attack is detected, the

sensor data collected from this user’s mobile devices will not

be reported back to the server.

IV. USER VERIFICATION BASED ON GAIT PATTERNS

In this section, we present our user spoofing attack detection

scheme, which can be deployed in both server-centric and user-

centric framework.
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Fig. 1. Flow overview: components of user verification.

A. Challenge and Design Goals

The goal that leverages gait recognition using accelerometer

readings on smartphones to mitigate the user spoofing attack

is to be able to conduct the user verification without relying

on additional infrastructures or explicit user actions. This

allows a pure software solution. To fulfill such a goal in

mobile healthcare systems, we need to deal with the following

challenges.

Robust to Various Walking Speeds. Users’ walking speed

varies under different scenarios and environments. The gait

recognition process should be robust to various walking speeds

in order to facilitate an effective user verification.

Reasonable Accuracy. Our framework leverages the ac-

celerometers on smartphones with a lower sampling rate

(e.g., 50Hz), which is about half the sampling rate of the

regular accelerometer sensors. Our technique needs to achieve

reasonable attack detection accuracy with readings collected

from accelerometers within off-the-shelf smartphones.

Low Detection Latency. Our user verification scheme

should be able to detect the presence of user spoofing at-

tack with small number of measurements. In this way, the

framework can avoid wasting computational cost spent on

processing the sensor data reported from a user’s mobile

device for the corresponding healthcare needs.

B. Scheme Overview

The basic idea underlying our user verification scheme is

based on the observation that the gait pattern is unique for

each person and differs between different people. When a user

spoofing attack is present, the extracted gait pattern from the

run-time accelerometer measurements from smartphones may

differ significantly, and hence we make use of vertical acceler-

ation collected from smartphones to perform user verification.

Our scheme, as shown in Figure 1, consists of three main

sub-tasks: Step Cycle Identification, Step Cycle Interpolation

and Similarity Score Computation. When the verification pro-

cedure starts, step cycle sequence needs to be first identified

from the run-time accelerometer measurements. A step cycle

template based technique is proposed to accurately capture

the uniqueness embedded in each person’s gait. This template

can be dynamically updated when a user’s physical/medical

situation changes. The identified step cycle sequence is further

interpolated to deal with various walking speeds when a user

is at different environments. The user verification is then
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Fig. 2. Illustration of Step Cycle Identification.

performed by calculating similarity scores between the final

interpolated step cycle from the run-time measurements and

the preconstructed user profile. A user’s profile contains the

user’s gait pattern and is constructed when a user first submits

its accelerometer measurements. The profile is obtained by

utilizing the Step Cycle Identification and Step Cycle Interpo-

lation. The Step Cycle Interpolation component allows robust

user verification even when the user’s walking speed during an

run-time measurement is different from that in a user’s profile.

If a user distributes his device to another person, a lower

similarity value will be obtained after the computation because

the gait patterns between two people differ dramatically, and

consequently the user spoofing attack is detected.

C. Step Cycle Identification

Human gait follows a cyclic pattern. In this work, the

event that we use to mark the beginning of the step cycle

is the heel strike of the swing leg [9]. At that moment,

the person’s feet are both on the floor and they are farthest

from each other and the vertical acceleration of the impact

can be observed as a local minima in the accelerometer

readings. Thus, the step cycle can be identified by extracting

the timestamps of the heel strikes. However, identifying the

step cycle is challenging because the accelerometer readings

can be distorted due to the irregular movement of the user’s

body or the change of walking speeds. The commonly used

step cycle identification techniques [11], [12], [15] identify

the gait cycles by conducting the typical cycle identification

repeatedly in the traces. The problem is that if the cycle

identification for one period is not accurate, the detection of

the following periods will be affected. The detection errors

are propagated and compounded throughout the whole cycle

identification. For these reasons, we utilize the fact that the

same user’s gait patterns are unique and the consecutive step
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cycles should present a high correlation in a collected walking

trace. We thus extract a person’s gait pattern as a template by

identifying the first distinguishable step cycle. We then utilize

the correlation relationship inherent in the same user’s walking

trace to search for the maximum correlation between the first

distinguishable cycle and the rest of trace to derive the step

cycle sequence.

1) Template Construction: Let {�(1), ..., �(�)} be a se-

quence of � accelerometer measurements in the vertical direc-

tion from a smartphone and we assume the ��-th measurement

is the first sample of the �-th step cycle. To construct the step

cycle template, we need to find the first two consecutive local

minimas �(�1) and �(�2) in the accelerometer readings which

represent the beginning and the end of the first distinguishable

step cycle �1 = {�(	), �1 ≤ 	 < �2}. To identify �1, we

assume the user’s maximum and regular step cycles have

approximate � ′ and � samples respectively according to the

sampling frequency of the accelerometer. Thus, the beginning

of the first step cycle �1 can be found by searching the

minimum value from the first � ′ observations:

�1 = argmin
�

(�(	)) , 1 ≤ 	 ≤ � ′ (1)

We then search for the end of the first step cycle �2 by

extending � samples from �1. Because the user’s walking

speed is unknown, the �2 can be determined by relaxing the

searching range by � samples before and after the � samples:

�2 = argmin
�

(�(	)) , �1 +� − � ≤ 	 ≤ �1 +� + � (2)

Thus, �(�1) and �(�2) are the first two consecutive local

minimas in the sequence of recorded accelerometer read-

ings. The  = �2 − �1 consecutive samples of �1 =
{�(	), �1 ≤ 	 < �2} in sequence {�(1), ..., �(�)} will then be

used as a template to identify the rest of step cycles in the

collected trace. We illustrate template construction in Figure 2

(a).

Provided with the knowledge about human walking patterns,

we can then determine suitable values for � ′, � and �: The

natural cadence of the human walking, irrespective of what

speed he/she walks, is usually in the range of [45, 65] step

cycles/min [16] and we assume the sampling frequency of

accelerometer is 50 samples per second. Thus, the number of

samples in one step cycle is in the range [46, 67] samples/step

and each regular cycle contains about (46+ 67)/2 ≈ 56 sam-

ples. With the aid of such clues, in this work, we empirically

set the � ′ as the number of samples that a maximum step

cycle has with � ′ = 67 samples and � as the number

of samples a regular cycle has with � = 56 samples,

respectively. The search range � is then set as the half of

the difference between the maximum and minimum number

of samples the step cycle has (i.e., � = (67 − 46)/2 ≈ 11
samples).

2) Step Cycle Sequence Extraction: The template �1 =
{�(	), �1 ≤ 	 < �2} contains the samples of user’s first step

cycle. We assume there are � step cycles in the collected trace.

To identify the subsequent step cycles ��, � = 2, 3, ..., �,

in a collected trace, we utilize the step cycle correlation

Algorithm 1 Step Cycle Identification

INPUT:
���� = {�(1), ..., �(�)}; A sequence of accelerometer readings

	1 = {�(
), �1 ≤ 
 < �2} ; The constructed template

 = �2 − �1; Number of samples in extracted template

������� = 0; Number of peaks in PCC sequence
PROCEDURES:
for All � ∈ [1, � − ] do

�� = {�(
), � ≤ 
 < �+ } ;
�� = ����(	1, ��);

end for

for All � ∈ [1, � − − 1] do

if �� > ��−1&�� > ��+1&�� > �ℎ���ℎ�
� then

������� = ������� + 1;
�������	 = �;

end if

end for

Return number of step cycles � = ������� − 1
Return step cycle sequence 	
 = {�(
), �
 ≤ 
 < �
+1} , � = 1, ..., �

inherent in a user’s walking trace. The correlation among

step cycles of the same person allows us to extract a user’s

step cycles accurately due to the fact that the correlation

coefficient between two step cycles of the same person is

robust to distorted readings caused by irregular movement

of the user’s body. Further, after examining the correlation

coefficient between the template and subsequent step cycles,

we can update the template dynamically based on the changes

in user’s walking speeds. This is because the step cycles should

be highly correlated if the speed of the template step and

subsequent steps are similar. Thus, a significant decrease in

correlation coefficient between two step cycles indicates a

large speed change. The template, consequently, should be

updated based on the new speed (shown in the next step).

Figure 2 (b) illustrates the step cycle sequence extrac-

tion using Pearson correlation method [17]. To identify the

subsequent step cycles, the template �1 is slid across the

recorded accelerometer readings and the Pearson correlation

coefficients (PCC) between the template �1 and the con-

secutive  samples in recorded accelerometer readings are

calculated. The Pearson correlation coefficient (PCC) is a

statistical method that measures the degree of the linear

relationship between two given vectors. The Pearson corre-

lation coefficient value ranges from -1 to 1. Correlation 1

and -1 means that there is a perfect positive/negative linear

relationship between the two vectors. Specifically, given the

template �1 with length  = �2 − �1 and consecutive

 samples �� = {�(	), � ≤ 	 < �+ } , � = 1, ..., � − ,

from the recorded accelerometer readings {�(1), ..., �(�)}, the

Pearson correlation coefficient is defined as:

�� = ����(�1, ��) =

�−1
∑

�=0

(

�(�1+�)−�̄1

	(�1)

)(

�(�+�)−
̄�

	(
�)

)

− 1

(3)

where �̄1 (�̄�, resp.) and �(�1) (�(��), resp) are the mean

and standard deviation of �1 and ��. The values in Pearson

correlation coefficient sequence � = {��, � = 1, ..., � − }
increase and decrease successively, indicating similarity be-

tween the template �1 and the segment ��. The peaks arise

periodically in PCC sequence � indicating good matches
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Algorithm 2 Step Cycle Interpolation

INPUT:
	
 = {�(
), �
 ≤ 
 < �
+1} , � = 1, ..., �; Identified step cycles

� = 300; Number of samples
PROCEDURES:
for All � ∈ [1, �] do

{�(1, �), ..., �(�, �)} = �������
�����({�(�
), ..., �(�
+1)});
end for

for All � ∈ [1, � ] do

�̄(�) =
�∑


=1

	(�,
)
�

end for

Return interpolated step cycle � = {�̄(1), ..., �̄(� )}

between the template and the subsequent ��s. Thus, these

periodical peaks can be used to identify the subsequent step

cycles. The local maximas in � are detected and marked as

beginning points of each walking step, which occur at the heel

strikes of a swing leg. The algorithm of step cycle sequence

extraction is provided in Algorithm 1.

In Figure 2(b), the blue line in the upper plot represents

the accelerometer readings on smartphones. The green line in

the lower plot represents the correlation coefficient sequence

� computed between the step cycle template and each data

segment ��. The step cycles are identified by searching

periodical local peaks in sequence �. The identified step cycle

sequence �� is:

�� = {�(	), �� ≤ 	 < ��+1} , � = 1, ..., � (4)

3) Template Update: The length of the step cycle changes

as the user’s walking speed varies. With the help of the corre-

lation coefficient between the template and the subsequent step

cycles, we are able to tell when the user’s speed changes, and

update the template timely once the speed change is detected.

The update decision may be system triggered. Particularly, the

system automatically searches the peaks in the Pearson cor-

relation coefficient sequence: if most of the peaks (e.g.,80%)

in a past time period (e.g., a few minutes) are lower than a

threshold (e.g., 0.8), the template update is triggered. A new

template �1 will be generated using the Template Construction

scheme on newly collected accelerometer readings.

D. Step Cycle Interpolation

A user usually walks at different speeds in different scenar-

ios such as taking a leisure walk after dinner or walking rapidly

to catch a commuter train after work. Furthermore, the walking

speed of a user during the run-time data collection process is

most likely different from the speed when the user profile is

constructed. The number of samples in step cycles varies as the

user’s walking speed changes. To deal with variable walking

speeds, our framework preforms step cycle interpolation. This

interpolation step allows us to perform robust user verification

by directly measuring the similarity between the step cycle

sequence in the user profile and the interpolated sequences

obtained from run-time measurements under different walking

speeds. More importantly, by using Step Cycle Interpolation,

a user only needs to upload one accelerometer trace under

any speed at its convenience for user profile construction
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Fig. 3. Illustration of Step Cycle Interpolation for a user under three typical
walking speeds: slow, normal and fast.

without requiring extensive uploading of multiple traces to

cover different speeds.

To perform step cycle interpolation, we align the extracted

step cycle sequence to a reference step cycle with length �
by using cubic spline interpolation [18], a fast, efficient and

stable method of function interpolation. Further, we choose

a large � (e.g., � = 300 samples) so that it is larger than

any user’s longest one step cycle irrespective of what speed

the user walks. The step cycle sequence after interpolation are

represented as:

�� = {�(1, �), ..., �(�, �)}, � = 1, ..., �. (5)
To capture the pattern of all the step cycles, we average over

the interpolated step cycles. Thus, the final interpolated step

cycle can be represented as � = {�̄(1), ..., �̄(� )} with:

�̄(�) =

�
∑

�=1

�(�, �)

�
, � ∈ [1, � ] (6)

The algorithm Step Cycle Interpolation is provided in Algo-

rithm 2. Figure 3 shows an example on how the interpolated

step cycle is extracted under different walking speeds for a spe-

cific user. In Figure 3, the collected acceleration readings under

three representative speeds (i.e., slow, normal, and fast) are

depicted in the left side of the figure. The detailed description

of these three speeds are presented in Section V-A. The final

interpolated step cycles corresponding to these three different

speeds are shown in the right side figure. Before interpolation,

it is hard to directly compare the step cycles under different

speeds due to different lengths of the step cycles. After Step

Cycle Interpolation, we find that the interpolated step cycles

under three different speeds are highly correlated regardless of

the walking speeds. This results is encouraging as it indicates

a particular user’s gait pattern is unique and not sensitive to a

user’s walking speeds.

E. Similarity Score Computation

The interpolated step cycle represents a user’ gait pattern.

Based on the foot motion, a step cycle can be further decom-

posed into several sub-events such as initial contact, loading

response, and midstance [19]. The user’s gait pattern in certain

sub-events may remain constant while others change. The

sub-events within a gait pattern remain constant should be

treated more significantly since they can better represent the

uniqueness of the user’s gait pattern. Thus, to capture this

observation in a quantitative way, we propose to use weighted

Pearson correlation coefficients when computing the similarity

between the extracted gait patterns and the user profile.
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Fig. 4. An illustration of interpolated step cycles of user 1 and 2 under
different walking speeds and CDF of their similarity scores.

We next calculate the weights from sub-events in a user’s

step cycle. Based on the interpolated step cycle sequence ��,

we first equally divide � samples in the interpolated cycle

into � (e.g., � = 6) blocks: {��, ..., ��+1}, � = 0, ..., � − 1
with �0 = 1 and � = � . Thus, the average sample

distance over these blocks can be represented as: ���� =
{

�̄�, � = 0, ..., � − 1
}

, where each �̄� is defined as:

�̄� =

��+1
∑

�=��

∑

�,�∈[1,�]
� ∕=�

∣�(�, �)− �(�, 	)∣

(� − 1)× � × (��+1 − �� + 1)
(7)

Each �̄� in ���� measures the average sample distance in the

�-th block between each pair of � interpolated step cycles.

Based on the sample distance, we define weights over these

blocks as {��, � = 0, ..., � − 1}, where each �� is defined

as: �� = 1/�̄�.

We then define the similarity score between the inter-

polated step cycle obtained from run-time measurement

�� = {�̄�(1), ..., �̄�(� )} and the user profile �ℎ =
{�̄ℎ(1), ..., �̄ℎ(� )} by computing weighted Pearson correlation

coefficient with the weight as {��, � = 0, ..., � − 1}:
C(�ℎ, ��) =
�−1∑

�=0

����({�̄ℎ(��),...,�̄
ℎ(��+1)},{�̄

�(��),...,�̄
�(��+1)})��

�−1∑

�=0

��

(8)

If the similarity scores are lower than a pre-defined threshold,

the framework will declare the presence of the user spoofing

attack for this particular user ID.

Feasibility Study. We study how the similarity scores

change when acceleration readings are collected from different

users under three typical walking speeds (i.e., slow, normal,

and fast). We collect 6 traces per user with 2 traces per walking

speed. Figure 4 plots the interpolated step cycles generated for

these two users and the cumulative distributed function (CDF)

of the similarity score. From the left subfigure in Figure 4,

we observe the interpolated step cycles under three walking

speeds within a particular user are very similar, while the

interpolated step cycles between two users differ significantly.

Furthermore, from the right subfigure, the similarity scores are

high (larger than 0.8) for the same user regardless of walking

speeds. Whereas the similarity scores reduce to [−0.2, 0.3]
between two users. These observations strongly confirm the

feasibility of using our gait recognition based method to detect

user spoofing attacks.

V. PERFORMANCE EVALUATION

In this section, we conduct experiments using accelerometer

traces collected from volunteers using smartphones to evaluate

the effectiveness of our approach in detecting user spoofing

attacks. The following subsections detail our experimental

methodology and results.

A. Experimental Methodology

We use a HTC EVO smartphone equipped with accelerom-

eter that supports 50 Hz sampling rate for data collection

from volunteered users. Each HTC EVO smartphone runs

Android operating system with 192 MB RAM and a 528MHz

MSM7200A processor. The accelerometer readings are col-

lected when the users are walking and then written into a

log file on a smartphone. During the experiments, we let

users put the phone in the hip pouch position. We defer the

study of using traces collected from other body positions as

our future work. Such phone position is natural since many

people carry their smartphones in a similar position [11].

Besides, users of our system can be asked to put phones in

such positions for verification purposes. Of the 3 dimensional

accelerotmeter signals retrieved from the smartphone, only the

acceleration in vertical direction is used. We experiment with

three representative user walking speeds, namely slow (slower

than 0.7m/s), normal (about 0.7m/s-1.1m/s), and fast (faster

than 1.1m/s).

We conduct experiments using 322 accelerometer traces

collected from 23 volunteers over 6 months to evaluate the

effectiveness of our approach. A size of 23 users is also typical

for user monitoring and verification studies [5], [20]. Unless

otherwise stated, each collected trace represents accelerometer

readings of a user walking for a time period of about 30

minutes. For each trace, the user is either walking at a constant

speed (i.e., slow, normal, or fast) or walking at varying

speeds by changing his/her speed every 10 seconds in their

natural walking style. In total, we have 14 traces for each

user collected over a period of six months: four traces per

constant walking speed and two traces for varying speed.

Unless otherwise stated, we choose a user’s trace under normal

walking speed to construct the user profile. The remaining

traces under constant speeds and all the traces under varying

speeds are used for testing.

We use a trace-driven approach to evaluate our gait pattern

based user verification scheme in a personal computer, which

corresponds to the situation in the server-centric framework.

We defer the implementation of the user-centric framework as

our future work. We emulate the user spoofing attack scenario

by comparing a user’s testing traces with a different user’s

profile. To study the statistical characteristics of our approach,

in total, we create 12,144 (i.e., (3× 22)× ((2× 3)+ 2)× 23)

attacking instances and 552 (i.e., 3× ((2× 3)+ 2)× 23) non-

attack instances based on the number of the accelerometer

traces we collected from all the volunteers.

We use the detection rate and false positive rate to evaluate

the effectiveness of our scheme. They are defined as:

∙ Detection rate: the percentage of attack instances that

are correctly identified by our scheme;

∙ False positive rate: the percentage of non-attack in-

stances that are mistakenly detected as attack instances.
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Fig. 5. Comparison of step cycles identification by using different schemes
with 15 traces from 5 users under different walking speeds.

B. Comparison of Step Cycle Identification

In the first set of experiments, we evaluate the effectiveness

of our proposed step cycle identification scheme via comparing

it with an existing method that identifies cycles by conducting

the typical cycle identification repeatedly in a trace [11],

[12], [15] (i.e., only based on local minimums searching). For

comparison, we use 15 walking traces from 5 users with one

minute length for each trace. Thus, there are 3 traces from

each user under 3 different walking speeds. We compare the

step cycle detection rate, which is the percentage of step cycles

that are accurately identified, of our proposed method to the

existing method.

Figure 5 (a) and (b) depict the cumulative number of

identified step cycles and the corresponding detection rate with

increasing number of walking traces for both our proposed

method and the existing method. First, we observe that the

number of the step cycles identified by our method stays very

close to that of the actual number of step cycles present in

each trace (reported by each user), whereas the gap between

the curve of using the existing method and that from the

actual step cycles is significantly larger than that of our

proposed method. Further, we found that the detection rate

of our scheme is significantly higher than that of using the

existing method: our method can achieve a detection rate

over 90% with different number of walking traces, while

the detection rate ranges from 50% to 70% for the existing

scheme. These observations indicate that our proposed step

cycle identification scheme can derive step cycles much more

accurately than the existing schemes [11], [12], [15]. This

is because the existing schemes only rely on local minima

searching, which is easily affected by the noise caused by

irregular movement of the user’s body and the detection

errors propagate and affect the accuracy of subsequent cycle

detections. Whereas our method exploits the high correlation

inherent within a user’s step cycles and is more robust to such

noise.

C. Constant Walking Speed Study

We next evaluate the effectiveness of our gait based user

spoofing attack detection method by using the run-time mea-

surements with constant walking speeds.

1) Detection Latency Analysis: The detection latency anal-

ysis evaluates the detection performance when run-time mea-

surements of different durations are used for attack detection.

Specifically, we evaluate the detection performance when the
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Fig. 6. Constant speed study: Performance of detecting user spoofing attack
by using the same duration of run-time measurement trace and user profile
trace.

run-time measurement trace length equals to "10 seconds", "20

seconds" and "40 seconds" respectively, under normal walking

speed. The same corresponding length of the user profile trace

is used. The time length of "10 seconds", "20 seconds", and

"40 seconds" corresponds to about 9, 18 and 36 step cycles

respectively under the normal speed.

Figure 6 (a) and (b) present the detection rate and false pos-

itive rate under different detection thresholds. We first observe

that the longer traces result in better detection performance.

In particular, our scheme can achieve over 80% detection

rate with less than 10% false positive rate when the trace

length is longer than 20 seconds. This is because more step

cycles can be identified in a longer trace which result in a

more accurate capture of a user’s unique gain pattern. The

encouraging observation is that a trace length of 20 seconds

is sufficient for our scheme to achieve a reasonable detection

rate and a low false positive rate.

2) Robustness against Different Walking Speeds: We next

study the robustness of our method under the scenarios where

the run-time measurement traces are of different walking

speeds from that used for a user profile. Figure 7 (a) and (b)

present the detection rate and false positive rate under different

detection thresholds when the run-time measurement traces are

in slow, normal, and fast walking speeds, respectively. The

duration of both user profile traces and run-time measurement

traces is set as 20 seconds and a user profile is constructed

from traces collected with a normal walking speed.

We observe that the detection rate increases as the detection

threshold increases. This is because with higher detection

threshold, it is easier for our scheme to detect traces which are

from different users. Further, we find that the overall detection

rate remains around 80% and the false positive rate is lower

than 10%. Moreover, similar detection rate and false positive

rate are achieved even if the traces of run-time measurements

are collected using different walking speeds from that used

to construct a user profile. This demonstrates that our scheme

is robust against any potential attacks using different walking

speeds.

D. Varying Walking Speed Study

Finally, we evaluate the effectiveness of our method using

the run-time measurement traces with varying speeds. We

keep the user profile trace as 20 seconds while varying the

duration of the run-time measurement traces. Figure 8 plots

the Receiver Operating Curve (ROC) of our scheme when the
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Fig. 7. Constant speed study: Performance of detecting user spoofing attack
by keeping the duration of both run-time measurement trace and user profile
trace to 20 seconds with run-time measurement traces of different walking
speeds.

detection threshold is changed from 0.65 to 0.9. The legend

"User profile: slow”, "User profile: normal” and "User profile:

fast” denote the traces for constructing a user’s profiles are

chosen from constant speed traces with slow, normal and

fast walking speeds, respectively. Figure 8 (a) and (b) show

the run-time measurement traces are 20 and 40-second long,

respectively.

Similarly, the overall performance of our method can

achieve over 80% detection rate with less than 10% false pos-

itive rate. This shows that our method is robust to the dynamic

changes of the users’ walking speeds. Further, we observe that

the performance using user profiles constructed from traces of

different speeds become comparable when the false positive

rate is around 10%, indicating our method is not sensitive to

the walking speeds of training traces which are used to con-

struct a user profile. In summary, our extensive experimental

results demonstrate the effectiveness of leveraging gait patterns

to perform user verification. Our correlation based step cycle

identification results in better performance compared with the

existing method. Our step cycle interpolation approach makes

our scheme robust to varying user walking speeds, which are

not investigated in other works. We anticipate utilizing some

data mining techniques to further improve detection accuracy

of our system, and we leave this to future work.

VI. CONCLUSION

In this paper, we address the problem of user spoofing

attacks in emerging mobile healthcare systems. We propose a

user verification scheme leveraging gait patterns derived from

acceleration readings to mitigate against user spoofing attacks.

Our framework employs readily available accelerometers em-

beded within smartphones instead of deploying additional

hardware or requiring explicit user action for user verification.

Our framework exploits the correlation relationship inherited

from a user’s walking traces and develops a step cycle template

based technique that can identify the user’s gait pattern more

accurately than existing studies. Furthermore, our step cycle

interpolation method can perform robust detection of the pres-

ence of user spoofing attacks under various walking speeds.

Through experiments using 322 traces collected over a period

of 6 months, we show that using smartphone based low grade

accelerometers can achieve reasonable detection accuracy with

only small number of run-time measurements for effective

user verification in mobile healthcare systems. We will further
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Fig. 8. Varying speed study: ROC curve of user spoofing attack detection with
varying run-time measurement duration and user profile traces of different
walking speeds and fixed 20 seconds duration.

analyze the robustness of our scheme when the adversary can

study other users’ walking styles in our future work.
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