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ABSTRACT One of the main endeavors of smart cities is the organization and subsidization of public

transportation. To achieve this, it is important to obtain information about the way in which people move.

This once-difficult problem can now be addressed by using smartphones. This paper introduces a machine

learning-based framework that is able to ascertain the usage of a public or a private transportation mode by

analyzing a little amount of data sampled by a user’s smartphone. The presented method exhibits a good

accuracy and a limited battery consumption. A public anonymized dataset based on real measurements is

also provided along with this study. To the best of our knowledge, this is the first dataset of this kind that is

offered to the public.

INDEX TERMS Mobility, transportation mode detection, smart city.

I. INTRODUCTION

The use of smartphones is nowadays pervasive. In addition

to communication capabilities, they are also equipped with

several sensors, and are usually carried by people through-

out the day. Several applications have been released to

provide fundamental tools to improve life in smart cities.

Innovative applications revolve around e-work ([1], [2]),

opportunistic data collection from Internet of Things (IoT)

sensors ([3]–[5]), and the collection of data useful for trans-

portation ([2], [6], [7]). One of the most important issues in

the latter topic is the use of smartphone data for detecting

the transportation mode chosen by users. This problem is

called Transportation Mode Detection (TMD) and it is often

addressed through machine learning approaches [8].

In this paper, we focus on the online detection of the users’

mode of transportation, namely determining whether he/she

is traveling by public or private transportation means. This

problem is compelling, as the knowledge of transportation

habits of people can inform municipalities in planning and
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optimizing transportation services, devising mobility models,

and improving navigation systems ([9]–[11]).

The TMD problem can be addressed by using different sets

of data, such as those coming from smartphone sensors (e.g.,

Global Positioning System (GPS), accelerometer, gyroscope,

compass, etc.) or data taken from social and environmental

sources such as tweets, facebook posts, and smart cameras

([8], [12]).

The techniques using the former set of data, usually, attain

good performance and have fewer privacy problems. The

level of accuracy is so high, for certain transportation modes,

that Android has a suite of functions installed in each smart-

phone (called Android Activity recognition Application Pro-

gramming Interfaces) that enables detection of a user motion

mode, specifically, whether he/she is moving by vehicle,

by bicycle, or by foot.

In the academic field, a large branch of the literature

dealing with innovative methods for detecting transportation

modes with high accuracy exists [8]. Nevertheless, to the best

of our knowledge all of the presented approaches have three

main drawbacks, which the approach presented in this paper

overcomes.
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The first drawback is that they use data coming from

sensors that are not present in all smartphones. Hence, due

to the heterogeneity of mobile phone components, we restrict

the presented application to consider sensors that are present

in all mobile phones, such as GPS and accelerometers.

The second drawback is that the used sensors drain energy

from the smartphone in the collection of data and com-

putation of results. Smartphones are in fact an essential

component of our daily life and no one wants to install

applications that drain too much energy from their device.

The presented methodology achieves accurate classification

results while limiting the energy power consumption in the

sampling phase. It is worth noting that, despite the importance

of this question for the feasibility of the method, no study has

explicitly taken this problem into account.

The third drawback is the lack of benchmark instances,

which do not grant repeatability of the experiments. To the

best of our knowledge, this is the first work providing an

open anonymized dataset of the collected measurements. It

is important to note that the first two drawbacks are critical

for the development of a real-life application for the detection

of transportation mode.

In order to provide useful information to the municipality,

TIM, the main Italian telecommunication company, the ICT

for City Logistics and Enterprises Lab of Politecnico di

Torino, and the startupsMove Plus and Pony Zero have joined

the project Open Agorá.1 The main objective of the project

is to improve sustainable mobility and its final deliverable is

a mobile application that people can download and install.

Once launched, it runs in the background, collecting data that

are daily sent to a server. Once the server collects enough

information, it proposes more sustainable travel options to

the app user and possible actions to the municipality for

improving its public transportation services. It is worth noting

that by sustainable travel options we mean a set of alternative

transportation modes more environmental friendly (such as

public transportation, bicycle, etc.) that enable the user to

travel from its origin to its destination without sensible time

variations. Sustainability is a key target for the smart cities

([4], [13]–[15])

All the results presented in the paper have been developed

in the Open Agorá project. The proposed methodology is

composed by three steps. In the first step, we extract a set

of characteristic features from the datasets of each travel.

In the second step, we use machine learning to infer whether

each travel is done by using a private transportation mode or

a public one. Finally, we search a trade-off between classifier

performance and data sampling rate of the sensors in order to

minimize energy consumption.

The article is organized as follows: in Section II, we con-

duct a literature review of transportation mode detection.

In Section III, we briefly describe the characteristics of smart-

phones, the procedures used for collecting data, while the

features and classifiers used for the analysis are described

1http://torinolivinglab.it/portfolio/open_agora/

in Section IV. In Section V, we discuss the performance

of the proposed methodology by using real data. Finally,

in Section VI, we present the conclusions of the work.

II. LITERATURE REVIEW

The literature on the TMDproblem iswide, covering different

sets of transportation modes and techniques used. The goal

of presenting an exhaustive literature review about the TMD

problem is out of the scope of the present paper and thus

we limit our review to the most relevant papers related to

our specific application. As an example of the heterogene-

ity of the papers in this field, [16] considered features to

ascertain if a user is walking or traveling by bicycle, car,

bus, tram, or subway. It extracts features from the data of the

accelerometer and gyroscope. On the other hand, for the same

set of transportationmodes, [17] considered only acceleration

data. Several studies have compared different classification

algorithms, in order to find the best one. We summarize the

most recent results in Table 1. To the best of our knowledge,

in the present literature, the papers that present applications

closest to ours are [17]–[22], and [23]. Nevertheless, none

of them focuses on the classification of public and private

transportation modes. For this reason, we consider the closest

comparison; that is, the discrimination between the use of car

and bus. In particular, [18] uses standard statistics indicators

(average, standard deviation, mode, and median) of the accel-

eration series to discriminate between several different sets

of transportation modes. The classifier chosen for their study

is the binomial logistic regression. Despite the simplicity of

their approach, they achieve a high goodness of fit in several

comparisons, nevertheless, the discrimination between car

and bus reaches an accuracy of 66.7%.

The papers [19], [20], and [21] use GPS, accelerome-

ter data, and Geographical Information System (GIS) data,

in order to discriminate between car and bus. The papers

[19] and [21] obtain accuracies of 99% and 97%, respec-

tively, by using Random Forest (RF) methods. Alternatively,

[20] reaches an accuracy of 82% by using RF and a Hid-

den Markov Model (HMM) classification algorithm. In [22],

the authors use the GPS and accelerometer to gather data,

combined with GIS data and other signals, such as GSM or

Wi-Fi. For the classification, they use Bayesian networks as

classifiers. Their method achieves an accuracy of 75% for the

discrimination between car and bus. For the same discrimina-

tion, [17], [24] and [23] use only acceleration data and reach

accuracies of 85% and 82% by using a HMM and adaptive

boost decision tree (DT), respectively. A paper that obtain

an accuracy greater than 90% in the discrimination between

car and bus is [25]; this paper considers accelerometer data,

in combination with GPS data. The techniques adopted by the

authors is a Bayesian Belief Network that uses data collected

from ad-hoc devices, more accurate than usual smartphones.

With the same choice of initial data, [26] develops a

large-scale travel survey by employing data from smart-

phones. A total of 266 hours of travel data are collected to

design and evaluate the models. Using a set of 72 features,
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the best classification results are achieved for detecting walk-

ing (92%) and bike riding (98%). The accuracy of the detec-

tion of car transportation is 75%.

Another relevant work is [27]. In this paper, the authors

sample data from the accelerometer, gyroscope, and rotation

vector using the highest possible frequency of the application,

but they do not sample GPS data, as the usage of the GPS

system can deplete the battery. To the best of our knowledge,

this is the first and only paper that addresses the problem of

energy consumption. However, differently from the present

paper, it does not consider the optimization trade-off between

the reduction of sensor sampling and machine learning per-

formance.

For the sake of completeness, we cite [28], [29], and [30]

as the most important studies that consider only GPS data

to recognize different transportation modes. In the same set-

ting, [31] uses neural networks (NN) and particle swarm opti-

mization to achieve an accuracy of 95%. Other papers as [16]

consider data from the accelerometer in combination with

data from the compass and magnetometer. The performance

is satisfactory, both for the accuracy and from the amount

of power that the collection of data requires. Unfortunately,

several models of smartphones have neither a gyroscope nor

a magnetometer.

From the analysis of the literature, we conclude that RF is

the classification method that, in most of the cases, achieves

the best results. As previously mentioned, one of the main

weakness of the TMD literature is the absence of bench-

mark datasets. This problem is serious as, in different cities,

the habits of people are different; hence, a good methodology

for a city can have poor results in another one. For this

reason, it is a necessary condition for the improvement of the

field to build a set of benchmarks datasets available online.

For the sake of completeness, it is important to cite some

available applications that classify the transportation mode

in real-time. The most famous are Modalyzer,2 Chronology3

and the Android Activity Recognition.4 Modalyzer can detect

if the user is traveling by bus or by car, but it needs the

maximum possible GPS sampling frequency. Chronology is

a feature included in Google Maps. Its objective is to monitor

the movement of users by storing the transportation mode

used and the places visited. Its accuracy is not very high

and, sometimes, it fails to register some types of travel. The

Android Activity Recognition APIs identify different activi-

ties. These APIs do not use GPS. They are able to determine if

the user is walking, running, traveling by bicycle, or traveling

by vehicle. These APIs are not able to distinguish between

public and private transportation modes.

As some real-life experiments have shown, such as Sin-

gapore’s Livable Places (see [32]), a clear understanding of

transportation usage requires data collected with multiple

2https://play.google.com/store/apps/details?id=com.modalyzer&hl=it
3https://support.google.com/maps/answer/6258979?co=GENIE.Platform

%3DAndroid&hl=en
4https://developers.google.com/location-context/activity-recognition

methods (e.g., sensors, cameras, crowd-sourcing, and social

networks). Thus, the collaboration of phones with other data

sources (e.g., car, bus, and bike sensors or street sensors at

traffic lights) improve tracking the moving habits of people.

Nevertheless, such technology opportunities are not yet avail-

able in the place of our case study and will not be available in

the (foreseeable, at least) future. Furthermore, in order to use

these data, it is required to have such an infrastructure across

the entire country that, especially in rural areas, is difficult to

implement. For these reasons, we consider an easier approach

that can involve, as users, the vast majority of the population.

The main contribution of this paper is to develop a frame-

work for data collection and for the classification of trans-

portationmode that is robust with respect to the sampling rate.

This is strictly related to the problem of power consumption

in data collection. This problem is of fundamental importance

for building applications that users are willing to run on their

smartphone. Furthermore, this paper deals with the distinc-

tion between private and public transportation modes. For

these reasons, and due to the unavailability of public datasets,

we cannot compare our results with the ones obtained by

other papers. Finally, the proposed methodology considers

as potential class of users of the application all people who

own a smartphone. As top-class smartphones usually have

sensors that others do not have, we only consider sensors that

are present in the majority of smartphones.

III. DATA COLLECTION

In this section, we briefly describe the main characteristics of

smartphone sensors and describe the data collection process.

The most common smartphone sensor is the accelerometer.

It measures accelerations applied to the device (inm/s2) with

respect to the three axes shown in Fig. 1. It is usually used for

determining the orientation of the smartphone and rotating

the screen horizontally or vertically. The acceleration due to

gravity biases the measures of the acceleration.

Another sensor that is present in almost every smartphone

is the GPS (Global Positioning System) sensor. It determines

the coordinates (in latitude and longitude) of the smartphone,

with a precision of a few meters. The localization is carried

out through the reception of of a radio signal sent by satellites.

The main problem of this sensor is that GPS signal is often

missing indoor, and totally absent underground.

For the sake of completeness, we also describe other sen-

sors used in similar studies: the gyroscope is a sensor that

estimates the orientation of the device with high precision.

It measures rotational velocity along three axes in rad/s.

It is used to improve the information about the trajectory of

a smartphone in space. Compared with the accelerometer,

the gyroscope is not present in all smartphones. Thus, we have

not used information coming from this sensor.

Themagnetometer is a sensormeasuring themagnetic field

along the three Cartesian axes. It is used as a compass in

applications implementing navigation features. This sensor is

sensitive to metallic objects and other devices nearby. As with

the gyroscope, it is used to improve information about the
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TABLE 1. Summary of studies regarding transport mode detection (TMD).

smartphone trajectory. Nevertheless, it is not present in sev-

eral models of smartphones and, so, we have disregarded it.

The microphone is a sensor that records sounds, and the

extraction of data for classification from the microphone can

be interesting: background noise is different between public

and private transportation modes. Nevertheless, asking users

to allow an application to record sounds may have a huge

impact with respect to privacy. For this reason we do not

consider it in our study.

Finally, the different communication standards (e.g., Wire-

less LAN, Code Division Multiple Access, GSM, Long Term

Evolution, and Wideband Code Division Multiple Access

provide other information that can be used for localization

(e.g., buses may have private wireless LAN). With respect to

GPS, they consume less power, but have low accuracy.

The energy consumed by sensors is not negligible and,

in Table 2 ([33], [34]), we show the power consumption of

smartphones during the execution of particular tasks. We add

also tasks not related to data sampling, in order to give the

reader an idea of the standard smartphone power consump-

tion.

The power consumption of the GPS is tricky to analyze,

for many reasons: first, GPS sensor manufacturers typically

do not provide technical details; second, GPS consumption

varies considerably between idle and active time intervals.

The Adafruit Fona GSM module is a commercial sensor

(technical data can be found in [35]); for which the manu-

facturer declares that the sensor consumes 20–25 mAwhen it

is waiting for a message and up to 200 mA when it receives

a signal, with a spike up to 2 A. Furthermore, the standard

sampling frequency for a GPS is between 1–10 Hz. For

this reason, Table 2 shows an average value for GPS power

consumption.

FIGURE 1. Acceleration axis.

TABLE 2. Power consumption of phone operations.

As the reader may notice from Table 2, the accelerometer

consumes only 21 mW; thus constituting the least amount

of consumed power. Moreover, sampling the GPS position
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consumes almost eight times the power of the accelerometer.

Hence, the accelerometer is the ideal sensor to use for our

analysis. Nevertheless, the information of just the accelerom-

eter is not enough in order to distinguish between public and

private transportation mode.

The first step of this study consists of data collection and

the construction of a dataset containing information about

the various sensors. To achieve this, an Android application

called TraceMe5 is developed, in order to collect as much data

as possible (to allow a study of classifier performance for

different sampling times) and to label the real travel mode.

This application runs in the background and collects data

from several sensors, as well as the output of the Android

Activity Recognition APIs.

The app is implemented by using a free APIs available

from the Android environment. The reasons for this choice

are two-fold. First, it ensures that our results are repeatable;

second, it does not require any extra costs for the interested

reader. The data collected by TraceMe constitute the dataset

used for the training and testing of the classification algo-

rithms.

The structure of the final version of the project is composed

of an application running in the background that collects the

data from sensors, classify the transportation mode and sends

them to a server. The server stores the data and performs

the computation (such as updating the training of classifiers,

if needed, and searching for sustainable alternatives to users’

trips) and sends to the application possible improvements for

the mobility habits of the user. At the same time, the server

is responsible for sending data to the municipality suggesting

possible optimization of the public transportation mode. It is

worth noting that this architecture simplifies the management

of the information, if the application is used by a large amount

of people. As the description of the whole project is out of the

scope of the present paper, we do not focus on the procedure

that the server uses for computing sustainable alternatives,

nor on the application running in the background. In fact,

the application that we present is the one used for collecting

the data for the training set of the classification algorithm

and not the one to collect data running in the background.

It is important to notice that we are referring to a generic

server, but when the number of users increases, more complex

solutions will have to be implemented ([36], [37]).

TraceMe asks its users to start recording data at the begin-

ning of each trip, to end the registration at the end, and

to communicate the transportation mode used. The main

screen (Fig. 2) describes the information on the state of the

application. It indicates the time when the data collection

started, the transportation mode detected by the Android

Activity Recognition APIs, the speed recorded in km/h, and

the present activity selected by the user (among bicycle, bus,

car, motorcycle, stationary, subway, train, tram, or walking).

Furthermore, a button enables the user to start or stop the

5The application is not publicly available, but it can be obtained by asking
the authors.

FIGURE 2. Screenshots of the application TraceMe: Home page.

FIGURE 3. Screenshots of the application TraceMe: List of all the travel.

recording of travel (if the GPS tracker is enabled). Walking

is the default transportation mode. When the start button is

pressed, the device starts to record data.When the travel ends,

the person can set the label and see it on a map. When the

application is recording, it is possible to leave the application

open or running in the background. The second screen (Fig. 3)

shows the list of trips recorded by the user. It can be used by

pushing the icon in the Action Bar. From this screen, it is

possible to see, in chronological order, a summary of the

information of each trip (starting and ending date, length, and

duration).

By tapping on the travel, it is possible to see additional

information (sampling frequency and synchronization status)

and to modify the label of the trip.

For each recorded trip, the application creates a

SQLite dataset containing the data from the accelerometer,
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FIGURE 4. Classification model architecture.

the bluetooth, the gyroscope (if any), the GPS, the magne-

tometer (if any), microphone, the Wi-Fi, and the output of

the Android Activity Recognition APIs. It is worth noting

that despite the collection of several data, some of them are

not used in the classification algorithm. We collect them in

order to create a dataset as much comprehensive as possible.

Once the dataset is saved, it is compressed, sent to the

server, and then it is deleted from the phone. As a more

in-depth technical description of TraceMe is out of the scope

of the present paper, we refer to [38] and [39] for more

information.

After data collection, we obtain a database (DB) contain-

ing, for each trip, a dataset composed of a set of time-series

describing accelerations, GPS positions, and the output of the

Android Activity Recognition APIs. Due to the heterogeneity

in the data (in terms of duration), we extract a set of features

from each dataset. Hence, we obtain a unique table from the

whole DB, where each row contains the values of the features

of a specific trip and its respective label (public or private

transportation mode). By convention, we associate the label

BUS to the public transportation modes (bus, tram, train,

or subway), and the label CAR to the private transportation

modes (car andmotorcycle). By using this strategy, we reduce

the complexity of the classification method, as it does not

have to deal with a huge amount of data. An alternative

technique to manual feature extraction is automatic feature

extraction. However, we decided not to use it, as we desire

the obtained features to have a physical interpretation.

It is important to notice that the aforementioned procedure

consists of an offline classification in which all the classi-

fication is performed in a PC after the travel is executed,

rather than during the travel. This strategy is used only in the

prototyping phase. Indeed, the classifier is fully integrated in

the final version of the application.

IV. CLASSIFICATION ALGORITHM

From the set of features considered, we select the most signif-

icant to develop a light and efficient classifier and to reduce

over-fitting. The final classification algorithm proposed is

shown in Fig. 4.

The collected data undergo a series of processing steps.

The first processing applied to the dataset is to extract the

module of the acceleration. As acceleration values are biased

by the action of the gravity force, we subtract the gravity

acceleration from the collected data.

The obtained set of values is a time-series, which is a set of

data, collecting the value of a phenomenon for several evenly

spaced time instants. In the following, we consider I =

{1, . . . , I } the set of all travels recorded and Ti = {1, . . . ,Ti}

the set of time steps of travel i. We call ait ∀i = 1, . . . , I ,

t = 1, . . . ,Ti the value of the acceleration of travel i at time t .

The auto-correlation at lag k is

r ik = ˆCorr[ait , a
i
t−k ] =

∑Ti
t=k+1(a

i
t − āi)(ait−k − āi)

∑Ti
t=k+1(a

i
t − āi)2

, (1)

where āi =
∑Ti

t=1 a
i
t is the average acceleration of travel i.

It holds that the value r ik is normally distributed if the random

variables at are independent and identically distributed [40].

By considering r ik ∀ k , we have the so-called Autocorrelo-

gram Function (ACF), which is a summary of the dependence

patterns over time.

Besides correlation, another important characteristic of

a time-series is the frequency analysis. Features related to

frequency use the Fourier transformation. In particular, given

the acceleration time-series ait , the spectrum of the series is

defined as

A(υ) =

+∞
∑

t=−∞

aite
−i2πυt , (2)

where υ is the measured frequency. The result of Eq. (2)

is the description of the signal in terms of a sum of sinu-

soidal functions with different frequencies. We can use the

information on the spectrum in order to obtain the frequency

most present in the acceleration data and the corresponding

amplitude.

Before to start describing the features that we use, we recall

that given a vector u = [u0, . . . uN ], the l1 norm is
∑N

i=0 |ui|,

the l2 norm is

√

∑N
i=0 u

2
i and the l∞ norm is maxi ui.

The first features that we consider are the maximum

(maxt=1...Ti [a
i
t ]), the minimum (mint=1...Ti [a

i
t ]), and the aver-

age acceleration (āi) computed over each trip. Since, they

are not enough to characterize the distribution of the accel-

eration, we also consider the number of times that the

acceleration is above a threshold. We chose, as a threshold,

the 70th percentile of the acceleration data considering over

all the trips i.e., the value q0.7a such that P[ait < q0.7a ] = 0.7.

In this way, we can measure the number of extreme val-

ues of the acceleration distribution. This feature is par-

ticularly high for private vehicles characterized by high

power. It is worth noting that the discrimination ability

of the aforementioned features is reduced in high traffic

conditions.

Furthermore, we consider the l1, the l2, and the l∞ norms

of the ACF r ik ∀ k by excluding the value r10 := 1.
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Usually, since buses, trams, trains, and metros have reserved

paths, their acceleration is more correlated than the other

transportation modes.

We also consider the l∞ norm of the spectrum A(υ) defined

in (2) and its argmax. The rationale behind this choice is

that, in public transportation modes, there are more small

vibrations than in private transportation modes.

Finally, we notice that, qualitatively, the time-series of the

accelerations of public transportation modes are smoother

than the series of private transportation modes. For this rea-

son, we consider the variance of the values contained in

a sliding window of length equal to one-tenth of the total

number of observations. From this time-series, we compute

the l1, the l2, and the l∞ norms of its ACF (by excluding the

first value that, by definition, is equal to 1).

To these features, we add the duration of the trip and its

starting time. The reason for the usage of these two features

is that people use transportation modes in a repetitive way.

Furthermore, we also consider the number of times that

the Android APIs register tilting activities since we expect

that people use the smartphone less if they are traveling by

private transportation modes. The reason is that if the user

is travelling by using a private transportation modes it is

possible that he is driving and thus not tilting the phone

(see [41] and [42] for further studies).

Finally, we also consider the output of a map-matching

algorithm as a feature. Due to its complexity and importance,

we explain this feature in Sec.IV-A. The final list of features is

1) the l1 norm of the ACF;

2) the l2 norm of the ACF;

3) the l∞ norm of the ACF;

4) the l1 norm of the spectrum;

5) the l2 norm of the spectrum;

6) the l∞ norm of the spectrum;

7) the l1 norm of the ACF of the mobile variance;

8) the l2 norm of the ACF of the mobile variance;

9) the l∞ norm of the ACF of the mobile variance;

10) the minimum acceleration;

11) the maximum acceleration;

12) the average acceleration;

13) the travel duration;

14) the time of the start of the trip;

15) the number of times that the acceleration exceeded a

threshold (set to the 70th percentile of all the accelera-

tion record);

16) number of registered tilting activities;

17) map-matching.

With the aforementioned set of features, we use Principal

component analysis (PCA) to determine the subset that best

explains the variation in the data. We recall that PCA com-

putes the eigenvalues of the co-variance matrix of a set of

measurements. Given a feature, the greater the eigenvalue,

the more significant the associated features are.

Even if our classification has only two classes, we perform

a tuning guided by PCA in order to use the optimal number of

features that maximizes the performance of the method and

mitigates over-fitting.

By using this method, we decided to classify the trips

by using different sets of features, in order to see how the

prediction power of the classifiers changed.

A. MAP-MATCHING

The map-matching algorithm compares GPS observations

with the paths of public transportation lines. If they are close

to each other, then the travel is considered to be executed with

a public transportation mode; otherwise, it is considered to

be executed by a private transportation mode. Algorithms of

this type represent an important way to tackle the problem of

TMD. For this reason, we consider this feature in the present

section. The inputs of the algorithm are the points recorded by

the GPS and the activities recorded by the Android APIs. The

outputs are the guessed transportation mode used along with

its associated probability. The first step of the algorithm tries

to recognize if the travel has been travelled by subway. This

classification is easy, since the GPS does not provide data

when the smartphone is underground. If the test recognizes

the subway, it produces this result in output with probabil-

ity 1; otherwise, further tests are performed. The second test

checks if the path has been travelled by train. In particular,

the algorithm compares the GPS positions with the paths

of the trains from OpenStreetMap. By calling πTRAIN the

fraction of points having a distance less than 100 meters from

the railway, if πTRAIN > 75% then the path is labeled as being

executed by train with probability πTRAIN ; otherwise, further

tests are performed.

The third test tries to distinguish if the travel has been

travelled by using a private transportation mode or by using a

public transportation mode, by comparing the GPS positions

with public transportation lines. We call πBUS of the fraction

of points that are less distant than 100 meters from a public

transport line. If πBUS > 50%, then the travel is labeled as

done with a public transportation mode with a probability

πBUS . If, instead, πBUS < 50%, then the travel is labeled as

done with a private transportation mode with a probability

1 − πBUS .

Finally, πBUS = 1 if the first and last point of the travel

are near to a bus station and if the activities recorded by the

Android APIs is first walking, then in a vehicle, and then

walking again.

It is worth noting that in the algorithm there is no con-

sideration for the people that by using their cars follow the

same route as a bus. This is a drawback of the map matching

algorithm, but in several cases themachine learning algorithm

correctly detects these situations by analyzing the statistical

properties of the acceleration patterns.

The pseudo-code of the procedure is shown in Algorithm 1.

Since the algorithm uses GPS data, the device consumes

a lot of power. Furthermore, a high computational burden is

involved by the comparison of every GPS position with all the

stops of the public transportationmode. For these reasons, it is

interesting to understand how the performance of the method
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Algorithm 1Map-Matching

1: if first and last points are near the metro and no other

point then

2: p = (METRO, 1)

3: else

4: for point in GPS_record do

5: count_Train + = point ∼ Train_path

6: πTRAIN := count_Train / len(GPS_record)

7: if πTRAIN > 75% then

8: p = (TRAIN , πTRAIN )

9: else

10: for point in GPS_record do

11: count_Bus + = point ∼ Bus_path

12: πBUS := count_Train / len(GPS_record)

13: if πBUS > 50% then

14: if first and last points are near the bus and

WALKING before and after then

15: p = (BUS, 1)

16: else

17: p = (BUS, πBUS )

18: else

19: p = (CAR, 1 − πBUS )

20: return p

degrades with respect to variation in the sampling time. As a

performance indicator, we use the recall:

rx =
number of travels traveled by X labeled correctly

number of travels traveled by X
, (3)

where X ∈ {BUS,CAR}. It is the percentage of trips traveled

by X that we have been correctly identified.

In particular, we are interested in rBUS since, if the data are

under-sampled, the algorithm is more likely to label the travel

as ‘CAR’. The variations of rBUS with respect to the sampling

frequency are shown in Fig. 5.

As the reader may notice, if the sampling time doubles

from 1 Hz to 2 Hz, the recall does not significantly worsen;

however, if it triples, the recall reaches values around 0.5.

We can conclude that the map-matching algorithm is able to

achieve good results only if the data are sampled with a high

rate (i.e., if a lot of power is consumed). For this reason, it is

not suitable to use the map-matching algorithm as the sole

method for classification. it is important to underline that the

outcome of this algorithm will be used as a feature for the

classification approach presented in the next Section.

As aforementioned, the map-matching algorithm needs a

lot of energy in order to sample the GPS positions. Further-

more, it does not use the acceleration data which sampling

consumes a small amount of energy. From these consid-

erations, it follows the need to define a new techniques

that is able to reduce the number of data required by the

map-matching algorithm by using the acceleration data.

In the following, we consider four classifiers: Decision

Tree, Support Vector Machine (SVM), Random Forest (RF),

FIGURE 5. Recall of the map-matching algorithm with different sampling
times.

and Naïve Bayes. We have chosen not to consider other

nonlinear classifiers, such as neural networks and nonlinear

support vector machines, because we already have features

that are nonlinear in the original data. Moreover, we do not

use data clustering techniques (such as the one used in [43],

in [44] and in [45]) because in this setting, they perform far

worst that the other techniques.

V. NUMERICAL RESULTS

In this Section, we consider various classifiers and compare

their performance on the real data collected thought TraceMe

(the aforementioned smartphone application).We develop the

code using Python 3.6 leveraging the availability of packages

formachine learning. In particular, as performance indicators,

we consider the recall (see (3)) and precision:

px =
number of travels traveled by X labeled correctly

number of travels labeled as X
, (4)

where x ∈ {BUS,CAR}. Precision is the probability that label

X is correct.

The final dataset is composed of 311 trips performed by 30

different people, in different moments of the day.

For comparing the proposedmethodologywith other meth-

ods, we searched online publicly available dataset but unluck-

ily we did not find any data.

Thus, we decided to freely provide our data.6 In all exper-

iments, we randomly divided the observations into a training

set (containing 70% of the observations) and a test set (con-

taining the remaining 30%). Every experiment is performed

100 times, in order to obtain robust results. The first experi-

ment considered all the 17 features together. The results are

shown in Table 3.

As the application consumes a lot of power in gath-

ering GPS information, we also show the results of the

6http://www.orgroup.polito.it/resources.html
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TABLE 3. Comparison between the classifiers by using all the 17 features.

TABLE 4. Comparison between the classifiers by all features except
map-matching.

classifiers when the map-matching features are not consid-

ered in Table 4.

The best classifier is the RF, having the best precision and

recall, where both are over 90%. An interesting fact is that,

without the map-matching feature, the performance of the RF

slightly decreased.

As the usage of 17 features may lead to over-fitting and

since our aim is to reduce battery usage, we apply a feature

selection procedure. In details, we consider the five features

with highest coefficients in the first six principal components

(which explained 95.96% of the variance). These are: the l2
norm of the mobile variance, the result of the map-matching

algorithm, the average, the l1 norm of the spectrum, and the

number of times that the series exceeded the extreme quantile.

It is important to notice that while some of them are can

be guessed a priori (e.g., the results of the map-matching

algorithm) some others are not (e.g., the l1 norm of the

spectrum). For this reason, the usage of the PCA has been

of fundamental importance.

In the following subsections, we analyze the results of

the classifiers when considering these five features while

reducing the sampling time. In particular, in Subsection V-.1,

we consider the performance of the Decision Tree; in

Subsection V-.2, we consider the SVM; in Subsection V-.3,

the RF; and, finally, in Subsection V-.4, the Naïve Bayes. For

each classifier we plot the pCAR, pBUS , rCAR, rBUS against

the acceleration sampling rate (i.e., νA) for different GPS

sampling rate (i.e., νS ). In particular, for the acceleration

sampling rate we consider νA ∈ [0.1s, 2s]. We do not reduce

more the sampling frequency, as the power consumption of

the accelerometer with a sampling frequency of 2 seconds is

negligible. Instead, for the GPS sampling rate we consider

νG = 10s, ν=20s, ν=30s, ν=40s and no GPS information

(i.e. νG = ∞s).

1) DECISION TREE

A decision tree is a classifier that uses a tree-like graph to

discriminate between two classes, where the leaves of the tree

FIGURE 6. pBUS of the decision tree for different values of νA and νG.

FIGURE 7. pCAR of the decision tree for different values of νA and νG.

contain the selected classes (see [46] for more details). In our

experiments, we used the implementation DecisionTreeClas-

sifier, available in the package sklearn [47].

As we can see, from Figures 6, 7, 8 and 9, the classifier

is robust with respect to the number of acceleration samples

considered (i.e. νA) if νG = 10s. In fact, all the reported

values are not statistically different. However, the classifier

is very sensitive with respect to the sampling time of the GPS

position. This is an effect of the degradation of performance in

the map-matching algorithm: since map-matching is a good

parameter to discriminate, the most important rule of the

decision tree considered the map-matching feature. Once this

feature became unreliable, the decision tree lost an important

part of its discrimination power.

2) SUPPORT VECTOR MACHINE

A support vector machine (SVM) is a classification method

that tries to divide the two class of observations by means of

a hyperplane (see [46] for more details). If the two classes

cannot be divided, then the SVM finds the hyperplane that
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FIGURE 8. rBUS of the decision tree for different values of νA and νG.

FIGURE 9. rCAR of the decision tree for different values of νA and νG.

minimizes the number of errors. The implementation of SVM

used in our experiments is the function svm of the package

sklearn [47].

The performance of the SVM for different values of

sampling times are shown in Figures 10, 11, 12 and 13.

As the reader can notice, the results of precision and recall

are not statistically different from one setting to another

(if νG = 10s) and, in general, the standard deviations are

lower than the one of the decision tree. This behavior is

explained by the fact that the SVM is obtained by solv-

ing in an exact way a convex optimization problem. When

we reduced the sampling time of the GPS to be less than

10 seconds, the performance degrade fast. An interesting fact

is that the decrements of pCAR, and rBUS when νG passes from

40s to ∞s is not greater than the others. This means that the

importance of the map-matching decreases as the sampling

rate increases. It is worth noting that the SVM achieves the

lowest results in both pCAR and rBUS with respect to the other

classifiers. In particular, even with the smallest sampling time

pCAR = 0.81 and rBUS = 0.76. This observation, and the

FIGURE 10. pBUS of the SVM for different values of νA and νG.

FIGURE 11. pCAR of the SVM for different values of νA and νG.

low variance in the results lead the SVM to be, on average,

the worst classifier that we have considered.

The reason of this behaviour can be explained in the poor

discrimination power of linear functions used by the classi-

fier. It is important to notice that, even with all the 17 features,

the SVM does not achieve accurate results.

3) RANDOM FOREST

A RF is a classifier composed of a set of decision trees.

It averages multiple decision trees trained on different parts

of the training set. In this way, it reduces the over-fitting that

a single tree can produce (see [46] for more details). In our

experiments, we used the class RandomForestRegressor from

the package sklearn [47].

Figures 14, 15, 16 and 17 show the performance of the RF

for various acceleration sampling times. As with the SVM,

the RF classifier is also robust with respect to changes in the

GPS sampling times. Furthermore, the performance of the RF

is also stable with respect to the different sampling times of

the GPS positions (if νG = 10s).
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FIGURE 12. rBUS of the SVM for different values of νA and νG.

FIGURE 13. rCAR of the SVM for different values of νA and νG.

FIGURE 14. pBUS of the RF for different values of νA and νG.

Finally, as with the above classifiers, its performance

degrade if no GPS information is given and the sampling fre-

quency of the acceleration is low, but it is important to notice

FIGURE 15. pCAR of the RF for different values of νA and νG.

FIGURE 16. rBUS of the RF for different values of νA and νG.

FIGURE 17. rCAR of the RF for different values of νA and νG.

that the RF classifier is the one having the least performance

decrements without GPS information (νG = ∞s). As the

reader can notice, the reduction in the performance if νG
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FIGURE 18. pBUS of the Naïve Bayes classifier for different values of νA
and νG.

FIGURE 19. pCAR of the Naïve Bayes classifier for different values of νA
and νG.

passes from 40s to ∞s is greater than the other reduction

(i.e., form 10s to 20s, from 20s to 30s and from 30s to 40s).

This means that even with νG = 40s the map-matching

feature is still really important for this classifier. Furthermore,

the performance of the RF are better than the ones of the other

classifiers in almost all settings. This confirms that the RF is

the best classifier for the considered TMD problem.

4) NAÏVE BAYES

Naïve Bayes is a classifier based on the application of

Bayes’ theorem with strong (naïve) independence assump-

tions between the features. This approach has proved to

be useful in several settings, such as in [48] (see [46] for

more details). Given a set of discrete features f1, . . . , fn,

and by calling x the label, the Naïve Bayes classifier

infers P(x|f1)P(x|f2) . . .P(x|fn) by fitting these probabilities

to the training set. In our experiments, we used the class

BernoulliNB from the package sklearn [47].

FIGURE 20. rBUS of the Naïve Bayes classifier for different values of νA
and νG.

FIGURE 21. rCAR of the Naïve Bayes classifier for different values of νA
and νG.

Similar to the other classifiers, the performance of the

Naïve Bayes are shown in Figures 18, 19, 20 and 21. The

performance are not influenced by different sampling times

of the acceleration.

Similar to the other classifiers, the performance of the

Naïve Bayes also degrade if GPS positions are not consid-

ered and the acceleration is sampled with low frequency.

This behavior is due to the fact that, if some feature had

degraded, the classifiers could still use the others to achieve

a accurate performance. Nevertheless, if the quality of all the

features degraded, then the performance of the algorithm also

degraded. As the reader can notice, on average the standard

deviations of the performances produced by this classifiers

are higher than the ones of the other classifiers.

In conclusion, all the classifiers behaved properly when the

sampling time is high. For this reason, the best classifier to

choose to implement this strategy should be one that performs
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FIGURE 22. Linear interpolation of GPS power consumption.

well with low sampling time and, in particular, even without

information from the GPS sensor.

The best results, from the point of view of energy consump-

tion and performance are the one achieved for νA = 0.7s and

νS = ∞s (i.e. without GPS information) by the RF classifier.

It is able to reach pCAR = 0.80, pBUS = 0.78, rCAR = 0.83

and rBUS = 0.82. Nevertheless, since the GPS positions are

interesting to be sampled for analysing people flow along the

city and optimizing public transportation, the setting used in

the final application is νA = 0.7s and νS = 40 s.

We recall that the use of GPS leads also to comparisons

between paths, thereby requiring a huge amount of compu-

tational power. Concerning the classifiers, the best results

are obtained by the RF methods. It is capable of achieving

90% accuracy by using a sampling time of 200 ms for the

acceleration and a sampling time of 40 s for the GPS. These

sampling times significantly reduce the power consumption

of the application. In particular, if we consider a linear model

for the power consumption of sensors versus the sampling

frequency (see the one shown in Figure 22), then the proposed

approach consumes 250 mW, which is a reasonable amount,

since it is about half of the screen usage consumption (see

Table 2). In order to measure in the real setting the energy

consumption when considering maximum 40s and minimum

10s sampling time, we consider the percentage difference

between the battery duration. We execute 10 observations of

the time a mobile phone (an Huawei P9 lite) running only

TraceMe takes to reach the 10% of the charge by starting

fully charged. From these observations, we can estimate that

by using the maximum sampling time (40 s), on average

the life of the battery of the mobile phone increases by the

25.4% with respect to the standard sampling setting. This is a

satisfactory result, since it enables the application to decrease

the impact it has on the duration of the battery and to the

usability of the phone. For all the aforementioned reasons,

TIM experts adopted this solution.

VI. CONCLUSION

In conclusion, we have proposed an innovative way for deal-

ing with the problem of detecting whether a travel is exe-

cuted by using a public or private transportation mode using

data collected by a smartphone, while addressing the issue

of power consumption. By doing so, we have developed a

classification framework which is robust with respect to the

sampling time. It is important to notice that, the introduction

of the problem of power consumption in this branch of the

literature is fundamental for its real applicability but, so far,

it has been largely overlooked. The analysis of the perfor-

mance of the classifiers with respect to under-sampled data

is an important topic that has received little attention by the

scientific community, despite its importance. In future work

we will deepen this analysis in more general settings.

Furthermore, we have confirmed the result of several pre-

vious papers that consider Random Forrest to be the best clas-

sifier for the transportation mode detection problem. Finally,

a benefit of the present work is to provide, for the first time,

publicly available data that can be used as a benchmark or

to reproduce or improve our results. Future development of

the methodology will consider ad-hoc bootstrap techniques

in order to reduce even more the number of samples used

for the training of the classifiers, thus reducing the energy

consumption.
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