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Global Navigation Satellite System (GNSS) shadow matching is a new positioning technique

that determines position by comparing the measured signal availability and strength with pre-

dictions made using a three-dimensional (3D) city model. It complements conventional GNSS

positioning and can significantly improve cross-street positioning accuracy in dense urban

environments. This paper describes how shadow matching has been adapted to work on an

Android smartphone and presents the first comprehensive performance assessment of smart-

phone GNSS shadow matching. Using GPS and GLONASS data recorded at 20 locations

within central London, it is shown that shadow matching significantly outperforms conven-

tional GNSS positioning in the cross-street direction. The success rate for obtaining a

cross-street position accuracy within 5 m, enabling the correct side of a street to be deter-

mined, was 54·50% using shadow matching, compared to 24·77% for the conventional

GNSS position. The likely performance of four-constellation shadow matching is predicted,

the feasibility of a large-scale implementation of shadow matching is assessed, and some

methods for improving performance are proposed. A further contribution is a signal-to-

noise ratio analysis of the direct line-of-sight and non-line-of-sight signals received on a smart-

phone in a dense urban environment.
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INTRODUCTION. The poor performance of Global Navigation Satellite Systems

(GNSS) positioning in dense urban areas is a well-known problem (Wang et al., 2012).

Where there are tall buildings or narrow streets, direct Line-Of-Sight (LOS) signals

from many, sometimes most, of the satellites are blocked. Without direct signals

from four or more satellites, an accurate position solution cannot be determined.

Sometimes, a degraded position solution may be obtained using signal reflection via

surrounding buildings or vehicles; these are known as Non-Line-Of-Sight (NLOS)

signals (Ercek et al., 2005; Viandier et al., 2008).

An urban canyon also affects the GNSS signal geometry. As shown in Figure 1,

signals with lines of sight going across the street (perpendicular to the street direction)
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are much more likely to be blocked or reflected by buildings than signals with lines of

sight going along the street. Consequently, the signal geometry, and hence the position-

ing accuracy, is much better along the direction of the street than across the street

(Groves, 2011). However, positioning accuracy in the cross-street direction is of

great importance to many applications. Examples include vehicle lane detection for

Intelligent Transportation Systems (ITS), location-based advertising, augmented-

reality, and step-by-step guidance for the visually impaired and for tourists.

Augmenting GNSS with other sensors can improve the position solution availability

and robustness, but does not particularly improve the cross-street accuracy.

3D building models constitute an additional data source that can be used to improve

positioning performance inurban canyons. Initially, 3D citymodelswere used to predict

GNSS performance in urban areas (Bradbury et al., 2007; Suh and Shibasaki, 2007; Ji

et al., 2010; Kleijer et al., 2009; Costa, 2011). More recently, they have been used to

detect and eliminate NLOS GNSS signals, improving the positioning accuracy

(Peyret et al., 2011; Obst et al., 2012; Peyraud et al., 2013). By modelling the path

delay as a function of user position, NLOS signals can also be used for position deter-

mination (Bourdeau and Sahmoudi, 2012; Suzuki andKubo, 2013; Betaille et al, 2013).

Shadow matching is a new positioning technique using GNSS, assisted by knowl-

edge derived from 3D city models, that has the potential to provide metres-level

cross-street accuracy in urban canyons (Groves, 2011; Tiberius and Verbree, 2004).

Due to obstruction by buildings, signal reception from GNSS satellites in urban

canyons is highly dependent on the position within a street. The signal availability

can be predicted using a 3D city model. Consequently, by determining whether a

direct signal is being received from a given satellite, users can localize their position

to within one of two areas of the street. Figure 2 illustrates this. With a number of satel-

lites contributing to this process, a position solution can be determined. Unlike con-

ventional GNSS positioning, which uses ranging, shadow matching uses the

pattern-matching positioning method (Groves, 2013).

Figure 1. Satellite signals with Lines Of Sight (LOS) going across the street are much more likely to

be blocked by buildings than signals with LOS going along the street.

412 LEI WANG AND OTHERS VOL. 68

https://doi.org/10.1017/S0373463314000836 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000836


A number of shadow-matching implementations have now been developed and

tested. A preliminary demonstration showed that the shadow-matching technique

can distinguish the pavement from a vehicle lane and identify the correct side of the

street using GPS and GLONASS measurements from geodetic receivers (Wang

et al., 2011). Next, a full shadow-matching algorithm was developed and was shown

to improve the navigation solution of geodetic GPS and GLONASS receivers

(Wang et al., 2013a). In these tests, the cross-street positioning error was within 5 m

for 89·3% of the time and within 2 m for 63·6% of the time. Other authors have inves-

tigated the shadow-matching approach for precise positioning with long observation

times (Suzuki and Kubo, 2012) and for road lane identification using telephone pole

shadowing (Yozevitch et al., 2014).

Most potential applications of shadow matching use consumer-grade GNSS user

equipment, not geodetic receivers. Consumer-grade GNSS antennas have lower gain

and less polarization discrimination. This makes it more difficult to distinguish the

right-hand circularly polarized (RHCP) direct-LOS signals from the generally left-

hand circularly polarized (LHCP) NLOS signals using the Signal to Noise Ratio

(SNR). Due to space and cost constraints, smartphone antennas have the lowest gain

of all and are linearly polarized, so do not distinguish between LHCP and RHCP

signals. The gain also varies according to the relationship between the direction of the

LOS and the orientation of the phone. Smartphone receivers are also typicallymore sen-

sitive than geodetic receivers, so they will track weaker signals, most of which will be

NLOS. These characteristics can potentially degrade shadow-matching performance.

Therefore, a practical assessment of shadow-matching performance and the identifi-

cation of the technique’s main limitations requires testing on a smartphone platform.

Preliminary shadow-matching results using GPS and GLONASS measurements

recorded on a smartphone were presented in Wang et al. (2013b), while Wang et al.

(2013c) describes a real-time demonstration of shadowmatching on an Android smart-

phone, which can compute a position solution within two seconds. Figure 3 presents a

screenshot from the shadow-matching demonstration ‘App’. This paper presents a full

performance characterisation of GNSS shadow matching on a smartphone and then

Figure 2. The shadow-matching concept: using direct signal reception to localise position

(Groves, 2011).
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discusses the steps needed to take shadow matching from a research demonstrator to a

large-scale practical implementation.

Section 2 describes the main features of the shadow-matching algorithms. Section 3

then describes the 3D city model used for this research and the experimental data col-

lection using an Android Smartphone in central London. Section 4 compares the

characteristics of the received LOS and NLOS GNSS signals, using a 3D city model

and the true positions to determinewhich signals arewhich. This signal characterisation

is then used to optimize the tuning of the shadow-matching algorithms, as described in

Section 5. A performance assessment of the improved shadow-matching algorithm

using the smartphone data is presented in Section 6, where it is comparedwith the smart-

phone’s conventional GNSS navigation solution. The performance of a four-constel-

lation shadow-matching system is then predicted by combining GPS and GLONASS

data collected at different times at the same locations. Section 7 then discusses the feasi-

bility of a large-scale implementation of shadow matching, focussing on the data

requirements. Finally, Section 8 summarises the conclusions and discusses further work.

2. THE SHADOW-MATCHING ALGORITHM. There are several different

ways of implementing shadow matching. The algorithm used here has two phases,

an offline phase and an online phase, both of which are shown in Figure 4. The

offline phase determines building boundary data from the 3D model and stores it.

The online phase then determines the position solution in four steps from the building

boundaries and GNSS measurements.

Thebuilding boundaries showwhere the building edges are located fromaGNSSuser’s

perspective within an azimuth-elevation sky plot. Satellites are visible above this edge and

Figure 3. Screenshot of the shadow-matching demonstration ‘App’. The blue dots show the

conventional solution and the red dots show the shadow-matching solution, which is on the

correct side of the street.
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blocked below it. Figure 5 shows an example. The elevation of the building boundary is

computed at a range of azimuths as described in Wang et al. (2013a) and Wang et al.

(2012). Buildingboundaries are computedover agridof candidateuser locations.Thealti-

tudeof these candidate user locations canbe set at a certaindistance above the ground, e.g.

1·5 m might be assumed for users holding smartphones in front of them. Only outdoor

locations are considered. By determining the building boundaries in advance like this,

the positioning algorithm is able to run in real time on a smartphone processor.

The online phase of shadow matching comprises four steps. It begins by defining a

search grid, based on an initial approximate position from conventional GNSS or

another method, such as Wi-Fi, Bluetooth Low Energy or phone signal positioning. If

conventional GNSS is used, it is important to minimize the impact of NLOS reception

Figure 4. Workflow of the shadow-matching algorithm.

Figure 5. An example of a building boundary as azimuth-elevation pairs in a sky plot. (The centre

of the plot corresponds to a 90° elevation or normal incidence)
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and multipath interference (Groves and Jiang, 2013). In the current implementation, the

search area is simply a fixed-radius circle centred at the initial position solution.

However, more advanced algorithms could use knowledge of the signal geometry to opti-

mise the search area. For example, a conventional GNSS position solution in a dense

urbanarea is normallymoreaccurate along thedirectionof the street thanacross the street.

In the second step of shadow matching, performed at each candidate position within

the search grid, each satellite’s elevation is compared with the building boundary elev-

ation at the same azimuth. The satellite is predicted to be visible if its line of sight is

above the building boundary.

The third step compares the predicted and observed satellite visibility. Candidate posi-

tions are scored in two stages. Firstly, each satellite above the receiver’s elevation mask

angle is given a score based on the predicted and observed visibility. Secondly, the overall

score for each candidate position is determined by summing the individual satellite scores.

Different scoring schemes can be applied at this stage. Figure 6 shows the basic 2 by

2 scoring scheme used for the preliminary smartphone tests presented in Wang et al.

(2013b). A fixed SNR threshold was used to distinguish between weak and strong

signals. The determination of an optimal scoring scheme for smartphone receivers is

described in Section 5.

The fourth and final step of the shadow-matching algorithm is to generate a position

solution using the scores of each candidate position. Like Wi-Fi fingerprinting and

terrain-referenced navigation, shadow matching uses the pattern-matching positioning

method (Groves, 2013). There are many different ways of estimating a position sol-

ution from the position likelihood grid output by a pattern-matching algorithm. The

current shadow-matching positioning algorithm simply averages the grid positions

with the highest scores. The development of a more sophisticated position estimation

algorithm is planned for future work.

A full implementation would also incorporate context detection to determine

whether the user is in an indoor, urban or open environment (Groves et al., 2013).

The shadow-matching algorithm would then only be called in urban contexts.

3. EXPERIMENTALDATACOLLECTION. Experimental datawas collected in

the Aldgate area of central London using Samsung Galaxy S3 Smartphones running a

bespoke Android data logging application. The SNRmeasurements, satellite azimuths

and elevations, and the conventional GNSS position solution are all included in the

Figure 6. Basic 2 by 2 scoring scheme applied to each satellite.

416 LEI WANG AND OTHERS VOL. 68

https://doi.org/10.1017/S0373463314000836 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000836


National Marine Electronics Association (NMEA) message from the phone’s GNSS

chip. A 3D city model of the area from ZMapping Ltd was used to generate the build-

ing boundary data used for the subsequent analysis.

The term ‘Level of Detail’ (LoD) is often used in 3D modelling to describe the level

of complexity a 3D object representation has. It is a concept borrowed from computer

graphics to reduce geometrical complexity of visualised objects according to the dis-

tance between objects and the user. If the CityGML convention is used to describe

LoD (Hafele, 2011), the ZMapping model is a mixed Level of Details (LoD) 1 and

LoD 2 model with decimetre-level accuracy, stored in the Virtual Reality Modelling

Language (VRML) format. According to this convention, LoD 1 means the 2D

shape of a building is supplied with its height information. LoD 2 means the outer

boundary surfaces are described. Figure 7 visualises the 3D model used in this study.

Twenty experimental locations with various road layouts were selected in the area

covered by the city model. Figure 8 is an aerial view of the experimental area,

showing each site. Pairs of sites (prefixed by R and G) are located on opposite sides

of the street, facilitating the testing of shadow matching’s ability to determine the

correct side of the street. All sites were located on the footpath, close to a traffic lane.

The experimenters stood statically at each of the 20 locations for two rounds of 6

minutes each, with the smartphone held in front of the experimenter. The time

Figure 7. The 3D model of London used in the experiments.
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between the two rounds of data collection was approximately four hours, allowing the

satellite constellation to change significantly. Thus, it is considered that the two rounds

of data are independent of each other. The second round of data is used for analysis in

this section; whereas the first round of data is used for testing the new shadow-match-

ing algorithm. Satellite visibility information for both GPS and GLONASS (compris-

ing time tag, satellite azimuth, elevation and SNR) were recorded at 1 Hz for post-

processing using shadowmatching. Thus, a total of 24000 one-second epochs of smart-

phone GPS and GLONASS data were collected at the 20 locations.

Satellite visibility information for both GPS and GLONASS (comprising time tag,

satellite azimuth, elevation and SNR) were recorded at 1 Hz for post-processing using

shadow-matching. The conventional positioning solutions from the smartphone

GNSS chip were also recorded. The truth reference was determined using a tape to

measure the distance to a distinctive feature, such as a building wall or the kerb

between the road and footpath and then locating that feature on the 3D city model.

This process is accurate to decimetre level, which is sufficient for this study.

4. SMARTPHONE DIRECT LOS AND NLOS SIGNAL STRENGTH

ANALYSIS. The standard signal-to-noise ratio measure used for GNSS is the

carrier-power-to-noise-density ratio, C/N0, which should be 40–50 dB-Hz under

good reception conditions with a good antenna. The measurements presented here

are approximately equal to C/N0, but may differ slightly, depending on the

Figure 8. An aerial view of the experimental area (satellite image from Google Earth).
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measurement technique deployed by the receiver manufacturer (Betz, 2001; Groves,

2005). Therefore, the term SNR is used. A signal received with a higher SNR is

more likely to be direct LOS than NLOS. For example, signals reflected from stone

and brick buildings are weaker. However, glass and steel buildings and passing vehicles

can produce strong reflected signals. Conversely, weak direct LOS signals can also be

received as a result of user body masking or attenuation by trees and passing pedes-

trians. Thus, some NLOS signals are stronger than some direct LOS signals.

As discussed in Section 1, the characteristics of a smartphone antenna make it more

difficult to distinguish direct LOS from NLOS signals using SNR measurements. The

SNR measurement process itself can also be noisy (Groves, 2005). The fluctuating

nature of smartphone GNSS signals can be seen in the example SNR time series

shown in Figure 9. As only direct LOS reception is currently predicted using the 3D

city model, this represents a potential problem for shadow matching. In this section,

the signal-to-noise ratio distributions of the direct LOS and NLOS GNSS signals

received by the smartphone are separately analysed. The 3D city model is used to de-

termine which of the received signals are direct LOS and which are NLOS using the

visibility prediction method described in Section 2 and knowledge of the true user po-

sition. Signals predicted to be visible are assumed to be direct LOS. Diffracted signals

are included in the NLOS category. The results of this analysis are used to improve the

shadow-matching algorithm, as described in Section 5.

Figure 9. The SNR time series of each satellite at test site G09, showing the variation exhibited in

measured smartphone GNSS signals.
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Figure 10 presents histograms for each of the test sites showing the normalized dis-

tributions of the measured SNRof the direct LOS and NLOS signals. Figure 11 shows

the LOS and NLOS SNR distributions averaged across all of the experimental sites.

Both direct LOS signals, shown in red, and NLOS signals, shown in blue, were received

at every test site, verifying that smartphone GNSS receivers usually capture NLOS

signals in urban areas. Comparing different sites, it can be seen that, at some (e.g.,

R01 and G10) a higher proportion of the signals received were direct LOS whereas

Figure 10. Normalized SNR distributions of LOS and NLOS reception at each site.

Figure 11. Normalized SNR distributions of LOS and NLOS signals across all test sites.
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at others (e.g., G01 and R08), more NLOS signals than LOS were received. One reason

for this is the nature of the surrounding buildings.

At every site, the LOS signals tend to exhibit a higher SNR than the NLOS signals.

However, there is considerable overlap between them, particularly between 20 and

30 dB-Hz, confirming the expectation that both strong NLOS signals and weak

LOS signals are commonly received by smartphones in dense urban environments.

Consequently, an absolute SNR boundary to distinguish LOS from NLOS signals

cannot be defined. Instead, the data may be used to infer the probability that a signal

received with a particular SNR is LOS. For example, it can be deduced from Figure 9

that the probability of a 24 dB-Hz signal being LOS is approximately 50%, whereas a 39

dB-Hz signal has a ∼90% probability of being LOS. On average, the GLONASS signals

were about 1 dB-Hz stronger than the GPS signals; this was not considered significant.

For comparisonwith an open environment, another experiment was conducted in the

middle of an open field inRegent’s Park in London, where there are no obvious obstruc-

tions. Thus all signals can be assumed to beLOS.GPS andGLONASSNMEAdatawas

recorded at a 1 Hz rate for 12 minutes. Figure 12 shows a normalized histogram of the

observed SNR distribution. It shows that a peak SNRoccurs between 26 to 29 dB-Hz,

and fewer low-SNR satellites have been observed. The wide variation in SNR may be

attributed to directional nulls in the antenna gain pattern and body masking effects.

Figure 13 shows the normalized measured SNR distributions for different satellite

elevations averaged across all sites. The low elevation signals are more likely to be

NLOS and the higher elevation signals are more likely to be LOS as they are less

likely to be blocked by buildings. It can be seen that for elevations below 40°, the

SNR drops as the elevation decreases, whereas above 40°, there is little relationship

between SNR and elevation.

Figure 12. Normalized SNR distributions of LOS in an open environment.
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5. A SATELLITE VISIBILITY SCORING SCHEME FOR SMARTPHONE

SHADOW MATCHING. As Section 4 shows, there is considerable overlap

between the SNR distributions of direct LOS and NLOS GNSS signals received by

smartphones. Thus, it is not possible to set a definitive SNR threshold above which

a received signal may be assumed to be direct LOS. Consequently, the simple

visibility-prediction scoring scheme shown in Figure 6 cannot be expected to work

well. Instead, a new probabilistic approach must be adopted in which the probability

of a signal being direct LOS is estimated from the measured SNR and the satellite

visibility prediction from the 3D city model scored accordingly.

Given the smartphone GNSS characteristics as analysed in Section 4, a Bayesian

technique is proposed to improve the scoring scheme via sample statistics. For each

value of SNR (ranging between 5 and 45 dB-Hz for a smartphone), there can be a cor-

respondent conditional probability p(LOS|SNR=s) that a signal is LOS. These con-

ditional probabilities form a simple Bayesian network, where all of the probabilities

can be stored in a “Conditional Probability Table” (CPT) Nilsson (2009). The same

principle applies to NLOS signals. Thus, given a known SNR from the smartphone

GNSS receiver, the probability that a signal is direct LOS can be calculated.

From Bayes theorem, the probability of an observed signal being direct LOS given a

measured SNR of s is

p LOS j SNR ¼ sð Þ ¼
p SNR ¼ s j LOSð Þp LOSð Þ

p SNR ¼ sð Þ
ð1Þ

where p(SNR = s|LOS) is the probability of an SNRof s being measured, given that the

signal is direct LOS, p(LOS) is the probability of the signal being direct LOS and p

(SNR = s) is the probability of the measured SNR being s. If li is the proportion of

signals measured that are direct LOS and for which the measured SNR is i and ni is

the proportion of signals measured that are NLOS and for which the measured

Figure 13. Normalized SNR distributions of LOS and NLOS signals at different elevation angles.
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SNR is i, then

p SNR ¼ s j LOSð Þ ¼
ls

P

i

li
ð2Þ

p LOSð Þ ¼
X

i

li ð3Þ

and

p SNR ¼ sð Þ ¼ ls þ ns ð4Þ

where it is assumed that
P

i

li þ nið Þ ¼ 1. Therefore, substituting Equations (2) to (4)

into Equation (1),

p LOS j SNR ¼ sð Þ ¼
ls

ls þ ns
ð5Þ

Where the data set is sufficiently large, values of li and ni may be derived directly from

the data and used to determine the CPT used in shadow matching satellite visibility

scoring. The black crosses in Figure 14 (left) show the values of p(LOS | SNR = s)

derived directly from the data presented in Section 4 for SNRs between 17 and 35

Figure 14. Left: Probability of LOS, i.e. p(LOS | SNR=s), when the SNR is between an upper

bound and a lower bound, fitted as a linear function, a quadratic function, and a cubic function,

shown in purple, green and blue, respectively. Right: The fitting error in terms of residuals for

the same functions.

423SMARTPHONE SHADOW MATCHINGNO. 3

https://doi.org/10.1017/S0373463314000836 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000836


dB-Hz. It shows that P(LOS|SNR=s) increases when the SNR increases. This can be

expected, since a higher SNR implies a higher probability that a signal is LOS.

However, there is significant statistical noise. Therefore, it was decided to fit a poly-

nomial function to this data instead of using it directly.

In the CPTmodel, it is assumed that when the SNR is higher than a specified upper

bound, p(LOS) is regarded as a constant high probability less than 1; when the SNR is

lower than a specified lower bound, p(LOS) is regarded as a constant low probability

greater than 0; when the SNR is in between the upper bound and lower bound, a poly-

nomial fitted model can be used. Extreme probabilities very close to 0 and 1 are

avoided to help the shadow matching algorithm cope with very strong reflected

signals and highly attenuated direct-LOS signals. Thus, robustness is favoured at the

expense of sensitivity.

SNR values of 17 and 35 dB-Hz were selected for the lower and upper bounds of p

(LOS | SNR = s), respectively. It can be seen from Figure 11 that there is a peak of

NLOS reception when the SNR is right below 17 dB-Hz. Thus, signals with an

SNR below 17 dB-Hz are assumed very likely to be NLOS. It can also be seen from

the figure that when the SNR is above 35 dB-Hz the probability of NLOS reception

is very low, so it is assumed that a signal is very likely to be LOS when the SNR is

above 35 dB-Hz. Furthermore, because the probability of NLOS reception when the

SNR is higher than 35 dB-Hz is very small, the sample size of the data is not large

enough to model it reliably. To model the intermediate SNR values, a least squares

method is used with three polynomial fittings, a linear fitting, a quadratic fitting,

and a cubic fitting. Figure 14 (left) shows the resulting functions, while Figure 14

(right) shows the fitting error using these three methods. It can be seen that linear

fitting results in a large error of up to 10%, whereas quadratic fitting offers, in most

cases, errors smaller than 2%. Thus, a linear fitting is under-fitting and should not

be chosen. Using a higher order of polynomial fitting, cubic fitting, provides very

similar fitting errors. Thus, it is concluded that a quadratic function is sufficient and

a higher-order function is thus not needed. Combining this quadratic function with

the upper and lower SNR bounds gives the following CPTmodel for p(LOS | SNR=s):

p LOS j SNR ¼ sð Þ ¼
po�min s< smin

a2s
2 þ a1sþ a0 smin < s< smax

po�max smax < s

8

<

:

ð6Þ

where po−min and po-max are, respectively, the minimum and maximum probabilities of

the observed signal being LOS; smin and smax are, respectively, the minimum and

maximum SNRs at which the quadratic function applies; and a0, a1, and a2 are the

coefficients of that function. The parameters obtained from the data presented in

Section 4 are: po-min= 0·2, po-max= 0·85, smin = 17, smax = 35, a0 = −1·86887109,

a1= 0·1563262666 and a2=−0·002245615412. It should be noted that this model is

trained using a Galaxy Samsung S3 smartphone held in front of the user. Using

another model of smartphone may or may not need adjustments to the parameters;

this needs further research. Different values are also likely to be needed when the

phone is in a pocket or bag, also a subject for further research. Context detection algo-

rithms will be required in order to determine which parameter set to use.

The probability that the predicted and measured satellite visibility match, Pm, is

Pm ¼ 1� p LOS j SNR¼ sð Þ � pðLOS j BBÞ þ 2p LOS j SNR¼ sð ÞpðLOS j BBÞ ð7Þ
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where p(LOS|BB) is the probability predicted from the building boundary that a LOS

signal is receivable. p(LOS|BB) is set to 0·85 if the satellite is predicted to be visible, and

to 0·2 otherwise. These values allow for diffraction and 3D model errors.

The overall matching probability is obtained by multiplying the individual satellite-

matching probabilities. However, it is more convenient to add the individual satellite

scores. Therefore, a log-likelihood-based score between 0 and 1 is calculated from

Pm using

fsat ¼
log Pmð Þ � log Pm�minð Þ

log Pm�maxð Þ � log Pm�minð Þ
ð8Þ

where Pm-min = 0·225 and Pm-max = 0·64 are the minimum and maximum possible

values of the matching probability, Pm.

6. PERFORMANCE ASSESSMENT OF SHADOW-MATCHING USING

SMARTPHONE GPS AND GLONASS DATA. Shadow-matching performance

was assessed using smartphone GPS and GLONASS data collected at 20 sites as de-

scribed in Section 3. This performance assessment was conducted using the first

(morning) set of data, whereas the second (afternoon) set was used for the signal

strength analysis described in Section 4 and the satellite visibility scoring scheme de-

scribed in Section 5. As all of the satellites were in significantly different positions,

these testing and training data sets may be considered independent. The shadow-

matching algorithm described in Section 2 was used with the visibility-scoring

scheme described in Section 5 and a 1 m grid spacing. Previous research showed

that positioning was about 5% more accurate with a 1 m grid spacing than with a 3

m spacing (Wang et al., 2013c). A 40 m radius circle, centred at the conventional

GNSS positioning solution from the smartphone GNSS chip, defines the boundary

of the shadow-matching search area, within which candidate positions are generated.

This section first discusses a selection of satellite visibility scoring maps produced by

the shadow-matching algorithm. The cross-street positioning performance is then

assessed and comparedwith conventional GNSS positioning. Finally, the performance

that might be obtained using Galileo and Beidou alongside GPS and GLONASS is

predicted.

6·1. Satellite Visibility Scoring. Figure 15 shows examples of the shadow-matching

scoring maps obtained at four of the experimental locations. The coloured dots rep-

resent the candidate positions, excluding indoor locations. The highest scoring candi-

dates are shown in dark red and the lowest scoring candidates in dark blue. The true

position is shown by a black cross. The highest scoring points are predominantly in the

correct street and on the correct side as shown in the top left and top right subplots.

However, high-scoring points can also appear on other streets, as shown in the

bottom left subplot, and in the spaces behind buildings. In a few cases, the highest

scores do not appear in the expected area as the bottom right subplot shows. This is

typically caused by strong NLOS reception via highly reflective glass and metal build-

ings. A long-term solution to this problem is to predict NLOS reception using the 3D

city model.

Figure 15 clearly demonstrates that shadow matching is much more sensitive to po-

sition changes in the cross-street direction than in the along-street direction, in line

with expectations. This complements conventional GNSS positioning which is
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generally more precise in the along-street direction in urban areas due to the signal ge-

ometry. Thus, combining the cross-street shadow-matching solution with the along-

street conventional GNSS solution will generally give the best overall position solution

(Groves et al., 2012). In this paper, performance analysis focuses on the cross-street

component of the position solution.

6·2. Performance comparison with conventional GNSS positioning. To assess the

performance of shadow matching against a conventional GNSS positioning solution,

the north and east position errors were transformed to along-street and cross-street po-

sition errors. Figure 16 shows the absolute value of the cross-street position error at

each site from the first round of data. The conventional GNSS navigation solution

from the smartphone GNSS chip is compared with shadow-matching using both the

probability-based scoring scheme described in Section 5 and the basic scheme

shown in Figure 6. Figure 17 shows the corresponding Mean Absolute Deviation

(MAD) of each cross-street position error. Note that the results at each site are

highly correlated because each observation period was six minutes, during which the

constellation geometry changed slowly.

Figures 16 and 17 show that, in most cases, shadow matching outperforms conven-

tional GNSS positioning and the new probability-based shadow-matching algorithm

outperforms the basic algorithm. At some sites, such as G09, the shadow-matching ac-

curacy is better than 2 m at most epochs. However, there are a few cases where shadow

matching is poorer than conventional GNSS positioning, e.g. G07. A common cause

of poor shadow-matching performance is reception of a significant number of strong

Figure 15. Example shadow-matching scoring maps at one epoch from different sites.
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Figure 16. Absolute cross-street positioning error using conventional GNSS, basic shadow-

matching and probability-based shadow matching.

Figure 17. Mean absolute deviation over all epochs of the cross-street position error using

conventional GNSS, basic shadow matching and probability-based shadow matching.
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reflected signals, which can confuse the shadow-matching algorithm. For example, at

site G03, a large number of NLOS signals with SNRs above 25 dB-Hz were received

(see Figure 10).

Further analysis was conducted to calculate the proportion of results for which the

cross-street positioning error was within certain limits. This may be thought of as the

success rate for achieving certain performance specifications. For example, a typical

street is around 10 m wide, so a positioning accuracy within 5 m is considered good

enough to determine the correct side of the street, while 2 m is sufficient to distinguish

the footpath from a traffic lane. Figure 18 shows the success rate at each site from the

first round of data, while Figure 19 shows the success rate across all sites. The overall

success rate for determining the correct side of a street was 54·39% using probability-

based shadow matching, compared to 24·77% using conventional GNSS positioning.

The success rate for distinguishing the footpath from a traffic lane was 28·55% for

shadow matching and 9·52% for conventional GNSS positioning.

6·3. Performance prediction of four-constellation shadow-matching. Shadow-

matching uses multiple satellites to localize the user’s position. Thus, using more satel-

lites might be expected to produce a more accurate position solution. To predict how

shadow matching will perform in the future when Galileo and BeiDou are fully oper-

ational, a four-constellation scenario was simulated by combining GPS and

GLONASS data from two separate visits to each experimental site. The interval

between visits was about four hours, allowing the satellite constellation geometry to

change significantly. Figure 20 shows the MADs for each site and averaged across all

Figure 18. Proportion of cross-street position errors within certain ranges at each site using

conventional GNSS, basic shadow matching and probability-based shadow matching.
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sites of the cross-street positioning errors of two- and four-constellation shadowmatch-

ing, together with conventional GNSS positioning (from the first observation period

only). At some sites, shadow matching performed better with four constellations,

while at others, it performed better with two constellations. Looking at the average

across all of the sites, the two-constellation implementation performed slightly better.

Figure 21 shows the success rate for achieving cross-street positioning errors within

certain bounds. Using four constellations slightly increased the probability of achieving

Figure 19. Proportion of cross-street position errors within certain ranges across all sites using

conventional GNSS, basic shadow matching and probability-based shadow matching.

Figure 20. The MAD of the cross-street positioning error of 2- and 4-constellation shadow

matching and 2-constellation conventional GNSS for each site (left) and averaged across all sites

(right).
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a cross-street position solution within 1, 2 or 3 m, but reduced the likelihood of achiev-

ing a position within 4 or 5 m. A possible explanation is that in environments where the

current shadow-matching algorithm works well, additional satellites provide ad-

ditional information that is used to refine the position solution. However, in environ-

ments unfavourable to shadow matching, such as those with lots of highly reflective

buildings, using more satellites results in more strong NLOS signals that confuse the

shadow-matching algorithm.

Overall, these results show that the number of available satellites is not the main

factor limiting shadow-matching performance. Improvements to the algorithms will

be needed to increase shadow matching’s reliability.

7. A LARGE-SCALE IMPLEMENTATION OF SHADOW MATCHING.

There are two main ways of implementing shadow-matching on a large scale: a

server-based approach and a handset-based approach. In the server-based approach,

the shadow-matching algorithms are implemented on a remote server using GNSS

data from the user. This has the advantage that the solution is unconstrained by the

user equipment’s processing and data storage capacity, but the fundamental disadvan-

tage that a communication link is necessary to determine a position solution.

In the handset-based approach, demonstrated in Wang et al. (2013c), all real-time

computation is performed within the user equipment. This enables positioning

without a communications link. However the available processing resources may

limit the search area, grid spacing and sophistication of the shadow-matching algor-

ithm, compromising performance. The user equipment must also be provided with

building boundary data.

Figure 21. The cumulative success rate of cross-street positioning error with certain metres of

bound, comparing conventional GNSS and shadow matching with 2 and 4 constellations.
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Without compression, building boundaries with a 1° azimuth resolution require

about 300 bytes of storage per grid point. With a 3 m grid spacing, a 1 km long 20

m wide street would contain 2222 grid points, requiring 651 kB of data storage. By

exploiting similarities between adjacent azimuths and grid points, substantial data

compression should be possible; perhaps by a factor of ten. Thus, it should be possible

to store data for 1,500− 15,000 km of road network per gigabyte. For comparison,

the Greater London metropolitan area contains about 15,000 km of road. Roads

where conventional GNSS positioning works well may be excluded from the

shadow-matching database. Thus, it should be practical to preload the building bound-

aries for several cities onto a smartphone. Real-time streaming of this data from a

server is also possible and can be accommodated by a standard 3G mobile phone con-

nection. Data dissemination is discussed further in Groves et al. (2014).

All shadow-matching implementations require 3D citymodels to generate the building

boundary data. The availability of the models is thus critical. Google Maps 3D, iOS 3D

Maps by Apple, Bing Maps 3D by Microsoft, Nokia Maps 3DWebGL and Edushi 3D

Maps are commercially available, while Open Street Maps 3D is available free of charge.

The real-time computational load with the probability-based scoring system intro-

duced here is expected to be similar to the two seconds time scale in Wang et al.

(2013c) if a 3 m search grid spacing is used. This is because both the new and old

scoring steps use a SNR-to-score look-up table, which has O(n) time complexity,

where n is the number of satellites.

8. CONCLUSIONS AND FURTHERWORK. Separate signal-to-noise ratio dis-

tributions of direct LOS and NLOS GNSS signals received in a dense urban area have

beenmeasured using an Android smartphone and a 3D city model. Using these distribu-

tions, a function has been derived giving the probability that a received signal is direct

LOS based on the measured SNR. Using this function, a shadow-matching satellite visi-

bility scoring scheme has been optimised for use with smartphone GNSS measurements.

Using GPS and GLONASS data recorded at 20 locations within central London,

the first comprehensive performance assessment of smartphone GNSS shadow match-

ing has been conducted. The results show that shadow matching significantly outper-

forms conventional GNSS positioning in the cross-street direction. The success rate for

obtaining a cross-street position accuracy within 5 m, enabling the correct side of a

street to be determined, was 54·39% using shadow-matching, compared to 24·77%

for the conventional GNSS position.

In addition, the performance of four-constellation GNSS shadow matching was pre-

dicted using GPS and GLONASS data collected at two different times at the same

sites. The additional satellites slightly improve shadow-matching performance under

benign conditions, but not in more challenging environments.

Finally, the implementation of shadow matching on a larger scale has been assessed,

showing that both server-based and handset-based models are feasible in terms of proces-

sing load,disseminationofbuildingboundary informationandavailabilityof 3Dmapping.

Further research is underway to improve shadow matching’s reliability, particularly

for smartphone applications. Satellite visibility prediction will be enhanced to predict

strong NLOS signals as well as direct LOS signals. A new positioning algorithm will be

developed that can handle multiple maxima in the scoring grid and combine measure-

ments from multiple epochs.
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In the longer term, shadow-matching will be implemented as part of an intelligent

urban positioning system, whereby the cross-street position is determined mainly by

shadow matching and the along-street position mainly by conventional ranging-based

GNSS positioning (Groves et al., 2012). Such a system could also incorporate height

aiding from the 3Dmapping and information from other techniques, such asWi-Fi posi-

tioning and inertial sensors, using a modular integration architecture (Groves, 2014). To

ensure that shadow-matching information is weighted correctly, a method to determine

the uncertainty and reliability of the shadow-matching solution will also be developed.
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