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Abstract—Photos obtained via crowdsourcing can be used in many critical applications. Due to the limitations of communication

bandwidth, storage, and processing capability, it is a challenge to transfer the huge amount of crowdsourced photos. To address this

problem, we propose a framework, called SmartPhoto, to quantify the quality (utility) of crowdsourced photos based on the accessible

geographical and geometrical information (calledmetadata) including the smartphone’s orientation, position, and all related

parameters of the built-in camera. From the metadata, we can infer where and how the photo is taken, and then only transmit the most

useful photos. Four optimization problems regarding the tradeoffs between photo utility and resource constraints, namely Max-Utility,

online Max-Utility, Min-Selection, and Min-Selection with k-coverage, are studied. Efficient algorithms are proposed and their

performance bounds are theoretically proved. We have implemented SmartPhoto in a testbed using Android based smartphones, and

proposed techniques to improve the accuracy of the collected metadata by reducing sensor reading errors and solving object occlusion

issues. Results based on real implementations and extensive simulations demonstrate the effectiveness of the proposed algorithms.

Index Terms—Crowdsourcing, image sensing, photo sharing, camera sensor, smartphone
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1 INTRODUCTION

EQUIPPED with GPS, orientation sensors, mega-pixel
cameras and advanced mobile operating systems,

smartphones not only change the way people communicate
with each other, but also the way they interact with the
world. The popularity of online photo sharing services such
as Flickr and Instagram indicates that people are willing to
take photos and share experiences with others. Thanks to
the cost efficiency, timeliness and pervasive nature of these
data, numerous opportunities have been created for appli-
cations based on photo crowdsourcing, such as grassroots
journalism [3], photo tourism [20], and even disaster recov-
ery and emergency management [14].

Consider an example in post-earthquake recovery. First
responders survey the damage by taking pictures and then
transfer them back to the remote command and control cen-
ter. As events occur, photos need to be collected and
uploaded as quickly as possible. However, there are strict
bandwidth constraints, nomatter it is based onmobile ad hoc
networks, delay tolerant networks, or partly damaged cellu-
lar networks. Then, how to make use of the limited band-
width to upload themost useful photos becomes a challenge.

Another example can be found in our daily life. A map
service provider can enhance user experience by showing
photos of interesting objects around the world, for example,
landmarks like famous buildings. Data can be obtained

from visitors taking photos via their smartphones. Once the
photos are uploaded and processed, other map users can
have virtual tours. Due to the existence of many useful
applications, people are sharing billions of photos taken by
smartphones. Photos are often geographically correlated
and this correlation can be used to enrich traditional map
experience. However, the sheer amount of photos poses big
challenges for image processing and storage at the server
end. Fully understanding the semantic of each photo by tra-
ditional resource intensive image recognition techniques
would be a luxury if not impossible. Therefore, how to
identify the most relevant data and eliminate redundancy
becomes an important issue.

The major challenges faced by these applications are as
follows. The first is how to characterize the quality (useful-
ness) of crowdsourced photos in a way that is both mean-
ingful and resource friendly. Most content-based image
processing techniques such as [7], [27], [28] may demand
too much computational and communication resources at
both user and server end. On the other hand, existing solu-
tions from description based techniques either categorize
photos based on user defined tags, or prioritize them by the
GPS location [22]. Obviously, tagging each photo manually
is not convenient and may discourage public participation.
GPS location itself may not be sufficient to reveal the real
point of interest. Even at the same location, smartphones
facing different directions will have different views.

To address these issues, we propose a framework to quan-
tify the quality of crowdsourced photos based on easily
accessible geographical and geometrical information, called
metadata, including the orientation and position of the phone,
and the field-of-view (FoV) of the camera. Intuitively, a good
photo coverage should have multiple views of the target and
cover as many aspects as possible. Specifically, given a set of
targets and photos, we consider an aspect of a target to be
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properly covered if it is within a proper range of a photo’s
viewing direction (defined in Section 2). Then we mea-
sure the quality of a photo by utility, which indicates how
many aspects are covered. The utility is calculated based
on the metadata, which can be practically obtained via
various embedded sensors in most off-the-shelf smart-
phones. They are independent of the image content, and
hence the computation is very fast and resource friendly
compared to traditional content based approaches.

With the above model, we address challenges brought by
the resource constraint, which is referred to as the Max-
Utility problem. Resource constraint of bandwidth, storage
and processing capability limits the number of photos that
can be uploaded to the server. Given themetadata of the can-
didate photos, how to find a given number of photos such
that the total utility is maximized? Note that this is different
from traditional maximization problems on sensor coverage
in which a target is covered as long as it is inside the sensing
range. Here photos taken at different view points cover dif-
ferent aspects of the target. The total utility depends on how
many aspects can be covered and how they are covered,
which makes the problem unique and complicated. We
also consider online selection/optimization to address the
requirements of time critical applications.

Another challenge to be addressed is how to remove the
redundancy and find the most representative photos. In
general, the amount of candidate photos is significant and
redundancy occurs if multiple photos are taken at similar
locations and from similar angles. The less number of pho-
tos is selected, the less amount of bandwidth, storage and
processing capability is needed. In theMin-Selection problem,
given the coverage requirements of the targets, we want to
find the minimum set of photos that satisfy the require-
ments. We also consider having certain level of redundancy
in case better coverage is needed.

Our contributions are summarized as follows. We pro-
pose SmartPhoto, a novel framework to evaluate and opti-
mize the selection of crowdsourced photos, based on the
collected metadata from the smartphones. We formulate the
Max-Utility problem for bandwidth constrained networks,
and then extend it into an online optimization problem. We
study the Min-Selection problem for redundancy reduction,
and also extend it to the case where better coverage (e.g., k-
coverage) is desired. Moreover, we propose efficient solu-
tions, and find the performance bounds in terms of approxi-
mation or competitive ratios for the proposed algorithms.

We have implemented SmartPhoto in a testbed using
Android based smartphones. We make use of multiple
embedded sensors in off-the-shelf smartphones, and pro-
pose a series of methods to fuse data, correct errors, and fil-
ter out false information, to improve the accuracy of the
collected metadata. Finally, the performance of the pro-
posed algorithms are evaluated through real implementa-
tions and extensive simulations.

The rest of the paper is organized as follows. Section 2
introduces the basic concepts and the model. Section 3 stud-
ies the Max-Utility problem and Section 4 studies the Min-
Selection problem. Section 5 presents the implementation of
the testbed. Performance evaluations are presented in
Section 6. Section 7 reviews related work and Section 8
concludes the paper.

2 PRELIMINARIES

Consider a post-disaster scenario in which a set of prede-
fined targets are to be monitored by a group of people or
reporters. They use smartphones to take photos and transfer
them back to the processing center. However, only a small
number of photos can be transferred due to the limited
bandwidth caused by damage to base stations or over-
whelming cellular traffic. For this reason, reporters first
transmit the metadata of the photos, which is extremely
lightweight compared to the original images. After that, the
server runs optimization algorithms to determine what pho-
tos to be actually transferred and notifies the reporters to
transmit the photos.

We first describe the models used in SmartPhoto to char-
acterize targets and photos. Then the concept of utility is
introduced. The idea is based on the observation that a
good photo should cover as many aspects of the targets as
possible. For an aspect to be properly covered, the target
should be in a photo whose viewing direction is not too far
away from the direction to which the aspect points. This is
similar to the face recognition problem in computer vision:
as the angle between the object’s facing direction (the
aspect) and the camera’s viewing direction (the vector from
the camera to the object) becomes wider, the detection rate
of the recognition algorithm will drop dramatically [4], [16].
The utility defined in this section precisely indicates how
many aspects of the target are properly covered.

2.1 Targets and Photos

At the beginning of each event, the application server dis-
tributes the information of the interested targets to the pub-
lic users. The set of targets are denoted by T ¼ fT1; . . . ; Tmg.
Ti also represents the location of the ith target if there is no
ambiguity. An aspect of the target, denoted by ~v, is a vector
that can be represented by an angle in ½0; 2pÞ with 0 degree
indicating the one pointing to the right (east on the map).
For ease of presentation, this angle is denoted by argð~vÞ and
is calculated by using arithmetic modulo 2p.

Given a set of photos: P ¼ fP1; . . . ; Png, each photo Pj is
stored locally and it can be registered to the server with a

tuple ðlj; rj;’j; ~djÞ, called the metadata of the photo. Here lj is

the location where the photo is taken. To simplify notations,
we also use Pj to represent the location if there is no ambi-
guity. rj and ’j are two internal parameters of the camera

used to take the photo. rj is the effective range of the cam-
era, and ’j is the field-of-view (FoV, represented in angle)

of the camera lens. ~dj is the orientation of the camera when

the photo is taken. Note that ~dj is the normal vector derived
from the camera lens and vertical to the image plane. It can
be acquired by using various sensors embedded in the
smartphone. Details of obtaining these geographical infor-
mation on the smartphone will be given in Section 5. As
shown in Fig. 1a, the metadata defines the effective coverage
range of the photo.

2.2 Photo Utility

For a target Ti and a photo Pj, Ti is said to be covered by Pj

if Pj’s range includes Ti. An aspect ~v of Ti is covered if the

angle between~v and TiPj
��!

is smaller or equal to a predefined
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angle u called effective angle. Here TiPj
��!

is the viewing
direction of the camera towards the target when the
photo is taken.1 Further, the utility of a photo Pj can be
defined based on how many aspects of Ti are covered by
this photo.

Definition 1 (Utility). Given a target Ti and a photo Pj covering
the target, the utility of Pj on Ti, denoted by UPjðTiÞ, is the por-
tion of aspect that is covered by Pj, i.e., UPjðTiÞ ¼

R 2p

0
1PjðvÞdv,

where 1PjðvÞ ¼ 1 if~v is covered by Pj, or 0 otherwise.

Accordingly, the utility of a set of photos P 0 ¼ fPj : 1 �
j � kg regarding target Ti is the total portion of aspect that is

covered by the photos of P 0, i.e., UP 0ðTiÞ ¼
R 2p

0
1P 0ðvÞdv, where

1P 0ðvÞ ¼ 1 if~v is covered by any Pj from P 0, or 0 otherwise.
Finally, the total utility of the photos regarding all targets

T ¼ fT1; . . . ; Tmg is the sum of the utility regarding each tar-
get. It is normalized by dividing the total number of targets,
i.e., UP 0ðT Þ ¼ 1

m

Pm
i¼1 UP 0ðTiÞ.

For example in Fig. 1b, target Ti is covered by photo Pj.
Its aspect ~v1 is covered by Pj but aspect ~v2 is not. In fact, Pj

covers all the aspects in ½argðTiPj
��!Þ � u; argðTiPj

��!Þ þ u� (gray
sector in Fig. 1b). Thus, Pj’s utility is 2u. If there are multiple
photos covering the same target, possible overlap (darker
area in Fig. 1c) among photos’ coverage needs to be identi-
fied and removed. In that case, the overlap can only be
counted once towards the total utility, which is reflected by
the gray area in Fig. 1c.

3 MAX-UTILITY WITH BANDWIDTH CONSTRAINT

In this section, we study the Max-Utility problem and its
extension to an online optimization problem.

3.1 Max-Utility Problem

In the scenario described in Section 2, the bandwidth con-
straint determines the number of photos that can be
selected. The problem is defined as follows.

Definition 2 (Max-Utility Problem). Given a set of m targets
with known locations T ¼ fT1; . . . ; Tmg and n photos P ¼
fP1; . . . ; Png with known metadata, also given a predefined
positive integer Bð� nÞ, the problem asks for a selection of B
photos P 0 out of the n candidates, such that the total utility of
the selected photos UP 0ðT Þ is maximized.

3.1.1 Conversion to Maximum Coverage

Without loss of generality, we first consider a single target
Ti and use the coverage interval Ii ¼ ½0; 2pÞ to indicate its
aspect to be covered. Let P ¼ fP1; . . . ; Png be the set of all
photos covering Ti. Then for each Pj, if Ti is covered by Pj,
the coverage of Pj on Ti (gray sector in Fig. 1b) can be repre-
sented by a sub-interval of ½0; 2pÞ, i.e.,

Sj , ½xj; yj� ¼ ½argðTiPj
��!Þ � u; argðTiPj

��!Þ þ u�: (1)

Note that the angles are always calculated by using arithme-
tic modulo 2p. Here the two end points xj and yj are called
dividing points, which divides Ii into two parts: one is Sj

and the other is Ii � Sj. If there are more photos by which Ti

is covered, there would be more dividing points.
If there are multiple targets, every target corresponds to a

coverage interval Ii ¼ ½0; 2pÞ and each Ii is divided into sub-
intervals by the corresponding dividing points. Let U ¼
fe1; . . . ; ewg be a universe set with each element represent-
ing a sub-interval and w being the total number of them.
The weight of the element is the length of the sub-interval.
For each photo Pj, a subset of U can be generated based on
what sub-intervals are covered by it. Let Sj denote this sub-
set. Then we have proved the following lemma:

Lemma 1. A solution to the Max-Utility problem can be obtained
by solving the following problem: given a universe set U of
(non-negative) weighted elements, an integer B and a collec-
tion of subsets S ¼ fS1; . . . ; Sng, find B subsets such that the
total weight of the elements covered by the selected subsets is
maximized.

3.1.2 Greedy Selection Algorithm

The general maximum coverage problem is proved to be
NP-hard [10]. A greedy algorithm can be used to find a solu-
tion. It works as a multi-round selection process. In each
round, the weighted contribution (utility) of every unse-
lected photos is calculated. The photo with the most contri-
bution to the total utility is selected. If there are more than
one photos with the most contribution, the one with the
lowest index is selected. Once a photo is selected, it will be
removed from the selection. The elements (sub-intervals)
covered by the selected photo will be removed from future
consideration. The selection process runs until B photos
have been selected or every aspect of all targets has been
covered, whichever comes first.

Theorem 1. Let Uopt be the optimal value of the total utility that
can be achieved by any B photos from P . Let Ugreedy be the total
utility achieved by the greedy selection algorithm. Then

Ugreedy � 1� 1� 1

B

� �B
" #

� Uopt > 1� 1

e

� �

Uopt:

Proof. From Lemma 1, a selection of B subsets implies a
valid selection of B photos. Moreover, the total utility of
the photos is maximized if and only if the corresponding
subsets has the maximum total weight. On the other
hand, the subsets selected by the greedy selection can
yield a total weight that is at least ð1� 1=eÞ times the
optimal value [10]. Therefore, the total utility of the

Fig. 1. (a) Metadata defines the effective coverage range of a photo.
(b) An aspect is covered if it is close to the viewing direction. (c) Cover-
age overlap shows the redundancy in the photos.

1. Intuitively, it should be from Pj to Ti, but TiPj
��!

is used for ease of
calculation.
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selected photos is also lower bounded by ð1� 1=eÞ times
the maximum total utility. tu

An Example. Fig. 2 shows an example of one target and 10
photos. Suppose u ¼ 45�; B ¼ 3. Each photo’s position is
shown in Fig. 2a. The arrows in Fig. 2b indicate photos’
viewing directions, and the number beside the arrow (e.g.,

10 beside T1P10

���!
) indicates the angle of the viewing direction

of the photo (e.g., P10), which has been defined in Section 2.
Based on this, each photo’s coverage interval is calculated
and shown in Fig. 2c according to Equation (1). Then target
T1’s coverage interval I1 ¼ ½0; 2pÞ is divided into sub-inter-
vals by the endpoints of all photos’ coverage intervals
(Fig. 2d). This is the universe set U which is composed of
weighted elements from e1 to e19, and the weight of each ele-
ment is reflected by its length. Finally, each photo’s coverage
interval is converted into a subset Si of elements (Fig. 2e).

We select three photos to maximize the total utility. Ini-
tially, each Si has a weight of 2u ¼ 90�, and hence S1 is
selected due to the smallest index. Elements e11, e12, e13, e14
are removed from U . Second, the weight of each of S3, S4, S5,
S9 and S10 is still 90 degree, but for the others the weights
become: S2 is 80 degree; S6 is 50 degree; S7 is 20 degree and
S8 is 40 degree. Obviously, S3 is selected. Then elements
e3; e4; e5; e6; e7 are removed from U . Finally, we consider
the remaining subsets. The weights of S5; S6; S7; S8 are
unchanged, but S2 drops to 45 degree, S9 drops to 15 degree
and S10 drops to 80 degree. Therefore, the last selected photo
is S5. The final selection is S1; S3; S5, corresponding to
P1; P3; P5, and the total achieved utility is 270 degree.

Theorem 2. For the Max-Utility problem, the worst case time
complexity of the greedy algorithm is OðBn2mÞ.

Proof. Since there are n photos and m targets, calculating
the coverage intervals of each photo on each target takes
OðmnÞ time. Then, a target can be covered by at most n
photos, so there are OðnÞ coverage intervals on a target.
Sorting the endpoints of those coverage intervals gives
us the universe set, which takes Oðmn log nÞ time for all
m targets.

Next, photo selection is done in B steps. There are n
candidate photos to consider in the first step, but the
number decreases by 1 after each step. With assumption
B 	 n, the number of candidate photos to consider is
QðnÞ for any of the B steps. In total, we consider candi-
date photos forQðBnÞ times. Now let’s look at howmuch
time it takes to handle one candidate photo. For each of
them targets, we need to add the weights of the elements
covered by that photo. The number of those elements is

proportional to the total number of elements on the tar-
get, which is in the order of OðnÞ. For example, given
effective angle u ¼ 45�, a photo always covers 1/4 of the
total aspects, so the elements it covers are 1/4 of the total
number of elements. This means calculating the utility of
one candidate photo takes OðmnÞ. Getting these together,

the selection process takesOðBn �mnÞ ¼ OðBn2mÞ time.
To summarize, the worse case time complexity is

Oðmnþmn lognþBn2mÞ ¼ OðBn2mÞ. tu

3.2 Online Max-Utility Problem

For applications like crisis management, due to the urgency,
the server should not wait for the metadata of all photos to
come in before it begins the selection. Instead, it should start
selecting photos from the beginning based on available
metadata, and then gradually improve the photo coverage
by continuously and periodically selecting photos when
new ones become available.

3.2.1 Problem Statement

Let time be divided into transmission periods. At the begin-
ning of each period, based on the available metadata and
the available bandwidth in this period, the server makes
decision on what photos to be uploaded in this period, and
then notify the users to transfer the photos. Let ti be the ith
period and Bi be the number of photos that can be uploaded
in the ith period. Then let Ai be the set of available photos
(but not being uploaded yet) at the beginning of ti. Finally,
the selected photos to be uploaded in ti is denoted by Ci.
The problem is defined as follows.

Definition 3 (Online Max-Utility Problem). Given a set of m
targets with known locations T ¼ fT1; . . . ; Tmg, and the set of
available photos Ai at the beginning of each period ti, and sup-
pose the event happens at period t0, how does one select the set
of photo Ci for each period in an online manner, such that
Ci 
 Ai and jCij � Bi, and at the end of each period ti, the
total utility of all the selected photos up to ti, i.e., UC0[...[Ci

ðT Þ
(defined in Definition 1), is maximized?

Note that the length of the period is a parameter deter-
mined by the application, e.g., how urgent the event is and
how often new photos should be collected, etc. The band-
width constraint Bi can vary from one period to another
and is not necessarily a constant.

3.2.2 Online Selection Algorithm and Analysis

In each period, all the photos available up to present are
considered. Finding the ones that can maximize the increase

Fig. 2. The conversion into a set system.
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of total utility is easy when the number of photos is small,
and an enumeration of all possible combinations can always
deliver the optimal solution. However, as the process con-
tinues and more and more photos are available, computa-
tion cost would become prohibitively high.

Our solution is to use the approximation algorithm
proposed for the original Max-Utility problem. At the
beginning of each period, the server selects photos one by
one greedily such that each one maximizes the increase of
total utility, until it reaches the number imposed by Bi.
Note that the conversion into a weighted set system is the
same as before except that the aspects covered by photos
selected in previous periods should be excluded. After
that, the selected photos will be transferred immediately
during the period.

Then we prove the competitive ratio [5] of the above
online selection algorithm.

Theorem 3. For any given integer s, let Uonline be the total utility
of the selected photos up to period ts by the online selection
algorithm, and let Uopt be the total utility of the optimal set of
selected photos, subject to the constraints in Definition 3, then
1
2
ð1� ð1� 1=BminÞBminÞ � Uopt � Uonline; where Bmin ¼

minfB1; . . . ; Btg, and 1�ð1�1=BminÞBmin

2
� ð1�1=eÞ

2
� 0:32.

Proof. To simplify the presentation, we first define some
notations used in the proof. Let Ci denote the photos

selected by our algorithm in ti and Copt
i denote the photos

selected by an optimal algorithm including a possible off-

line algorithm. Meanwhile, let SCi ¼
S

i�1
j¼1Cj and

SCopt
i ¼ S

i�1
j¼1C

opt
j .

Let aðCiÞ denote the aspects (of the targets in T ) that
are covered by Ci but not covered by any photos in SCi.
And the size of the set aðCiÞ is jaðCiÞj ¼ USCi[Ci

ðT Þ�
USCi

ðT Þ, i.e., the amount of total utility increased by add-
ing Ci to the existing selection. Similarly, we can define

aðCopt
i Þ and its size in regarding to the selection by the

optimal algorithm. From this definition, we have Uopt ¼
jað S s

i¼1C
opt
i Þj and Uonline ¼ jað S s

i¼1CiÞj.
For any period tk, let Ik ¼ að S k

i¼1CiÞ \ að S k
i¼1C

opt
i Þ,

i.e., aspects that are covered by both our selection of pho-
tos and the optimal selection. Then let a ¼ 1� ð1� 1=

BminÞBmin , where Bmin ¼ minfB1; . . . ; Btg. We will show
by induction that, for any period tk,

a
[

k
i¼1 C

opt
i

� �

n Ik <
1

a

�
�
�
�

�
�
�
�
a

[
k
i¼1 Ci

� ��
�
�:

�
�
�
�

(2)

Clearly this is true for t0. Suppose for tk�1, where

2 � k � s, (2) is correct. Then consider að S k
i¼1C

opt
i Þ ¼

aðSCopt
k Þ [ aðCopt

k Þ. Notice that aðSCopt
k Þ n Ik 
 aðSCopt

k Þ n
Ik�1; as Ik�1 
 Ik. Thus, according to induction assump-

tion, jaðSCopt
k Þ n Ikj � 1

a
jaðSCkÞj:

Also notice that aðCopt
k Þ n Ik 
 aðCopt

k Þ nAðSCkÞ.
Because Ck is selected by using greedy algorithm maxi-
mizing the increase of total utility, from Theorem 1, we

have ð1� ð1� 1=BkÞBkÞjaðCopt
k Þ n aðSCkÞj � jaðCkÞj. And

as a � 1� ð1� 1=BkÞBk , thus, jaðCopt
k Þ n Ikj � 1

a
jaðCkÞj:

Combining the results from above two paragraphs,
we have proved (2). From (2), and the fact that Uopt ¼
jað S s

i¼1C
opt
i Þ n Isj þ jIs n að

S
s
i¼1C

opt
i Þj, and the later is

smaller than jIsj � jað S s
i¼1CiÞj ¼ Uonline < 1

a
Uonline, we

have Uopt � 2
a
Uonline, which concludes the proof. tu

4 ACHIEVING REQUIRED UTILITY WITH

MIN-SELECTION

In this section we first study the Min-Selection problem, and
then extend it to consider better coverage.

4.1 Min-Selection Problem

We consider a different scenario from the Max-Utility prob-
lem: the number of photos is minimized while the total util-
ity is to be above a required level. In many practical
applications such as virtual tours in map services, the major
obstacle is to deal with the sheer amount of raw data (pho-
tos) obtained via crowdsourcing. Thus, it is desirable to
remove redundancy and only keep the minimum selection
of photos that satisfies the coverage requirement.

4.1.1 Problem Statement

Each target Ti is associated with a coverage requirement,
represented by a coverage interval Ii ¼ ½ai; bi�; 0 � ai; bi <
2p. The requirement is met if any aspect ~v chosen from Ii is
covered. The problem is defined as follows.

Definition 4 (Min-Selection Problem). Given a set of m tar-
gets with known locations T ¼ fT1; . . . ; Tmg and n photos
P ¼ fP1; . . . ; Png with known metadata, also given the cover-
age requirements for the targets: I ¼ fI1; . . . ; Img, the problem
asks for a minimum selection of photos out of the n candidates,
such that the coverage requirement for each target is met.

Note that in this problem if the requirement can not be
met due to the insufficiency of the original set of photos, the
best achievable utility will be used as the criteria. Here the
best achievable utility on a target is the utility of all photos
on it, and the best achievable total utility on all targets is the
sum on each targets normalized by the number of targets.

4.1.2 Min-Selection Algorithm

In the following description, it is assumed that the coverage
requirement of each target can be satisfied by the whole set
of photos. Then the following theorem shows the main
result of our findings.

Theorem 4. Suppose the targets’ coverage requirements can be
satisfied by all photos in the pool and let Nopt be the minimum
number of photos to satisfy the requirement. There exists
Napprox photos that can be found in polynomial time such that
each target’s requirement can be met by these photos and more-
over, Napprox � OðlogmnÞNopt:

Proof. We prove this by constructing the selection using a
greedy algorithm.

First, we use a conversion process that is similar to
Section 3.1.1. Here each target Ti’s coverage requirement
Ii is partitioned into sub-intervals by the dividing
points, and the dividing points are the end points of
the coverage intervals (sub-intervals) of the photos like
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before. After this preparation, all the sub-intervals are
numbered, and can be represented by elements that alto-
gether form an universe set U ¼ fe1; . . . ; ewg, where w is
the total number of sub-intervals. Then for each Pj, there
is a subset Sj � U which is comprised of the elements
corresponding to the sub-intervals covered by Pj. Based
on this, the problem of finding the minimum photo selec-
tion can be converted to the following problem:

Given a universe set U and a collection of subsets of U :
S ¼ fS1; . . . ; Sng, and assume [n

j Sj ¼ U , how to find a subset

S0 of S such that [Sj2S0Sj ¼ U and jS0j is minimum?

This is an instance of the set cover problem, which has
been proved NP-hard [10]. Thus for the Min-Selection
problem, we can solve it by an approximation algorithm
based on the greedy selection.

Specifically, the algorithm begins by selecting the
photo (some Sj) that covers the most number of sub-
intervals (elements). Once a photo is selected, it will not
be removed. The sub-intervals covered will not be con-
sidered in the future. Photos are selected one by one
based on how many new sub-intervals can be covered.
Each time, the photo covering the most number of new
sub-intervals is selected. Ties can be broken arbitrarily,
e.g., by giving priority to the one with smaller index. The
process stops if all sub-intervals is covered or no more
photos can be selected (i.e., either photos are all selected
or no more benefit can be achieved).

Once the photos are found, it is obvious all the ele-
ments in U is covered which implies the requirement of
all targets are satisfied. By using similar argument from
Theorem 3.1 in [10], it is easy to see the number of selected
photos is upper bounded as shown in the theorem. tu
An Example. Again, we use Fig. 2 to illustrate the above

idea. Consider the problem settings in Fig. 2a and suppose
the required coverage for T1 is ½0; 2piÞ. The construction of
the universe set and all the subsets are shown in Figs. 2b, 2c,
2d, and 2e. The universe set U consists of 19 elements. The
selection works on the subsets Si.

First, photo S2 is selected as it covers five new elements
fe7; e8; e9; e10; e11g. It has the most elements covered and the
smallest index. Then S5 can be selected as it covers five, the
most number of new elements fe1; e16; e17; e18; e19g. In
the third round, S3 can be selected, as it covers four new ele-
ments fe3; e4; e5; e6g. After that, S1, which covers three new
elements fe12; e13; e14g, is selected. Up to now, 17 out of the
total 19 elements have been covered. The remaining two are
e2 and e15. To cover e2, S4 is selected. Then S6 is selected to
cover e15. The final selection is S1; . . . ; S6, which correspond
to the following six photos: P1; P2; P3; P4; P5; P6.

The above discussion can be easily applied to the sce-
nario of multiple targets. In that case, each target corre-
sponds to a set Ui of elements (sub-intervals). Elements of
all Ui will be considered to determine if a particular Sj can
yield the most coverage. The algorithm stops if elements of
all Ui are covered or no more progress can be made.

Theorem 5. For the Min-Selection problem, the worst case time
complexity of the greedy algorithm is Oðn3mÞ.

Proof. The conversion process takes time Oðmnþmn lognÞ.
For the selection process, we highlight two differences

between the Max-Utility problem and the Min-Selection
problem. First, in Max-Utility we select the photo that
covers maximum weight of new elements, while in Min-
Selection we select the photo that covers maximum num-
ber of new elements. Although weight and cardinality
are different, they can be calculated by the same number
of additions. Thus they are the same with regard to
asymptotic running time. The second difference is that
Max-Utility finishes with exactly B steps, while Min-
Selection may finish in any steps between 1 and n. Con-
sidering the worst case, if Min-Selection finishes with n
steps, the number of candidate photos it considers in

those n steps is nþ ðn� 1Þ þ � � � þ 1 ¼ Oðn2Þ. Since han-
dling each candidate photo requires time OðmnÞ, the
time complexity of the entire algorithm is Oðmnþmn

lognþ n2mnÞ ¼ Oðn3mÞ. tu

4.2 Min-Selection with k-Coverage

Some crowdsourced photos may contain inaccurate infor-
mation. This may happen in an emergency situation where
photos have to be taken in a very short time, leaving not
much time for users to contemplate. Even if metadata can
help understand how and where the photo was taken, some
real photos may still miss our expectations. The inaccuracy
can be caused by various reasons such as image blur due to
vibration of the phone, occlusion, color abberation, or sim-
ply inaccurate metadata. To reduce the possibility that an
important aspect of the object is missed, applications may
require some degree of fault-tolerance, which can be
achieved with k-coverage.

4.2.1 k-Coverage

In this problem, an aspect is required to be covered k ðk � 2Þ
times. Each target Ti has a coverage requirement Ii ¼
½ai; bi�; 0 � ai; bi < 2p, but now Ii needs to be covered k
times by the selected photos. The problem is formally
defined as follows.

Definition 5 (Min-Selection with k-Coverage). Given m tar-
gets with known locations T ¼ fT1; . . . ; Tmg and n photos
P ¼ fP1; . . . ; Png with known metadata, also given the cover-
age requirements for the targets: I ¼ fI1; . . . ; Img and an inte-
ger k � 2, the problem asks for a minimum number of photos
out of the n candidates, such that the coverage requirement for
each target is covered at least k times.

As the original Min-Selection problem can be converted
to the set cover problem, the k-coverage problem can be
converted in the same way to the set multicover problem.
The set multicover problem, as its name suggests, differs
from the set cover problem that each element e in the uni-
verse set U must appear at least ke times in the selected sub-
sets of U , where ke is a positive integer for element e. Note
that in our case, ke ¼ k for any element e.

The greedy algorithm for the original Min-Selection
problem can be naturally extended to the case of k-coverage.
Specifically, an element is alive until it is covered k times. In
each step, we select the photo that covers as many alive ele-
ments as possible, and then update the aliveness of the ele-
ments covered by this photo as appropriate. The selection
proceeds until all elements are not alive or no more photos
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can be selected (either photos are all selected or no more
benefit can be achieved).

Suppose the overall coverage requirements can be satis-
fied if all photos are selected. Dobson [8] proved that the
above algorithm achieves an approximation ratio of
OðlogmnÞ, which means the number of photos selected by
the greedy algorithm does not exceed OðlogmnÞ times the
minimum possible number. Note that this approximation
ratio is the same as the ratio achieved by the Min-Selection
algorithm (Theorem 4).

4.2.2 2-Coverage+

Although the k-coverage model looks good in theory, it may
not work well in reality. Consider a scenario shown in
Fig. 3. An aspect~v of the target T is covered by three photos,
P1, P2 and P3. There is an obstacle between the target and
the photos. By the k-coverage model, if k ¼ 2, any combina-
tion of two photos among P1, P2 and P3 satisfies the cover-
age requirement on aspect ~v. However, choosing P1 and P2

will actually leave aspect ~v uncovered because the target is
blocked in photo P1 and P2.

The key observation here is that the existence of obstacles
affects our choice of photos. Ideally, the server should avoid
P1 and P2 since they are blocked by an object and do not
cover aspect ~v. Although we will propose techniques in
Section 5 to detect occlusion and filter out photos with
occlusion, these techniques are not guaranteed to detect all
obstacles. Hence, when selecting photos, the server should
take into consideration the potential existence of obstacles.
Instead of choosing k photos arbitrarily, the photos with
fairly different views should be chosen, so that even one of
them is blocked by an obstacle, the other still covers the
aspect. Specifically, in the 2-coverage+model, for each aspect
covered by two photos, the angle between their viewing
directions should be larger than a predefined threshold a.

Definition 6 (Min-Selection with 2-Coverage+). Given m
targets with known locations T ¼ fT1; . . . ; Tmg and n photos
P ¼ fP1; . . . ; Png with known metadata, also given the cover-
age requirements for the targets: I ¼ fI1; . . . ; Img and a
threshold a 2 ½0; 2u�, the problem asks for a minimum number
of photos such that each aspect in the coverage requirements is
covered by at least two photos, and the maximum angle between
the viewing directions of those photos is greater than a.

In this problem, the value of a determines the coverage
resistance to obstacles. The larger a is, the farther the two
photos are separated, and the less likely they are blocked by
the same obstacle. However, a cannot be arbitrarily large. If
a photo covers a given aspect ~v, its viewing direction must
be within a 2u range, ½argð~vÞ � u; argð~vÞ þ u� (light gray area

in Fig. 3). This means a has an upper bound 2u. As a

becomes closer to 2u, it becomes harder to find two photos
satisfying the requirement, because the two photos have to
be positioned more precisely so as to both cover the aspect
and have far enough viewing directions.

The 2-coverage+ problem is equivalent to the 2-cover-
age problem when a ¼ 0, so it is at least as hard as the
k-coverage problem, and thus there is no polynomial time
algorithm to find its optimal solution. Similar to the k-cov-
erage problem, we can use a greedy algorithm to find a
solution, but with some adjustment to the notion of alive-
ness. Specifically, the aliveness value of an element can be
2, 1 or 0. alive ¼ 2 means that the element has never been
covered; alive ¼ 1 means that it has been covered at least
once, and among the photos covering it, the maximum
angle between their viewing directions is less than a;
alive ¼ 0 means that it has been covered at least twice,
and among the photos covering it, the maximum angle
between their viewing directions is no less than a.

In each step of the greedy algorithm, for each photo, we
count the number of elements whose aliveness value would
decrease if the photo were selected. Then we pick the photo
with the largest count, and update the aliveness values
accordingly. Here the decrease of an aliveness value means
previously alive ¼ 2 and after selecting the photo alive ¼ 1,
or previously alive ¼ 1 and after selecting the photo
alive ¼ 0. This selection process continues until all alive ¼ 0

or no more photo can be selected (either photos are all
selected or no more benefit can be achieved). The perfor-
mance of the greedy algorithm will be evaluated in
Section 6.2.

5 TESTBED IMPLEMENTATION

A prototype of SmartPhoto has been implemented in a
testbed using Samsung Nexus S running Android 2.3.6,
Samsung Galaxy S III running Android 4.0.4, and Google
(LG) Nexus 4 running Android 4.2.

In the testbed, the smartphones take photos with the
metadata automatically recorded. The metadata is a tuple
comprised of a GPS location, a range indicating how far the
photo can cover, a field-of-view angle of the camera taking
the photo and an orientation vector indicating the facing
direction of the camera lens. After the photo has been taken,
the smartphone uploads the metadata of the photo to a cen-
tralized server, which is a PC in our lab running the photo
selection algorithm. Then the server notifies the smart-
phones to upload the selected photos. In this section, we
present the technical details on how to obtain the metadata,
how to improve the accuracy of orientation measurement,
and how to deal with occlusion and out-of-focus issues.

5.1 Metadata Acquisition

One critical issue is how to get the metadata from off-the-
shelf smartphones. The location can be directly acquired via
the built-in GPS receiver. The camera’s field-of-view is
accessible via the Android camera API [1]. The range is a lit-
tle trickier as it depends on the resolution of the lens (and
the image sensor), the zooming level (or focal length)
and the requirement of the application. Applications requir-
ing a survey of large scale buildings may find the photos

Fig. 3. The idea of 2-coverage+: two photos covering an aspect should
have fairly different viewing directions.
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useful even if they are taken a hundred meters away by a
lower resolution camera, while others may require closer
look at the object and hence may exclude photos taken more
than a few meters away. In our experiment, as the subjects
are buildings on campus, 50 meter is used as a reference
range. We find that for our purpose, objects in photos taken
within this range are generally recognizable.

Orientation is a key factor that has not yet been fully
taken advantage of in previous works. The way used to
characterize the orientation in the Android system is to
first define a local and a world coordinate system,2 and
represent the orientation as a rotation matrix. The rotation
matrix is used to transform a local coordinate tuple into a
global one. Another way to represent the rotation is to
use a three tuple called azimuth, pitch, and roll, which
respectively indicate the phone’s rotation around the Z,
X and Y axes [15]. The two representations are equivalent
and the orientation tuple (i.e., the angles) can be derived
from the rotation matrix. In the following description, we
use R to denote the rotation matrix.

In Android system, the rotation matrix can be directly
obtained based on accelerometer and magnetic field sensor
readings. The accelerometer measures the phone’s proper
acceleration along the three axes in the phone’s local coordi-
nate system, including the influence of the gravity. The
magnetic field sensor provides the readings measuring the
ambient magnetic field along the three axes in the local
coordinate system. The coordinates of both the gravity and
the ambient magnetic field are known in the world coordi-
nate system. Thus, by combining the above readings and
facts, the orientation of the phone can be obtained. Let us
call this the “basic” method, and let the result be denoted
by Rbasic.

5.2 Techniques to Improve Accuracy

The rotation matrix Rbasic is susceptible to noise and errors.
It fluctuates quickly due to the vibration of accelerometer’s
reading. Also, the magnet field sensor’s reading is easily
affected by nearby magnet objects. Even worse, Rbasic

responses slowly to quick rotation of the phone. Thus, we
propose several techniques to improve the accuracy of the
orientation.

5.2.1 Hybrid Method

Apart from the accelerometer and the magnetic field sensor,
gyroscope is now available in most smartphones, and it can
also be used to measure the rotation matrix.

Gyroscope measures the angular rotation speeds along
all three axes in the phone’s local coordinate system. By
integrating (multiplying) the angular speed with the time
interval between two consecutive sensor readings, we can
obtain the rotation vector, which indicates the change of ori-
entation in terms of rotation angles around the three axes. It
can also be used to obtain the rotation matrix (denoted by

DRgy). Given an initial rotation matrix, which can be
obtained from Rbasic, we can get the new rotation matrix,
denoted as Rgy, by Rgy ¼ Rgy  DRgy.

However, the cumulative error caused by the integra-
tion in Rgy can become greater and the result would drift
as time goes by. In fact, the orientation derived from Rgy

alone usually drifts over 10 degrees in about 20 seconds
in our lab test.

Thus, we propose a hybrid method which combines the
readings from the above sensors to improve the accuracy of
orientation, as shown in Fig. 4 and explained as below.

First, a simple infinite impulse response (IIR) low pass fil-
ter is used on Rbasic to remove the short term vibration, i.e.,

R0
basic ¼ Rbasic þ m � ðRprev

basic �RbasicÞ;

where Rbasic is the current reading and Rprev
basic is the previous

reading from the basic method, and m 2 ½0; 1� is an adjust-
able parameter balancing the current and previous values.
In practice, we find m ¼ 0:3 is good for our purpose.

Second, we combine R0
basic and Rgy to take advantage of

both values; that is,

Rhybrid ¼ nRgy þ ð1� nÞ R0
basic:

We find n ¼ 0:9works well.
Third, Rhybrid is the output, and it will also be used as the

initial matrix input for the computation of a new Rgy.

5.2.2 Enhancement By Orthonormalization

We exploit the orthonormal property of the rotation matrix
to further improve the accuracy of orientation. In a valid
rotation matrix, any pair of columns (or rows) of the rota-
tion matrix are orthogonal, i.e., with unit length and vertical
to each other. However, this property may be violated as
errors occur. Thus, the rotation matrix Rhybrid obtained from
the above method can be further calibrated by an ortho-
normalization process (e.g., the Gram-Schmidt process [26])
to get an enhanced rotation matrix Renhanced.

Specifically, consider a 3 3 rotation matrix: Rhybrid ¼
½a1;a2;a3�, with ai being a column vector. Let the inner
product of the two vectors a and b be < a;b >¼ Pn

i¼1 aibj,

where n ¼ 3 is the dimension.
First, Rhybrid is orthogonalized by

�1 ¼ a1;

�2 ¼ a2 �
< a2; �1 >

< �1; �1 >
�1;

�3 ¼ a3 �
< a3; �1 >

< �1; �1 >
�1 �

< a3; �2 >

< �2; �2 >
�2:

Fig. 4. Hybrid method combines the results of the basic method with
gyroscope readings.

2. In a world coordinate system, Z axis is perpendicular to ground
and points to the sky; Y is tangential to the ground and points towards
the magnetic north pole; X is the vector product of Y and Z. In the
phone’s local coordinate system, Z is perpendicular to the phone screen
and points outward; the X-axis is along the width of the phone and the
Y -axis is along the length [1], [15].
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Second, the above �i’s are normalized by

bi ¼
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< �i; �i >
p ; i ¼ 1; 2; 3:

Then, the final rotation matrix is

Renhanced ¼ ½b1;b2;b3�:

Comparisons. To verify the effectiveness of the optimization
techniques, we measure the orientation using three different
methods: the “basic” method, the “hybrid” method, and the
“enhanced” method, and compare their results. We place
the phone in a horizontal plane, so the orientation is
reflected by the azimuth value. Then we rotate the phone
30 degrees and measure its azimuth reading against a com-
mercial compass. Each measurement is repeated 50 times
and the statistics are calculated. Fig. 5a compares the mea-
surement errors (in degree) by these three methods. The
short bar in the middle of each box is the median value of
the azimuth reading error, and the lower and upper side of
the box are the first (25 percent) and third (75 percent) quar-
tile, which is denoted by Q1 and Q3. Then the lower limit is
calculated by Q1� 1:5 � ðQ3�Q1Þ and the upper limit is
Q3þ 1:5 � ðQ3�Q1Þ. More details about the average error
and standard variance of each method are listed in Table 1.

We find that the hybrid method can reduce the average
measurement error by 37 percent compared to the basic
method, and the enhanced method can further reduce the
measurement error bymore than 40 percent compared to the
hybrid method. Also, new phones (e.g., Nexus 4), with more
advanced hardware and OS, are more accurate with less var-
iance. For all these phones, with our enhanced method, the
average azimuth reading error is under 3.5 degrees, and the
error can be reduced to 1.3 degreewith Nexus 4.

To understand the effectiveness of these techniques
clearly, we show the measurement results of these methods
when the phone is turned to 90 degree, as illustrated in
Fig. 5b. As can be seen, the basic method oscillates fre-
quently. The hybrid method improves the accuracy com-
pared to the basic method but still carries the reading
errors. With orthonormalization, the enhanced method can
significantly improve the accuracy of orientation.

5.3 Occlusion and Out-of-Focus

After a photo is taken, we assume that the user will visually
check if the object appears in the photo, as most people do.
However, if the user does not check the photo, and the
object is blocked by unexpected obstacles such as a moving
vehicle, the photo will not be useful to the server. Even if
the user checks the photo and the object is clear, it may be

different from what the server is expecting. For example,
the server may expect the photo to be about a building, but
the user may be looking at a tree in front of the building.
Although in the two scenarios, the smartphone may pro-
duce the same metadata (e.g., the same facing direction),
the content could be very different, and the one focusing on
(blocked by) the tree is useless for the server’s task. Besides
this problem, there are many other occasions that the inter-
ested targets are out-of-focus. Uploading these photos will
waste lots of bandwidths and storage spaces.

We use a feature called focus distance, which is provided
by many new smartphones with focusing capability, to
solve the problem. The focus distance is the distance
between the camera and the object perfectly focused in the
photo. Note that the real distance between the camera and
our interested target can be calculated by GPS locations.
Thus in an ideal case, if the two distances do not match, the
target is out-of-focus and the photo should be excluded
from consideration.

The measurement of the focus distance is sensible to
errors. A slight offset does not necessarily mean the target is
out-of-focus. In fact, in photography the distance between
the nearest and farthest objects that appear acceptable sharp
in a photo is called the depth-of-field (DOF). DOF is deter-
mined by four parameters: focal length (f), focus distance
(vo), lens aperture (A), and circle of confusion (CoC). Among
these parameters, focal length and lens aperture are built-in
and readable from the Android API. CoC (denoted by c) is a
predefined number which determines the resolution limit
for our application. Focus distance changes from case to
case but obtainable from Android API. Therefore, we
can calculate the near/far limit of DOF (Fig. 6a) by

Dnear ¼ voðH�fÞ
Hþvo�2f, Dfar ¼ voðH�fÞ

H�vo
, where H ¼ f2

Ac þ f is the

hyperfocal distance [17].
After a photo is taken, the distance between the target

and the camera (phone) is compared with the above two
values. If the target falls into the DOF, the photo is consid-
ered valid; otherwise, it will be dropped. This filtering is
done at the user side and the metadata of unqualified pho-
tos will not be sent to the server. As an example, consider
the two photos in Fig. 6b. The dictionary is the interested
target. In the left photo, the near and far limit of DOF is 85
and 105 cm respectively. In the right photo, the near and far

Fig. 5. Orientation errors of the three proposed methods.

TABLE 1
Average Error in Azimuth (Degree)

Nexus S Nexus 4 Galaxy S III

Basic 9.1(�2:0) 8.2(�1:5) 9.6(�2:4)
Hybrid 5.7(�1.9) 5.1(�1:3) 7.3(�1:7)
Enhanced 3.4(�1.4) 1.3(�0.7) 3.4(�1.3)

Fig. 6. Using DOF to detect occlusion and out-of-focus.

WU ETAL.: SMARTPHOTO: A RESOURCE-AWARE CROWDSOURCING APPROACH FOR IMAGE SENSING WITH SMARTPHONES 1257



limit of DOF is 5 and 10 cm respectively. The distance
between the camera and the dictionary is 100 cm. Based on
these parameters, it is clear that the target falls into the DOF
in the left photo. From the figure we can see, the dictionary
is clear in the left photo but blocked by another object in the
right photo. Note that this method can detect most obstacles
but not all. If the obstacle is very close to the target (their
distances to the camera are almost the same), it is possible
that the target is blocked but still in the DOF.

Discussions. Energy is an important issue for mobile devi-
ces, especially in post-disaster scenarios. Although various
built-in sensors are used to collect metadata, they do not
consume too much energy due to the following two reasons.
First, metadata are collected only when users are taking
photos, and the sensors are inactive most of time. Second,
crowdsourcing relies on large number of users to obtain
information. A single user does not need to take many pho-
tos and thus does not spend too much energy.

Photos can be of low quality due to various reasons.
Over-exposure or under-exposure causes images to be too
bright or too dark; camera movement and shutter speed
affect how severe the image is blurred; the quality of lens
and digital sensors is also important. These factors can only
be analyzed by image processing. Thus, before photo selec-
tion, some efficient image processing techniques [9] may be
applied at the user end to filter out low quality photos.
However, existing image processing techniques are compu-
tationally expensive, and thus should be carefully adapted
considering the resource limitations of mobile devices. Note
that our approach is not meant to replace the role played by
image processing algorithms, but to serve as an important

complement to improve the utility of collected photos, espe-
cially when there are resource constraints.

6 PERFORMANCE EVALUATIONS

In this section, we first show a real world demo using the
smartphone testbed, and then evaluate the performance of
the photo selection algorithms by extensive simulations.

6.1 Demo in a Real-World Example

The testbed in Section 5 is used in a real-world example to
demonstrate the effectiveness of the proposed photo selec-
tion algorithm. In this demonstration, a landmark (a bell
tower) is the target. Photos are taken by using the reprog-
rammed smartphones around the target with the metadata
automatically recorded. The metadata of all photos are later
uploaded into a centralized desktop server. There are
30 photos in total. Although most of them are taken around
the target, some are not facing the target, and some are
blocked by trees or other objects. Also, the distribution is
not uniform, due to the reality that people are likely to take
pictures of the front (more attractive) side of the building.

After the metadata is retrieved, the Max-Utility problem
is solved by choosing four photos. The photos selected by
our algorithm are shown in Fig. 7a. The positions and orien-
tations of the photos are shown in Fig. 7d, where the origi-
nal 30 photos are marked as dotted “V” shapes, and the
selected photos are marked by bold lines. As a comparison,
we randomly choose four photos as shown in Fig. 7b, and
randomly choose another four photos as shown in Fig. 7c. It
can be seen that the four photos chosen by our algorithm
cover the target from four different locations well separated
from each other, with each one from a totally different
angle. The bell tower is viewable from all four photos. In
contrast, only two photos in the first random selection cover
the target. The third photo faces away from the target,
which is because random selection does not consider the
orientation. In the fourth photo, the target is blocked by a
flagpole. This photo is not considered by our algorithm
because the target is out of focus according to the DOF
information. For the second randomly selected four photos,
two of them cover the target but they are very similar and
contain redundant information. The other two do not
cover the target.

We also demonstrate the effectiveness of our algorithm
for the Min-Selection problem where the coverage require-
ment is from 0 to 360 degree, i.e., all aspects of the target. As
shown in Fig. 8a, our algorithm selects six photos to meet
the coverage requirement. The angle between any two adja-
cent viewing directions (dashed lines connecting the photos
and the target) is less than 90 degree. Since the effective

Fig. 7. Demo results based on Max-Utility. (a) Photos selected by our
algorithm. (b), (c) Photos selected randomly. (d), (e), (f) The locations
and orientations of the photos are marked as “V” shapes on the map.

Fig. 8. Demo results based on Min-Selection. To cover all aspects of the
target, our algorithm uses six photos, and a random selection uses
15 photos.
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angle is set to 45 degree, all aspects are covered. We also
compare the performance with a random selection
approach, which randomly selects photos one by one until
the coverage requirement is achieved. As shown in Fig. 8b,
the random approach has to select 15 photos to meet the
same coverage requirement. The experiment based on the
random selection approach is repeated 100 times, and on
average 21 photos are selected to meet the same coverage
requirement. This demonstrates that our algorithm can sig-
nificantly reduce the number of photos selected to achieve
the required coverage.

6.2 Simulation Results

In this section, we evaluate the photo selection algorithms
through simulations. Targets are randomly distributed in a
100 m by 100 m square area. We generate photo metadata to
represent real photos taken by users as follows. The photo
locations are uniformly distributed in a 200 m by 200 m
square, with the target area in the center. The orientations
are randomly distributed from 0 to 2p. The field-of-view is
set to 120 degree, and the range is set to 50 m as discussed
in Section 5.1.

During the simulation, we compare our algorithms with
a random selection algorithm that randomly selects photos
at each step, until the bandwidth constraint is reached or
the coverage requirement is satisfied. For a fair comparison,
the random selection excludes any photos that have no tar-
get covered, but only consider photos that cover at least one
target, i.e., relevant photos. Note that a more naive selection
could be blindly selecting photos without considering this.

6.2.1 Results on Max-Utility Problem

In the first part, we evaluate the performance of our algo-
rithm on addressing the Max-Utility problem. Intuitively,
with more bandwidths, better coverage of the targets can be
achieved. As shown in Fig. 9a, both our algorithm (“ours”)
and the random selection (“random”) achieve more utility
as the bandwidth B increases. The total utility achieved
by all photos (“best achievable”) is also shown to provide
an upper bound. The difference between our selection and
the random selection is significant and the advantage of our
algorithm is obvious especially when B is smaller, i.e.,
bandwidth is more constrained. Although the performance
of both algorithms converges to the best-achievable utility
as B becomes larger, the convergence of ours is much faster.

Fig. 9b shows how the total utility changes as the number
of candidate photos increases while other factors including

bandwidth (B ¼ 20) remain unchanged. The advantage of
our algorithm is significant across the range. Considering
the bandwidth limitation (only 20 photos can be selected to
cover 30 targets), the difference between the utility achieved
by ours and the best achievable level is small. Moreover,
our algorithm can take advantage of the increasing density
of photos, and improve its performance as the number of
photos increases.

Fig. 9c plots the total achieved utility against the effective
angle u, with all other factors unchanged. As the effective
angle increases, the coverage intervals of photos grow
accordingly, so the total utility of both our algorithm and
random selection increases as expected. Moreover, when
the effective angle is between 10 to 40 degrees, the utility
achieved by ours increase at a faster rate (the red circle line
has larger slope than the blue triangle line). This is because
our algorithm tries its best to avoid coverage overlap and
thus benefits more from the coverage growth of each single
photo. Note that as the effective angle increases, photos
have more coverage but also have more coverage overlap.
When the effective angle is more than 40 degrees, the utility
obtained by our algorithm approaches the best achievable,
so its increasing rate cannot be as high as before.

6.2.2 Results on Online Max-Utility Problem

In this part, the algorithm for the onlineMax-Utility problem
is evaluated.We first observe how the total utility changes as
the number of periods increases in Fig. 10a. Here, targets are
randomly distributed as mentioned at the beginning of
Section 6.2, and there are 100 new photos available in every
period. Photo parameters are shown in the figure. The nor-
malized total utility at the end of each period is recorded. As
can be seen, for both our algorithm and the random algo-
rithm, the total utility increases as the number of periods
increases. However, for our algorithm, it quickly approaches
360 degree. It is actually above 350 degree after t7, which
means by that time, almost all aspects of the targets are cov-
ered by the selected photos. The random algorithm takes
much longer (after t25) to reach that level of coverage. Thus,
our algorithm is more responsive and effective.

Next, we vary the number of new photos from 50 to 100,
with other parameters the same as above except the number
of periods which is now fixed to be 5. The total utility of the
selected photos after t5 is shown in Fig. 10b. As the number
of available photos increases, the selection algorithm has
more choices. As a result, the total utility improves and
approaches 360 degree in our algorithm. In comparison, the

Fig. 9. Simulation results on Max-Utility problem.
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performance of the random algorithm is flat (a little fluctu-
ated due to randomness) and very low. Given the same
time period, the total utility of our algorithm is much higher
than the random algorithm across the range.

We also compare the original version and the online
version of the Max-Utility problem. Fig. 10c shows the
utility after each photo is selected in a process of select-
ing 20 photos. The four lines are four greedy selections
with different number of periods but the same number
(1,000) of total available photos. The red circle line has 1
period, so it directly selects 20 photos from 1,000
candidates, which represents the algorithm for the origi-
nal Max-Utility problem. The other three lines have
more than one period, so they represent algorithms for
the online problem. For example, the black square line
has four periods, so in each period it selects 20/4 ¼ 5
photos from 1,000/4 ¼ 250 candidates. Our first observa-
tion is that for each line, the utility gain of selecting a
photo is always positive and non-increasing. This com-
plies with the features of greedy algorithms. Secondly,
the performance becomes worse if there are more peri-
ods. This is because the online selection algorithm picks
a fixed number of photos from each period, even though
there are fewer good photos in one period and more in
another. Finally, after selecting 20 photos, the utility
achieved by the 20-period line is about half the utility
achieved by the 1-period line. Note that 20 periods is the
most periods possible for selecting 20 photos, so it repre-
sents the worst performance of the online algorithm.
Therefore, this simulation result matches what we proved
in Theorem 3, i.e., the performance bound of the online
algorithm is half the performance bound of the original
greedy algorithm.

6.2.3 Results on Min-Selection Problem

In this part the Min-Selection problem is studied. In reality,
the given pool of photos can be very large and the number
of relevant photos (i.e., photos covering at least one target)
can increase very fast as the total number of randomly taken
photos increases. Then, a careful selection of photos can
greatly reduce the redundancy. Fig. 11a shows the effective-
ness of our selection algorithm on reducing the redundancy.
There are 20 targets, and all the aspects from 0 to 360 degree
are required to be covered. As the total number of photos
varies from 500 to 2,000, the number of related photos
(“related”) increases linearly. However, the number of pho-
tos selected by our algorithm (“selected by ours”) to achieve
the same coverage does not increase. It actually decreases
slightly since our algorithm takes advantage of the
increased density of the photos and improves its efficiency.

The algorithms are also evaluated under the situation
that the number of targets (m) varies from 5 to 50, while the
total number of photos is fixed to be 1,000 and all other fac-
tors remain the same. As shown in Fig. 11b, the algorithms
have to select more photos to cover the increased number of
targets. However, the number of photos selected by our
algorithm remains very low, and the increasing speed is
much slower as the number of targets increases, which is
much better than the random algorithm.

In Fig. 11c we fix the number of targets as 30 and change
the amount of aspects to be covered on each target. As
expected, the number of photos needed to achieve the
required coverage increases as more aspects are to be cov-
ered. Interestingly, the increasing rates of the lines rise on
the left half but drop on the right half. The reason behind
this can be explained as follows. Let us denote the amount
of aspects to be covered on a target as x. The coverage

Fig. 10. Simulation results on online Max-Utility problem.

Fig. 11. Simulation results on Min-Selection problem.
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requirement of target i is Ii ¼ ½0; x�. When x is small (e.g.
30 degree), the photos selected to cover ½0; x� also cover
more than ½0; x�, since by definition a photo always covers a
2u range of aspects on a target (here u ¼ 45�). Then if we
increase x a little bit, not many new photos are needed to
achieve the new coverage, since it is almost achieved by pre-
vious photos. As x keeps increasing, this advantage
becomes weaker because the new coverage requirement
½0; x� is no longer within the 2u range. Then many new pho-
tos have to be selected to complete the coverage. That is
why the increasing rate rises for small x. On the other hand,
when x is large, this advantage becomes stronger as x
increases, because the remaining uncovered aspects are
now within the 2u range, and they are more likely to be cov-
ered by the selected photos. This explains the drop of the
increasing rate for large x.

6.2.4 Results on Min-Selection with k-Coverage

In this part, we study the Min-Selection problem with k-cov-
erage by comparing five different coverage settings. Three
of them are based on the k-coverage model, with k ¼ 1; 2; 3,
respectively. The other two are based on the 2-coverage+
model, with a ¼ 15 and 30 degrees. Fig. 12a plots the num-
ber of selected photos as a function of the total number of
available photos. The other parameters are fixed and shown
in the figure. First, it is clear that all algorithms are able to
take advantage of the increased number of photos, make
better choices, and reduce the number of selected photos.
When comparing 1-cover, 2-cover and 3-cover, the number
of selected photos is almost proportional to the degree (k) of
coverage. This shows that k-coverage does not fundamen-
tally differ from single coverage. It just repeats single cover-
age for k times. We also compare 2-cover (i.e. 2-cover+ with
a ¼ 0), 2-cover+ with a ¼ 15, and 2-cover+ with a ¼ 30. The
a ¼ 15 line is pretty close to the a ¼ 0 line. However, a ¼ 30

requires at least 25 percent more photos than a ¼ 15. This
suggests that the difficulty of achieving 2-coverage+ and the
value of a are not linearly related. Once a becomes large, it
requires much more photos to achieve the desired coverage.

In Fig. 12b, the number of targets varies from 5 to 50 while
the number of available photos is fixed at 1,000. For a target,
all the aspects from 0 to 360 degree should satisfy the
required level of coverage, either k-coverage or 2-coverage+.
We have similar observations as previous figures. The
relationships between the lines are similar to those in
Fig. 12a, and the increasing trend of the lines is similar to that
in Fig. 11b.

In Fig. 12c, we fix the number of targets but change the
amount of aspects that should satisfy the required coverage.
The relationships between the lines are similar to those in
Figs. 12a and 12b, and the increasing trend of the lines is
similar to that in Fig. 11c.

7 RELATED WORK

The mass adoption of camera sensors and other position
sensors on smartphones makes photo taking and sharing
via online social networks much easier and more enjoyable.
It creates opportunities for many applications based on
camera sensor networks, which have received much atten-
tion recently in research [2], [13], [18], [19], [21]. One basic
problem is how to characterize the usefulness of the image
data and how to optimize the network to achieve better
quality of information. However, very little effort has been
devoted to this field. One problem studied is called pan and
scan [12], which is proposed to maximize the total coverage
in a camera sensor networks. For camera sensor placement,
various optimization models and heuristics are studied in
[11]. However, the coverage model is relatively simple,
depending only on the distance between the target and
the object, which does not consider the uniqueness of
photo coverage.

Our work is inspired by the full-view coverage model
which was originally proposed in [24] and later extended in
[23], [25]. An object is considered to be full-view covered if
no matter which direction the object faces, there is always a
sensor whose sensing range includes the object and that
sensor’s viewing direction is sufficiently close to the object’s
facing direction. Although our work is based on the full-
view coverage model, our model is more general and we
study various optimization problems on the tradeoffs
between resource constraints and photo coverage.

Another interesting work is PhotoNet [22], which is a pic-
ture delivery service that prioritizes the transmission of pho-
tos by considering the location, time stamp, and color
difference, with the goal of maximizing the “diversity” of
the photos. Compared to their model, we consider direction
and angle information, and develop techniques to obtain
them from off-the-shelf smartphones. These are very impor-
tant and unique features for photos and enable us to develop
much finer optimization models. Moreover, the solutions to
our optimization problems are rigorously analyzed.

It is also worth mentioning that there has been much
progress in content-based image retrieval techniques

Fig. 12. Simulation results on Min-Selection with k-Coverage.
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(see [7] for a good survey). These techniques have also been
used for images obtained from mobile users. One example
is to build photo annotated world maps and create 3D mod-
els of the objects from 2D photos via online social networks
[6]. Some other interesting works have been done for image
retrieval/search on smartphones [27]. However, most of
these works involve power-intensive computation at both
user and server end, and some demands human validation
to be included into the cycle [27]. These techniques are chal-
lenged by the content diversity and the resource constraints.

8 CONCLUSION AND FUTURE WORK

We proposed a resource-aware framework, called Smart-
Photo, to optimize the selection of crowdsourced photos
based on the accessible metadata of the smartphone
including GPS location, phone orientation, etc. With this
model, a remote server can efficiently evaluate and select
photos from mobile users under severely constrained
resources such as bandwidth, storage, computational
power and device energy. Four optimization problems
regarding the tradeoffs between photo coverage and
resource constraints, namely Max-Utility, online Max-
Utility, Min-Selection and Min-Selection with k-coverage,
have been studied. The approximation bounds of the pro-
posed algorithms are theoretically proved. We have
implemented SmartPhoto in a testbed using Android
based smartphones, and proposed techniques to improve
the accuracy of the collected metadata and mitigate the
occlusion and out-of-focus issues. Results based on real
implementations and extensive simulations validated the
effectiveness of the proposed algorithms.

As future work, we will consider assigning more
weights to targets and aspects that are more important.
For example, after a disaster, a building with more poten-
tial survivors (e.g. schools, malls) is more important than
others, and its possible entrance is more important than
other aspects of the building. Hence, photos covering that
building and its entrance should have higher priority to
be selected. We will also address other research issues
such as extending the current photo model to 3D and
identifying other photo selection problems based on the
requirements of crowdsourcing applications.
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