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ABSTRACT 

Purpose: A calibration-free pulse design method is introduced to alleviate B1
+ 

artifacts in clinical routine with parallel transmission at high field, dealing with 

significant inter-subject variability, found for instance in the abdomen.  

Theory and Methods: From a dual-transmit 3T scanner, a database of B1
+ and off-

resonance abdominal maps from 50 subjects was first divided into three clusters 

based on mutual affinity between their respective tailored kT-points pulses. For each 

cluster, a kT-points pulse was computed, minimizing normalized root-mean-square 

flip angle (FA) deviations simultaneously for all subjects comprised in it. Using 30 

additional subjects’ field distributions, a machine learning classifier was trained on 

this 80-labelled-subject database to recognize the best pulse from the three ones 

available, relying only on patient features accessible from the preliminary localizer 

sequence present in all protocols. This so-called SmartPulse process was 

experimentally tested on an additional 53-subject set and compared with other pulse 

types: vendor’s hard calibration-free dual excitation, tailored static RF shimming, 

universal and tailored kT-points pulses.  

Results: SmartPulse outperformed both calibration-free approaches. Tailored static 

RF shimming yielded similar FA homogeneity for most patients but broke down for 

some while SmartPulse remained robust. Although FA homogeneity was 

systematically better with tailored kT-points, the difference was barely noticeable on 

in-vivo images.  

Conclusion: The proposed method paves the way towards an efficient trade-off 

between tailored and universal pulse design approaches for large inter-subject 

variability. With no need for on-line field mapping or pulse design, it can fit 

seamlessly into a clinical protocol.  

 

Keywords: B1
+ inhomogeneity; kT-points; universal pulses; machine learning; 

abdomen; 3T 

  



1. INTRODUCTION 

High field magnetic resonance imaging (MRI) has proved its utility in clinical 

routine thanks to the high signal-to-noise ratio (SNR) it provides, allowing finer 

temporal and/or spatial resolutions (e.g. (1)). However, a number of problems 

inherent to high field still hamper the spread of 3T scanners in routine everyday 

practice. Among them is the so-called "B1
+ artifact" that occurs when the RF 

wavelength gets close to, or smaller than, the imaged region (2–4). In such a case, 

zones of shade and loss of contrast appear, which can affect diagnosis by hiding 

pathologies or by altering the observed enhancement ratio in contrast-agent-injected 

sequences. At 3T, this artifact is particularly noticeable in abdominal imaging.  

Both passive (5–7) and active RF shimming methods have been implemented 

to counteract B1
+ artifacts, at high (4,8–10) and ultra-high (11–16) field (UHF: 7T and 

above) for various imaging regions and contrast weightings. Active RF shimming 

makes use of parallel transmission (pTx) (17,18), which is widely used on research 

scanners at UHF with eight transmission channels or more, and has been made 

available on some clinical 3T scanners, with two channels. In that case, only 

static RF shimming (3) is currently proposed commercially: the user can choose 

between a "standard" shimming with fixed RF complex weights (8,19), and a 

"tailored' one exploiting the measurement of the B1
+ fields from each transmit channel 

to adapt the coefficients to the patient in the magnet. In a previous study (10), the 

superiority of kT-points (14) dynamic  RF shimming (3) was demonstrated in clinical 

routine for nonselective excitation of the abdomen at 3T. Indeed, although tailored 

static RF shimming is satisfactory for most patients, it fails to offer sufficiently 

homogeneous excitation in about 10 to 20% of the population. However, both 

techniques are tailored, i.e. they require calibration consisting at least in the 

measurement of B1
+ maps from each transmit channel; for optimal dynamic RF 

shimming, a frequency off-resonance Δf0 map is also required before computation of 

the RF pulse. All these maps are acquired at the beginning of the examination and 

thus may become inaccurate in case of subject motion or/and breathing.  

On a 3T scanner with two channels, the whole calibration process can last 

nearly two minutes: 30 seconds for B1
+ mapping, 15 seconds for Δf0 mapping, and 

between 5 seconds (static RF shimming) and 60 seconds (kT-points) for pulse design 

itself. This time naturally scales with the number of transmit channels (20,21). For this 



reason, Gras et al. (22) introduced the concept of universal pulses, that allows 

calibration-free pTx: instead of designing a pulse specific to each subject, a pulse 

robust to inter-subject variability is created once and for all using calibration data of a 

population of subjects. Universal pulses were successfully implemented in the brain 

at 7T, with a variety of sequences and weightings, and different underlying pulse 

designs –  kT-points (22–24), fast-kz spokes (23), direct signal control (25) – and at 

3T in the brain (26).  

Considering that universality could compromise individual homogeneity, some 

authors have explored machine learning approaches to design tailored pulses while 

reducing calibration time. Ianni et al. for instance developed a method to infer RF 

coefficients of a static RF shimming pulse using geometrical features of the head and 

limited B1
+ information (27) with good accuracy. Mirfin et al. investigated a neural 

network solution to predict dynamic RF shimming pulses (28), but the produced 

pulses still lacked performance. Both methods were targeting slice-specific pulses for 

brain examinations at 7T.  

The present work constitutes a proof-of-concept for a new method, 

SmartPulse, proposed to achieve the simplicity and user-friendliness of universal 

pulses under the important inter-subject variability found, for instance, in the 

abdomen at 3T as shown in Figure 1, where a universal design may not suffice. 

Instead of designing one pulse for all subjects, a population is divided into clusters, 

and one smart-universal pulse is designed for each cluster. Then a machine learning 

algorithm classifies new subjects to assign the best possible pulse to each one of 

them. To comply with the calibration-free philosophy of universal pulses, only 

features that can be extracted automatically from a localizer acquisition – a 

compulsory step preceding all imaging protocols – are used: no additional data is 

needed.  

In continuation of our work (10), this study was led in the context of Dynamic 

Contrast-Enhanced (DCE) MRI, an essential part of abdominal imaging protocols 

(29), consisting of a succession of 3D T1-weighted fat-suppressed FLASH sequences 

before and at several points in time after gadolinium-based contrast agent injection, 

to follow the perfusion of tissues and characterize certain lesions (30,31). KT-points 

being nonselective, they are appropriate for this sequence where short echo time and 

repetition time are required: they were therefore chosen as the underlying pulse 

parametrization for SmartPulse. The performance of this method was assessed on 



calibration data from various subjects and compared to several other pulses, 

including a universal one. The effect on DCE images acquired on a 3T scanner in 

clinical routine was also investigated.  

 

 

Figure 1 : Examples illustrating the inter-subject variability of transmit B1 field in 

the abdomen for four subjects (top to bottom). a. B1
+ magnitude for both transmit 

channels. b. B1
+ phase. Field of view and windowing are identical for all subjects. 

 

2. THEORY 

 

In this section, we briefly present subject-specific (tailored) and universal kT-

points pulse design. Then we introduce the clustering and pulse design specificities 

of SmartPulse.  

 



2.1. Tailored KT-Points Pulse Design 

The kT-points pulse design consists in homogenizing the flip angle (FA) 

distribution in a region of interest (ROI) by optimising simultaneously RF complex 

coefficients, k-space locations (32) and durations (33) of each kT-point sub-pulse. 

With NkT sub-pulses on a pTx system equipped with NCh transmission channels, and 

using the vectors x, k and t to represent, respectively, all sub-pulse RF complex 

coefficients, three-dimensional k-space locations, and sub-pulse durations, the 

optimization problem can be expressed as (22,34):  arg min 𝐱,𝐤,𝐭 1𝛼𝑇√𝑁𝑣 ‖A(𝐱, 𝐤, 𝐭) − 𝛼𝑇𝐼‖2 , (𝐱, 𝐤, 𝐭) ∈ ℂ𝑁𝐶ℎ𝑁𝑘𝑇 × ℝ3𝑁𝑘𝑇 × ℝ𝑁𝑘𝑇  
[1] 

where 𝛼𝑇 is the targeted FA (a scalar), I is the identity vector spanning the Nv voxels 

in the ROI , and A is the Bloch operator returning a FA for each voxel depending on 

its B1
+ and Δf0 values. Optimization is performed under peak power, average power, 

and global and local specific absorption rate (SAR) constraints (35) to comply with 

hardware limits and patient safety.  

 

2.2. Universal KT-Points Pulse Design 

The design of a universal pulse (22) seeks to homogenise excitation 

simultaneously over the whole population, based on a sample of NS subjects. In this 

work, the approach is a compromise between refs (22) and (23): in order to reduce 

the global FA inhomogeneity in the whole population while avoiding outliers, the 

mean plus standard deviation of the normalised root-mean-square FA errors 

(NRMSE) achieved in each subject was chosen as the cost function to be minimized. 

If we represent by 𝒜 = {A1, … , A𝑁𝑆}  the set of Bloch operators associated with each 

of the NS subjects in the population, we solve the following problem:  arg min 𝐱,𝐤,𝐭 (M(𝝐)) , (𝐱, 𝐤, 𝐭) ∈ ℂ𝑁𝐶ℎ𝑁𝑘𝑇 × ℝ3𝑁𝑘𝑇 × ℝ𝑁𝑘𝑇      [2] 

Where 𝝐 = (𝜖𝑠)1≤𝑠≤𝑁𝑆 is the vector gathering the NRMSE of each subject, defined by 𝜖𝑠 = 1𝛼𝑇√𝑁𝑣,𝑠 ‖A𝑠(𝐱, 𝐤, 𝐭) − 𝛼𝑇𝐼‖2, and M(𝓔) = 〈𝓔〉 + SD(𝓔). 〈 ⋅ 〉 and SD( ⋅ ) represent the 

sample mean and the sample standard deviation operators, respectively. Without any 

additional difficulty, this problem is also solved under all strict constraints as 

described in the tailored case. 



2.3. SmartPulse Design Process  

The SmartPulse design process is divided into (i) a clustering and pulse 

design step, and (ii) a classification step. The aim of the clustering and pulse design 

step is to partition the database into “homogeneous” clusters and to design for each 

cluster a universal kT-points pulse. The classification step consists in training a 

machine learning algorithm to assign the most appropriate pulse to new subjects, 

given a set of simple features that do not require additional calibration – in particular 

without knowledge of B1
+ and Δf0 distributions. In the following, we provide the 

formalism of the clustering process.  

For each of the NS,0 subjects of the database, we design one tailored kT-points 

pulse (minimization of the objective given by Eq. [1]). Each of the NS,0 tailored kT-

points pulses is then applied on every subject of the database and the resulting FA 

NRMSEs are stored in the matrix: 𝓔 = (𝜖𝑠,𝑝)1≤𝑠,𝑝≤𝑁𝑆,0 [3] 

where 𝜖𝑠,𝑝 denotes the NRMSE achieved by the pth pulse when applied to the sth 

subject. By defining subject vectors 𝝐𝒔 = (𝜖𝑠,𝑝)1≤𝑝≤𝑁𝑆,0(i.e. the pth column of 𝓔), we 

compute 𝓓, the distance matrix between subjects:  𝓓 = (‖𝝐𝒔 − 𝝐𝒔′  ‖2)1≤𝑠,𝑠′≤𝑁𝑆,0 [4] 

This distance matrix is now exploited to partition the database into a desired number 

of clusters. To do so, we perform agglomerative hierarchical clustering on 𝓓 with 

complete linkage (36), i.e. with the distance between two clusters of subjects I and J 

defined as 𝑑(𝐼, 𝐽) = max𝝐𝐬∈𝐼,𝝐𝒔′∈𝐽‖𝝐𝐬 − 𝝐𝐬′‖2  

It is a bottom-up process that starts with each individual subject forming a singleton 

cluster. A new cluster K is created by joining the two clusters I and J of minimal 

pairwise distance 𝑑(𝐼, 𝐽); I and J are then removed from the set. Clusters are 

iteratively joined two by two to form new larger clusters, until a single cluster 

containing all subjects is obtained. This process both leverages and represents all 

the distances between individuals and between groups of subjects. It emphasizes the 

inherent structure of the set of subjects, and allows to group subjects that display 

similar behaviour to various RF pulses in terms of NRMSE.  



Finally, given a number of desired clusters NC, we stop the merging process to 

reach this exact number. If we denote by 𝒞𝑗 the set of indices of subjects belonging to 

the jth cluster, clustered pulse design boils down to solving Eq. [2] for each subset 𝒜𝑗: 𝒜𝑗 = {A𝑖  | 𝑖 ∈ 𝒞𝑗}, 𝑗 ∈ [1. . 𝑁𝐶]  

to obtain NC universal kT-points pulses 𝐩𝐣 = (𝐱𝐣, 𝐤𝐣, 𝐭𝐣).  

 

3. METHODS 

 

3.1. Subjects and Scanner 

Data acquired for a previous study (10) on 50 consecutive subjects were 

reused here as the clustering set: it corresponds to subjects 1 through NS,0 = 50. For 

the present work, measurements were performed over a three-week period on NS,1 = 

30 additional subjects, thus forming a training population of Ntrain = 80 subjects. 

Finally, a testing population of Ntest = 53 consecutive subjects was acquired over four 

weeks. A total of 133 patients (69 men, 64 women, age: 22–89 years, height: 1.45–

1.91 m, weight: 45–140 kg, BMI: 17.6–43.7 kg·m-2) were therefore included. 23 

subjects from the testing population underwent DCE-MRI while in the presence of 

one of the authors (R.T.-T.), over the last two weeks of the study; they constitute the 

imaging population. The different subject populations are represented in Figure 2.  

 

 

 

Figure 2 : Visualization of the different subject populations used for training or 

testing the SmartPulse method. Some subjects from the training database were also 

used for clustering and pulse design. 23 subjects from the testing population received 

DCE-MRI while a pulse designer was present and formed the imaging population: 

images obtained with different techniques before and after injection were compared.  



Our study was approved by the institutional review board of Centre Hospitalier 

Universitaire Henri Mondor; informed consent was waived. Acquisitions were carried 

out on a MAGNETOM Skyra (Siemens Healthcare GmbH, Erlangen, Germany) 3T 

scanner, equipped with a two-channel pTx system used in clinical routine. Two 30-

channel coil arrays (anterior and posterior) were used for reception.  

 

3.2. B1
+ and Off-Resonance Mapping 

B1
+ maps were measured through a manufacturer automatic adjustment 

procedure, a free-breathing magnetization-prepared turbo FLASH sequence 

performed in about 30 seconds. They were the same maps as the ones used for 

patient-specific static RF shimming: 80° saturation, 8° excitation, 300-ms preparation 

time, TR = 5.0 s, 64×64 matrix, 7.0×7.0 mm² in-plane resolution, 32 6-mm-thick 

slices.  

Δf0 maps were needed for pulse design and FA simulations per se, but also to 

discriminate between water and fat voxels. Indeed, the pulses were intended for a 

fat-suppressed sequence, so only water voxels were considered for FA 

homogenization, leading to increased pulse performance in water as well as lower 

computation times. Assuming tissues do not mix, this was achieved with a two-echo 

FLASH acquisition acquired in one breath-hold (10 s) with ΔTE = 0.95 ms, 96×96 

matrix, 4.0×4.0 mm² resolution, 46 4.2-mm-thick slices.  Supporting Information 

Figure S1 depicts a typical transverse slice from a Δf0 abdominal map with its 

corresponding histogram, from which pure fat can be excluded. 

Pulse design was performed from a 3D mesh of 5-mm isotropic voxels, so 

both B1
+ and Δf0 maps were resampled to match that resolution.  

 

3.3. Pulses Compared 

For each subject of the testing population (Subjects 81 through 133), six pulse 

types were used:  

- pTF: TrueForm, the scanner default pre-set elliptically polarised pulse;  

- pTSS: manufacturer's patient-tailored static RF shimming with coefficients 

automatically calculated by the scanner based on the subject's B1
+ maps, but with 

a maximum voltage constrained to be less than or equal to that of TrueForm;  



- pTKT: patient-tailored kT-points dynamic RF shimming, computed offline;  

- pUKT: universal kT-points;  

- pSP: SmartPulse kT-points.  

Duration of hard pulses pTF and pTSS was set to 100 µs. Pulse design for other 

techniques is described below.  

 

3.3.1. Tailored and Universal KT-Points Pulse Design 

9-kT-point tailored pulses (pTKT) were designed, under SAR and hardware 

constraints, as done in ref. (10). With the goal of using them for DCE-MRI, a FA of 𝛼𝑇 = 11° was targeted, for a TR of 6 ms, and a 1300-µs pulse duration limit was set.  

For local SAR prediction, virtual observation points (VOP) (37) provided by the 

scanner for each of the subjects were used. It is assumed that the vendor performed 

VOP computations accounting for body models that include a wide range of 

anatomical variations, thus admissibly covering the most unfavorable cases in terms 

of SAR through the population studied in the present work. 

A universal pulse was also designed on Subjects 1 through 50, according to 

Eq. [2]. The pulse used throughout this study, pUKT, had five sub-pulses and was 770-

microsecond-long. This reduction in the number of sub-pulses as compared to the 

tailored pulses was empirically found as the right compromise between the number of 

degrees of freedom necessary to yield sufficiently uniform FA profiles and short pulse 

duration. The latter criterion indeed is important to accommodate for large Δf0 

variations across the population.  

All pulses were designed using the active-set constrained optimization 

algorithm from MATLAB R2016a (The Mathworks, Natick, MA) on a laptop computer 

(Intel Core i7-4712HQ CPU, NVIDIA Quadro K1100m GPU).   

 

3.3.2. SmartPulse Clustering and Pulse Design 

Clustering and SmartPulse design were based on Subjects 1 through NS,0 = 

50, as pictured in Figure 3, where matrices 𝓔 and 𝓓 (Eq. 3 and 4), obtained using 

tailored kT-points described above, are shown both before and after clustering.  

 



 

Figure 3 : Creation of three clusters from subjects 1 through 50. a. Matrix 𝓔 (Eq. [3]) 

of NRMSEs. b. Matrix 𝓓 of subject pairwise distance (Eq. [4]). c-d. Reorganised 

matrices 𝓔 and 𝓓 (respectively) using permutation 𝜋 output by agglomerative 

hierarchical clustering applied on 𝓓. Cluster structure becomes visible. e. Dendogram 

output by agglomerative clustering applied on 𝓓. Definition of 𝒞1, 𝒞2 and 𝒞3, the three 

clusters used for SmartPulse pulse design in this study. 

 

Agglomerative hierarchical clustering was done using Python v2.7 and the 

fastcluster package (36). Given the relatively small number of training data, a limited 

number of clusters (three) was chosen. Subject 24 behaved as an outlier and formed 

its own cluster, so it was manually assigned to cluster 𝒞3 (Figure 3e).  



Pulses SmartPulse 1 (pSP,1), SmartPulse 2 (pSP,2) and SmartPulse 3 (pSP,3) 

were created for cluster 𝒞1, 𝒞2 and 𝒞3 respectively, with the same 5-kT-point design 

parameters as for pUKT. Their optimized durations were 700 µs, 720 µs and 690 µs, 

respectively. Like Universal Pulses, SmartPulses have fixed RF amplitudes and were 

applied as such to every subject without voltage scaling.  

 

3.4. SmartPulse Subject Classification 

Ten features likely to influence abdominal composition and geometry, and 

therefore B1
+ distribution, were used for classification. These features were all 

extracted from data from the localizer (Figure 4), which is a compulsory sequence 

placed at the very beginning of the protocol and used to set up the field of view 

(FOV) of subsequent acquisitions. The localizer sequence used locally for liver 

imaging consists in 5 axial, 7 coronal and 11 sagittal T1-weighted 7.0-mm-thick slices 

of 0.8-mm in-plane resolution, all acquired in one breath-hold (TA = 17 s). Table 1 

gathers the features corresponding to the subjects shown in the figures of this study, 

as well as a population summary. Subject's age, sex (38,39), weight and height, 

given by the patients during registration, are compulsory data for any MRI 

examination on this scanner, and are available as DICOM fields, as specified in 

PS3.6: Data Dictionary (40). The global SAR measured by the machine during the 

localizer acquisition was also retrieved from DICOM fields. Subject's body mass 

index (BMI) was derived from height and weight. Additional manufacturer-specific 

metadata was available, among which the reference voltage, calibrated by the 

scanner for each subject, and defined as the voltage necessary for a 500-µs hard 

pulse to presumably create 90° average excitation in a 1-cm-thick transversal slice at 

magnet isocenter (41). In the default transmit configuration, this value is related to the 

B1
+ distribution within this slice. The subject's abdominal width and height (2 features) 

were estimated by fitting an ellipse inscribed in an axial slice, and retrieving its major 

and minor axes (respectively). The most inferior slice was picked to ensure the 

ellipse fitting was performed in the abdomen, not in the thorax. In this pilot study, 

however, for some patients, the localizer was really off-centered; in those cases, the 

ellipse fitting was performed on the central slice of the magnitude images associated 

with the Δf0 map. One last feature was derived from these measurements: the 

abdominal ratio (height over width).  



Table 1. Features extracted from the five subjects focused on in this study 

Subject 
number 

Age 
 

Sex Height Weight BMI Abdomen 
APa 

Abdomen 
LRa 

Abdomen 
ratioa 

Vref
b Localizer 

SARg
c 

 years  m kg kg·m-2 mm mm % V W·kg-1 

110 62 M 1.76 119 38.4 338 408 83 494 0.064 

113 40 F 1.65 65 23.9 198 285 69 430 0.075 

115 58 M 1.80 85 26.2 232 333 70 633 0.099 

127 65 M 1.70 79 27.3 237 353 67 571 0.087 

132 48 M 1.80 90 27.8 282 363 78 460 0.070 

All Ntest
d 

53  
(16) 

M: 26  
F: 27 

1.68  
(0.09) 

78  
(22) 

27.4  
(6.3) 

242  
(36) 

332  
(38) 

73  
(4.8) 

509  
(75) 

0.078  
(0.016) 

 

a Abdomen dimensions measured in the anterior-posterior (AP) and left-right (LR) directions, and ratio: AP/LR. 
b Reference voltage measured by the scanner: voltage required for a 500-µs hard pulse to perform 90° excitation.  

c Global specific absorption rate due to the localizer acquisition, as measured by the scanner.  
d For all columns except sex: Mean (SD) over the testing set (Ntest = 53). For sex: number of male (M) and female (F) subjects.  

 

 

 

 

Figure 4 : Features extracted from a "localizer" acquisition (compulsory sequence at 

the beginning of any protocol). Abdomen dimensions were measured by fitting an 

ellipse in one axial slice; more slices could be analysed with the help of automated 

patient and field of view positioning, allowing finer patient characterization. 

Additionally and with some post-processing, coronal and sagittal views could provide 

useful liver and spleen geometry information. TRA/COR/SAG= transverse/coronal/ 

sagittal planes; SAR= specific absorption rate; BMI= body mass index; reference 

voltage= voltage required for a 500-µs hard pulse to perform 90° excitation.  



The classification algorithm was implemented using Scikit-learn (42) and 

trained on the population of Ntrain = 80 subjects, among which where the 50 database 

subjects used to create pSP,1-3. Subjects from the clustering set were naturally 

labelled with the cluster they belong to. For the NS,1 = 30 additional training subjects, 

the effect of all three SmartPulses was simulated, and each subject was labelled 

according to the pulse yielding the lowest NRMSE. An extremely randomized trees 

algorithm (43) with 4000 trees and a support vector machine multiclass classifier 

(44,45) with a radial basis function kernel were joined by Scikit-learn’s “soft” vote and 

tuned by repeated stratified cross-validation on this set with 50 shuffles and 5 splits. 

Given that the extremely randomized trees and the nonlinear support vector machine 

algorithms accommodate redundant and/or uninformative features and given the 

relatively low dimensionality (10 features) as compared to the number of 

observations (80 subjects) of the problem, no feature selection was performed. 

Analysis of the importance of the features, provided in Supporting Information Table 

S1, further validates this choice; additionally, comparison with a “dummy” feature 

shows that all included features had an impact on the classification. Cross-validation 

accuracy was 85%.  

To assess classification performance, a prediction accuracy score was 

calculated on the test set, i.e. the proportion of subjects who were assigned the pulse 

yielding minimal NRMSE. A relaxed accuracy score was also determined, which 

regarded subjects as misclassified only if the NRMSE associated with their assigned 

pulse was 2% above the lowest possible.  

Finally, the time needed for feature extraction and pulse prediction on 

individual subjects from the test population was measured.  

 

3.5. Excitation Homogeneity 

FA maps obtained with each technique were simulated by numerical 

integration of Bloch’s equations based on actual B1
+ and Δf0 maps measured in 

subjects. FA average, coefficient of variation (CV) and NRMSE over water voxels in 

the volume of interest were estimated.  

In the SmartPulse case, all three pulses were tested, and the one yielding the 

lowest NRMSE was defined as pSP,ideal, and used to assess the performance of an 

"ideal" process with no prediction errors.  



Matched-pair Wilcoxon signed-rank tests were computed using the SciPy (46) 

stats package whenever FA NRMSE, CV or means of different techniques were 

compared. Reported p-values are two-sided significance levels; null hypothesis of 

equality of distribution medians was rejected for p less than 0.05.  

 

3.6. In Vivo Acquisitions 

Additional sequences were run on subjects from the imaging population to 

compare images obtained with pTF, pTSS, pTKT and the predicted pSP. To avoid 

disturbing the diagnostic DCE-MRI protocol, those sequences were only inserted 

prior to contrast agent injection and in late phase (Supporting Information Figure S2), 

similarly to what was done in Ref. (10).  

The sequence used was a T1-weighted 3D FLASH, with "quick fat-saturation" 

(47) to remove hypersignal due to the short T1 of fat that could mask contrast-agent-

related enhancement. Fat saturation was achieved with a fat-selective 90°-pulse of 

Gaussian shape in the TrueForm transmission mode, identical in all sequences. 

Sequence parameters were: FA = 11°, TR/TE = 6/3 ms, 320×220×72 matrix, 

1.2×1.2×3.5 mm3 resolution, GRAPPA factor 2 in the phase encoding direction 

(anterior-posterior), 80%/50% phase/slice resolution, partial Fourier factor of 6/8, 

505 Hz/pixel bandwidth. Acquisition time was less than 23 seconds. The matrix size 

and/or resolution was sometimes adjusted to accommodate larger patients while 

ensuring an acquisition time compatible with a breath-hold. Up to 33% oversampling 

was needed in the partition-encoding direction to avoid aliasing. Two 30-channel 

surface coils (anterior and posterior) were used for reception. Only the channels 

necessary to cover the FOV were selected; this was done automatically by the 

scanner, and allowed to keep oversampling to a minimum. The manufacturer's 

"Prescan Normalize" procedure was applied to all series in order to correct images 

for reception profile. However, this technique assumes homogeneous body coil 

reception, which is not the case in the abdomen as the corresponding reception 

profile is also affected by the B1 artifact; some inhomogeneity may therefore remain.  

Elastic registration was applied to all acquisitions using Siemens software. 

This allowed to calculate, for each technique, the contrast enhancement (CE) and the 

enhancement ratio (ER) defined as:  



CE = Slate − Sref [6] 

and ER = CESref × 100% [7] 

where Sref and Slate represent signal before and after injection, respectively. ER 

presents the advantage of completely removing the reception profile; however, it will 

artificially increase with FA overshoot, contrarily to CE.  

 

4. RESULTS 

 

4.1. SmartPulse Subject Classification 

Once the localizer sequence was acquired, the full process of feature 

extraction and SmartPulse prediction for one subject systematically took less than 

two seconds. Strictly speaking, the accuracy of the algorithm on test data was 74%. 

However, in many cases two pulses would perform similarly well, so the second best 

pulse may not necessarily be regarded as a "wrong" option. This is illustrated on 

Figure 5a where, for each testing subject, coloured circles represent the NRMSE of 

the different pSP options; filled circles correspond to the actual prediction. Relaxed 

accuracy (with a +2% NRMSE tolerance) was 81%. This is to be compared with the 

chance level for a three-class problem, namely 33%. 

 

4.2. Excitation Homogeneity 

Figure 5b compares SmartPulse to TrueForm, the default calibration-free 

pulse provided by the vendor. Universal pulse performance is also indicated. 

Considering the +2% tolerance, predicted pSP yielded lower NRMSE than pTF or was 

at least the best available pSP for 46 subjects (87%). Supporting Information Figure 

S3 gathers individual NRMSE results for all tested pulse designs. pSP performed 

consistently better than pTF, pTSS and pUKT. All were unsurprisingly outperformed by 

pTKT.  

 



 

 

Figure 5 : NRMSE simulation results for all test subjects, sorted in increasing 

TrueForm inhomogeneity. a. Performance of predicted SmartPulse (filled circles) 

compared to other SmartPulse options (hollow circles). Colors render the three 

different possible SmartPulse classes. For instance, for subject #129 (first entry), pSP 

= pSP,ideal = SmartPulse 3, while for subject #88 (fourth entry), pSP = SmartPulse 1 

and pSP,ideal = SmartPulse 3. b. Comparison of TrueForm, Universal and SmartPulse 

pulse designs. For each subject, only the predicted SmartPulse is shown, not all 

three possibilities. The dashed line indicates 25% NRMSE. Notice how subjects with 

a high TrueForm NRMSE are brought towards more acceptable values.   



In addition, pSP allowed 93% of subjects to get a NRMSE below 25% (dashed 

line on Figure 5), which is much more than pUKT (72% of subjects), pTSS (77%) and 

pTF (79%), but less than pTKT (100%). However, pSP,ideal would also have allowed 

100% of subjects below that threshold. Yet, in three cases, even the optimal 

SmartPulse (pSP,ideal) gave a lower performance than TrueForm: subject 96 (18% 

NRMSE for pSP,ideal, 14% for pTF), subject 103 (18% vs 15%) and subject 114 (18% vs 

13%).  

Sample average and SD of NRMSE, CV and mean of FA are available in 

Table 2, with more detail on their distribution in Figure 6. Average pSP NRMSE was 

16% (SD: 5%), lower than that of pTF, pTSS and pUKT, respectively 20% (SD: 9%, 

p = 0.002), 21% (SD: 10%, p = 0.0005) and 20% (SD: 5%, p < 0.0001). Other metrics 

allow deeper understanding of pulse performance: FA CV expresses sheer 

homogeneity, while FA average measures a possible FA bias as compared to the 

nominal value. With a mean CV of 13%, pSP outperformed all pulses but pTKT. 

Although pTSS yielded better homogeneity than pTF
 (p < 0.0001), it drifted further away 

from the FA target average: 9.6° (SD: 1.3°) and 9.3° (SD: 1.3°) respectively 

(p < 0.0001). This was not the case for pSP, which achieved better performance on 

FA average as well, with 10.7° (SD: 1.3°), and even 10.8° (SD: 0.8°) for pSP,ideal 

(p < 0.0001 in both cases).  

Finally, pSP was not too energy-demanding, with an average local SAR across 

the test population lying at 21% (SD: 4%) of the maximal authorized value. One may 

be concerned about implications of mispredictions in terms of SAR, but SmartPulse 

seems to behave favourably in this respect. Indeed, out of the 53 test subjects, the 

highest SAR encountered was 37%, considering all three pSP options.  

 

4.3. In Vivo Acquisitions 

Figures 7 and 8, and Supporting Information Figure S4 show examples of 

images acquired before contrast agent injection and in late phase, with CE and ER 

maps calculated according to Eq. [6] and [7].  

 

  



Table 2 : Detailed homogeneity assessment results of all tested pulses for the five subjects from 

Table 1. 

 Flip Angle NRMSE [%] 
Subject pTF pTSS pOTSS pTKT pUKT pSP pSP,ideal

a 

110 29 32 15 8 25 17 17 
113 19 20 14 8 18 12 12 
115 14 13 13 7 16 23 14 

127 14 14 12 7 17 15 15 
132 45 49 26 9 33 19 19 

All Ntest
b 20 (9) 21 (10) 14 (4) 8 (2) 20 (5) 16 (5) 14 (3) 

 Flip Angle Coefficient of Variation [%] 
Subject pTF pTSS pOTSS pTKT pUKT pSP pSP,idealpSP,best

a 

110 18 14 15 8 14 17 17 
113 15 15 14 8 12 12 12 

115 14 13 13 7 14 14 10 

127 14 13 12 7 13 11 11 
132 28 27 27 9 27 17 17 

All Ntest
b 16 (4) 15 (4) 14 (4) 8 (2) 14 (4) 13 (3) 13 (2) 

 Flip Angle Average [degrees] 

Subject pTF pTSS pOTSS pTKT pUKT pSP pSP,best
a 

110 8.2 7.7 10.4 10.9 8.6 10.5 10.5 

113 9.5 9.3 10.8 10.9 12.2 10.4 10.4 
115 10.8 10.4 10.8 10.9 9.9 12.9 9.9 

127 10.6 10.3 10.8 10.9 9.7 9.8 9.8 

132 6.4 5.9 10.0 10.9 8.1 9.7 9.7 
All Ntest

b 9.6  
(1.3) 

9.3  
(1.3) 

10.7  
(0.2) 

10.9  
(0.0) 

10.7  
(1.8) 

10.7  
(1.3) 

10.8  
(0.8) 

 

pTF = TrueForm; pTSS = patient-tailored static RF shimming calculated by the scanner; pOTSS = optimal patient-tailored static RF 
shimming; pTKT = tailored kT-points; pUKT = universal kT-points; pSP = predicted SmartPulse; pSP,ideal = optimal SmartPulse. 
a pSP,ideal values are in bold in case of misprediction (when different from pSP). 
b For each metric and each pulse: Mean (SD) over the testing set. Ntest = 53. 

 

 

Figure 6 : Distribution of the different metrics used to assess pulse performance: pTF = TrueForm; 

pTSS = patient-tailored static RF shimming calculated by the scanner; pOTSS = optimal patient-tailored 

static RF shimming; pTKT = tailored kT-points; pUKT = universal kT-points; pSP = predicted SmartPulse; 

pSP,ideal = optimal SmartPulse. Green triangle = mean value; orange line = median; edges of the box = 

25th (Q1) and 75th (Q3) percentiles; whiskers = 5th and 95th percentiles; circles = outliers. a. Flip angle 

(FA) NRMSE; the dashed line corresponds to the 25% threshold. b. FA coefficient of variation. c. FA 

average; the dashed line corresponds to the 11° target. 



 

Figure 7 : From left to right: pre-injection (reference), post-injection (late phase), 

calculated contrast enhancement (CE, Eq. [6]) and enhancement ratio (ER, Eq. [7]) 

obtained with four pulse techniques applied to a "difficult" subject (TrueForm 

NRMSE over 25%, Figure 5). See Table 1 for patient characteristics and Table 2 for 

performance metrics. pTF: TrueForm; pTSS: patient-tailored static RF shimming; pTKT: 

patient-tailored kT-points; pSP: SmartPulse attributed to the subject. Substantial 

shading is visible on anatomical, CE and ER images with both pTF and pTSS. Two 

hepatocellular carcinomas (blue arrowheads) are barely visible. T1 contrast is 

retrieved with both pTKT and pSP, and no shading remains in CE nor ER. Additional 

inhomogeneity can be noticed on anatomical and CE images, due to coil array 

receiving profile; only ER images are completely free of it. 

 

Figure 7 and Supporting Information Figure S4a focus on two subjects whose 

TrueForm (pTF) NRMSE was above 25%. In both cases, using pTF and tailored static 

RF shimming (pTSS) pulses, the enhancement and ER maps lacked intensity and 

homogeneity.  This artifact was largely alleviated with tailored kT-points (pTKT) and 

SmartPulse (pSP). For subject 132, T1 contrast was quite poor with pTF and pTSS. 



Some lesions (yellow arrowheads) were harder to see and less delineated than with 

pSP. Scarcely no difference was visible between pSP and pTKT images or 

enhancement maps, despite sensible disparity in NRMSE.  

In Figure 8 and Supporting Information Figure S4b, one can compare the 

different pulses on two "easier" cases: subject 113 (pTF NRMSE of 19%) and subject 

127 (pTF NRMSE of 14%). Here, all techniques yielded similar results, with no 

evidence of transmit profile inhomogeneity. Yet, some slight localized enhancement 

underestimations remained on pTF and pTSS acquisitions (arrowheads), but not with 

pTKT nor pSP.  

 

 

Figure 8 : From left to right: pre-injection (reference), post-injection (late phase), 

calculated contrast enhancement (CE) and enhancement ratio (ER) obtained with 

four pulse techniques applied to a "standard" subject (TrueForm NRMSE below 

25%, Figure 5). See Table 1 for patient characteristics and Table 2 for performance 

metrics. pTF: TrueForm; pTSS: patient-tailored static RF shimming; pTKT: patient-

tailored kT-points; pSP: SmartPulse attributed to the subject. Arrowhead points out 

lack of CE in segment 8 (Couinaud's liver segment classification), also noticeable in 

ER maps, for both pTF and pTSS. This artifact is absent from pTKT and pSP maps, which 

look very much alike. 



Finally, Supporting Information Figure S4c shows an example of SmartPulse 

misprediction, with subject 115. The difference between pTF and pSP was clear on ER 

maps and on the signal level of native images. However, all images showed 

reasonable inhomogeneity. Indeed, one can see from Table 2 that NRMSE was 14% 

with pTF and 23% with pSP, but CV values are the same. The main difference lies in 

the fact that the mispredicted pSP overshot the average FA in subject 115, while pTF 

was close to the target. Note however that pSP,ideal showed much better behaviour 

than pSP, so that an ideal SmartPulse decision would have solved the problem here.  

Bloch-equation simulations of FA maps corresponding to the RF pulses played 

to acquire the abdominal images shown in Figures 7, 8 and Supporting Information 

Figure S4 are available in Supporting Information Figure S5.  

 

5. DISCUSSION AND CONCLUSION 

 

5.1. Results Summary  

The SmartPulse process as presented here provided correct pulse 

assignments in 87% of the cases. NRMSE simulation results were generally better 

with pSP than either with pTF, pTSS and pUKT. This is even more salient when 

considering perfect predictions (pSP,ideal). SmartPulse was especially convincing in 

tempering inhomogeneity in the most difficult subjects. Moreover, these results are 

obtained almost instantly after completion of the introducing localizer sequence. 

Comparing actual acquisition results brought out that SmartPulse does not 

produce images worse than tailored kT-points pulse design, despite simulations 

favourable to the latter. Due to their "universal" nature, SmartPulse kT-points may be 

more robust to patient motion during the acquisition or between calibration and DCE 

than their tailored counterpart, not forgetting that B1
+ maps are acquired in free-

breathing, and thus generally do not correspond to breath-hold positions of subjects. 

Bias in CE and ER was avoided by randomly assigning sequence order for each 

subject. Additionally, all four acquisitions are performed in the late phase, within a 

time interval of 4-6 min after injection, in which there should be no significant 

variation in gadolinium uptake.    



Better results could be obtained by further improvement of the two main 

aspects of this work: subject classification and pulse performance.  

 

5.2. Improving Subject Classification 

The difference between training and testing accuracy (85% in cross-validation, 

versus 74%) indicates model overfitting (48). To reduce this effect, a larger training 

set would be advisable. Additional or/and different classification tools could also be 

investigated, but this alone may not solve this issue entirely.  

Firstly, the way additional subjects are labelled for training and testing – i.e. 

selecting the pulse yielding the lowest NRMSE – is different from the way clusters are 

created. Typical classification errors occur between pulses with similar NRMSE on a 

given subject, so that a non-optimal choice leading to lower prediction accuracy may 

not result in significant NRMSE degradation. This is why a tolerance margin of 2% on 

NRMSE was used to further analyse classification performance. The fact that 30 of 

the training subjects were not part of the clustering base and were therefore labelled 

differently is a particularity of this study, due to the chronology of acquisitions, to the 

algorithm tuning steps and to the limited size of the database, but is not a 

requirement of the SmartPulse method itself.  

Secondly, there were a few imprecisions in the features used for extraction. 

Subject's height and weight were provided by the patients themselves, not measured 

on site, thus leading to slight approximations. Most importantly, abdomen 

measurements could be much improved by automating localizer placement. This 

would ensure consistent localizer axial slice locations in the body, and would allow 

using more than one slice for abdominal dimensions estimation. Another refinement 

would be to analyse other slice orientations, such as the coronal view – which is 

already acquired (Figure 4).  

 

5.3. Improving Pulse Performance 

Flawless class prediction would make NRMSE of all subjects in a 9%–21% 

range, which should be associated with sufficient excitation uniformity in most – if not 

all – patients. Still, those results could be improved. In some cases (subjects 96, 103, 

114), pSP,ideal NRMSE was slightly higher than that of pTF. Also, because of an 



inadequate average FA, some subjects showed relatively high NRMSE despite 

having low CV.  

This issue could be addressed by defining more (finer) clusters. This would 

require the acquisition of more subjects in order to train the classifier to discriminate 

between even more categories.  

An interesting addition to the current implementation of SmartPulse would be 

to train a regression model to infer the average FA that the predicted pulse is 

expected to yield on a given subject, and to adapt the pulse's amplitude accordingly. 

Preliminary works on this aspect are ongoing and seem promising, but indicate that 

such a regression model again would require more training data to make precise 

average FA estimates.  

At last, this study did not investigate optimized FA homogenization in the fat, 

to ensure complete uniform fat suppression, as the default TrueForm excitation mode 

was chosen for this process. As residual partial fat saturation artifacts were observed 

in some instances, it is reasonable to believe that homogenizing the 90° fat FA with 

dedicated SmartPulses would probably help get rid of those artifacts. 

 

5.4. Towards a larger database 

For a proof of concept, acquiring Ntrain = 80 subjects was deemed sufficient. 

However, as suggested in the above subsections, building a much larger database 

would improve A.I. performance. This is not a fundamental issue. It is merely a 

question of financial means and time impacting acquisition and computing. For 

computing, the most demanding step is the calculation of NS,0
2 NRMSE’s required to 

build the clustering matrix, involving running a Bloch simulator for NS,0 tailored pulses 

applied to NS,0 individuals. Subsequently the agglomerative hierarchical clustering 

with complete linkage may generate very small clusters as NS,0 increases. In that 

case, an alternative may be a k-means clustering process.  

For classification, more training subjects will translate into a reduction of the 

model variance, i.e. the test performance will become closer to the training 

performance. This comes with little cost in extra computing time. 

 



5.5. Perspectives 

From the user’s point of view, the proposed approach is fast and reliable as it 

gets rid of all calibrations and optimizations often deemed necessary when using 

multi-transmit RF coils. This would prove even more useful for ultra-high field body 

MRI, where the increased number of transmit channels used to perform RF shimming 

makes calibration and pulse design even more tedious and challenging. Interestingly 

also, in the opposite situation, SmartPulse could be used on single-channel 

systems (49), where patient-tailored RF shimming does not exist.  

The SmartPulse approach with underlying kT-points pulses is readily 

implementable for nonselective preparation and 3D imaging to tackle B1
+ 

inhomogeneity in T1-, T2*-, T2- (24,50), or proton-density-weighted imaging. As 

universal selective pulses, it could also be extended to fast-kz spokes to achieve 

slab- or slice-selective behaviours and thereby tackle full protocol optimization.  

At last, whether SmartPulse could be interesting for organs with more regular 

geometries such as brains is a relevant question (at UHF). Indeed, provided the 

classification process can be rendered robust, SmartPulse is always expected to 

perform better than Universal Pulses as the latter are a particular instance of 

SmartPulse, with a single cluster. Going to an increasing number of clusters means 

more and more tailored pulses, therefore better performance. Nevertheless, more 

investigation would be needed to determine how reliable the classification process 

could be depending on the organ of interest. 

 

5.6. Conclusion 

Universal pulse design does not suffice to homogenize excitation in 3T 

abdomen imaging due to the large variety of abdominal morphology and constitution 

across the whole population. Once implemented, the proposed method provides a 

simple and efficient trade-off between tailored and full universal pulse design 

approaches. Smartpulse performed equally well or better than universal pulses or 

tailored transmit strategies in most difficult subjects without sacrificing easier ones.  

In a dual transmit-channel system, for every single MRI examination, the use 

of SmartPulses in routine will eventually save between 1 and 2 minutes of B1
+/B0 

calibration and tailored RF shimming or pulse design. Even though this gain may 



seem like a small progress with regards to the efforts put into building and exploiting 

a subject database, proof of concept was brought that A.I. can be used efficiently to 

yield “off-the-shelf” multiple-transmit RF pulses suitable for everyone. The 

SmartPulse approach should have a much larger impact at 7T and higher, where 8 to 

16 channels are currently proposed by manufacturers.  

 

ACKNOWLEDGEMENTS  

 

This work is dedicated to the memory of Professor Alain Rahmouni, who 

passed away on January 26th 2018. Major figure of French radiology, internationally 

respected, Professor Rahmouni developed an advanced MR teaching and research 

program at CHU Henri Mondor imaging department. Bridging early technological 

innovations in MR to clinical practice was always his ambition. This research study is 

one of the many projects he supported in this field. Professor Alain Rahmouni will be 

remembered by all the authors of this manuscript, and many more. 

The authors wish to thank all the MRI technicians of Henri Mondor Hospital for 

their patience and understanding, as well as Lisa Leroi and Gaël Saib for their help in 

coining a name for the proposed method.  

This project was funded by CEA’s Programme Transversal, Technologies pour 

la Santé (Transversal Programme for Health Technologies).  

 

REFERENCES  

1. Willinek WA, Schild HH. Clinical advantages of 3.0 T MRI over 1.5 T. European 

journal of radiology. 2008;65(1):2–14. 

2. Bernstein MA, Huston J, Ward HA. Imaging artifacts at 3.0T. Journal of Magnetic 

Resonance Imaging. 2006;24(4):735–746. 

3. Padormo F, Beqiri A, Hajnal JV, Malik SJ. Parallel transmission for ultrahigh-field 

imaging. NMR in Biomedicine. 2016;29(9):1145–1161. 

4. Kukuk GM, Gieseke J, Nelles M, König R, Andersson M, Muschler E, Mürtz P, 

Stout J, Nijenhuis M, Träber F, et al. Clinical liver MRI at 3.0 Tesla using parallel 

RF transmission with patient-adaptive B1 shimming. In: Proc. Intl. Soc. Mag. 



Reson. Med. Vol. 17. 2009. p. 119. 

http://cds.ismrm.org/protected/09MProceedings/files/00119.pdf 

5. Brink WM, Versluis MJ, Peeters JM, Börnert P, Webb AG. Passive radiofrequency 

shimming in the thighs at 3 Tesla using high permittivity materials and body coil 

receive uniformity correction. Magnetic Resonance in Medicine. 2015;76(6):1951–

1956. 

6. Franklin K M, Dale B M, Merkle E M. Improvement in B1-inhomogeneity artifacts in 

the abdomen at 3T MR imaging using a radiofrequency cushion. Journal of 

Magnetic Resonance Imaging. 2008;27(6):1443–1447. 

7. Leroi L, Vignaud A, Sabouroux P, Georget E, Larrat B, Enoch S, Tayeb G, Bonod 

N, Amadon A, Le Bihan D, et al. B1+ homogenization at 7T using an innovative 

meta-atom. In: Proc. Intl. Soc. Mag. Reson. Med. Vol. 24. 2016. p. 3531. 

8. Nistler J, Renz W. Method for controlling a magnetic resonance system. 2010 Dec 

7 [accessed 2016 Nov 4]. http://www.google.ch/patents/US7847554 

9. Malik SJ, Keihaninejad S, Hammers A, Hajnal JV. Tailored excitation in 3D with 

spiral nonselective (SPINS) RF pulses. Magnetic Resonance in Medicine. 

2012;67(5):1303–1315. 

9.  Tomi-Tricot R, Gras V, Mauconduit F, et al. B1 artifact reduction in abdominal 

DCE-MRI using kT-points: First clinical assessment of dynamic RF shimming at 

3T. J Magn Reson Imaging. 2018;47(6):1562-1571. doi:10.1002/jmri.25908 

11. Saekho S, Yip C, Noll DC, Boada FE, Stenger VA. Fast-kz three-dimensional 

tailored radiofrequency pulse for reduced B1 inhomogeneity. Magnetic Resonance 

in Medicine. 2006;55(4):719–724. 

12. Yip C-Y, Fessler JA, Noll DC. Advanced three-dimensional tailored RF pulse for 

signal recovery in T2*-weighted functional magnetic resonance imaging. Magnetic 

Resonance in Medicine. 2006;56(5):1050–1059. 

13. Grissom WA, Khalighi M-M, Sacolick LI, Rutt BK, Vogel MW. Small-tip-angle 

spokes pulse design using interleaved greedy and local optimization methods. 

Magnetic resonance in medicine. 2012;68(5):1553–1562. 

14. Wu X, Schmitter S, Auerbach EJ, Uğurbil K, Van de Moortele P-F. Mitigating 

transmit B1 inhomogeneity in the liver at 7T using multispoke parallel transmit RF 

pulse design. Quantitative Imaging in Medicine and Surgery. 2014;4(1):4–10. 

15. Cloos MA, Boulant N, Luong M, Ferrand G, Giacomini E, Le Bihan D, Amadon A. 

kT-points: Short three-dimensional tailored RF pulses for flip-angle 



homogenization over an extended volume. Magnetic Resonance in Medicine. 

2012;67(1):72–80. 

15. Amadon A, Cloos MA. Method and apparatus for compensating for B1 

inhomogeneity in magnetic resonance imaging by nonselective tailored RF pulses. 

Patent WO2011128847A1, October 2011. 

17. Katscher U, Börnert P, Leussler C, van den Brink JS. Transmit SENSE. Magnetic 

Resonance in Medicine. 2003;49(1):144–150. 

18. Zhu Y. Parallel excitation with an array of transmit coils. Magnetic Resonance in 

Medicine. 2004;51(4):775–784. 

19. Geppert C, Nistler J, Renz W, Panagiotelis I, Speckner T. Reduced B1-

inhomogeneities in breast MRI using optimized RF excitation. In: Proc. Intl. Soc. 

Mag. Reson. Med. Vol. 16. 2008. p. 2726. 

20. Cloos MA, Boulant N, Luong M, Ferrand G, Giacomini E, Hang M-F, Wiggins CJ, 

Le Bihan D, Amadon A. Parallel-transmission-enabled magnetization-prepared 

rapid gradient-echo T1-weighted imaging of the human brain at 7T. NeuroImage. 

2012;62(3):2140–2150. 

21. Deniz C M, Alon L, Brown R, Zhu Y. Subject- and resource-specific monitoring 

and proactive management of parallel radiofrequency transmission. Magnetic 

Resonance in Medicine. 2015;76(1):20–31. 

22. Gras V, Vignaud A, Amadon A, Bihan DL, Boulant N. Universal pulses: A new 

concept for calibration-free parallel transmission. Magnetic Resonance in 

Medicine. 2017;77(2):635–643. 

23. Gras V, Boland M, Vignaud A, Ferrand G, Amadon A, Mauconduit F, Bihan DL, 

Stöcker T, Boulant N. Homogeneous non-selective and slice-selective parallel-

transmit excitations at 7 Tesla with universal pulses: A validation study on two 

commercial RF coils. PLOS ONE. 2017;12(8):e0183562. 

24. Gras V, Mauconduit F, Vignaud A, Amadon A, Le Bihan D, Stöcker T, Boulant N. 

Design of universal parallel-transmit refocusing kT -point pulses and application to 

3D T2 -weighted imaging at 7T. Magnetic Resonance in Medicine. 2018;80(1):53–

65. 

25. Beqiri A, Hoogduin H, Sbrizzi A, Hajnal JV, Malik SJ. Whole-brain 3D FLAIR at 

7T using direct signal control. Magnetic Resonance in Medicine. 2018;80(4):1533–

1545. 



26. Mooiweer R, Hajnal JV, Malik SJ. A single-channel universal SPINS pulse for 

calibration-free homogeneous excitation without PTX. In: Proc. Intl. Soc. Mag. 

Reson. Med. Vol. 25. 2017. p. 390. 

27. Ianni Julianna D., Cao Zhipeng, Grissom William A. Machine learning RF 

shimming: Prediction by iteratively projected ridge regression. Magnetic 

Resonance in Medicine. 2018;80(5):1871–1881. 

28. Mirfin C, Glover P, Bowtell R. Optimisation of parallel transmission 

radiofrequency pulses using neural networks. In: Proc. Intl. Soc. Mag. Reson. 

Med. Vol. 26. Paris, France; 2018. p. 3388. 

29. Kierans AS, Leonardou P, Shaikh F, Semelka RC. Body MR imaging: Sequences 

we use and why. Appl Radiol. 2009;38(5):7–12. 

30. Goshima S, Kanematsu M, Kondo H, Shiratori Y, Onozuka M, Moriyama N, Bae 

KT. Optimal Acquisition Delay for Dynamic Contrast-Enhanced MRI of 

Hypervascular Hepatocellular Carcinoma. American Journal of Roentgenology. 

2009;192(3):686–692. 

31. Maniam S, Szklaruk J. Magnetic resonance imaging: Review of imaging 

techniques and overview of liver imaging. World Journal of Radiology. 

2010;2(8):309–322. 

32. Gras V, Luong M, Amadon A, Boulant N. Joint design of kT-points trajectories 

and RF pulses under explicit SAR and power constraints in the large flip angle 

regime. Journal of Magnetic Resonance. 2015;261:181–189. 

33. Tomi-Tricot R, Gras V, Boulant N, Vignaud A, Amadon A. kT-Points Pulse Design 

at 7T: Optimization of Pulse and Sub-Pulse Durations. In: Magnetic Resonance 

Materials in Physics, Biology and Medicine. Vol. 29. Vienna, AT; 2016. p. 247–

400. http://link.springer.com/10.1007/s10334-016-0570-3 

34. Setsompop K, Wald LL, Alagappan V, Gagoski BA, Adalsteinsson E. Magnitude 

least squares optimization for parallel radio frequency excitation design 

demonstrated at 7 Tesla with eight channels. Magnetic Resonance in Medicine. 

2008;59(4):908–915. 

35. Hoyos-Idrobo A, Weiss P, Massire A, Amadon A, Boulant N. On variant strategies 

to solve the magnitude least squares optimization problem in parallel transmission 

pulse design and under strict SAR and power constraints. IEEE Transactions on 

Medical Imaging. 2014;33(3):739–748. 



36. Müllner D. fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R 

and Python. Journal of Statistical Software. 2013;53(9):1–18. 

37. Eichfelder G, Gebhardt M. Local specific absorption rate control for parallel 

transmission by virtual observation points. Magnetic Resonance in Medicine. 

2011;66(5):1468–1476. 

38. Blaak E. Gender differences in fat metabolism. Current Opinion in Clinical 

Nutrition & Metabolic Care. 2001;4(6):499. 

39. Jackson AS, Stanforth PR, Gagnon J, Rankinen T, Leon AS, Rao DC, Skinner 

JS, Bouchard C, Wilmore JH. The effect of sex, age and race on estimating 

percentage body fat from body mass index: The Heritage Family Study. 

International journal of obesity. 2002;26(6):789. 

40. The National Electrical Manufacturers Association. Digital Imaging and 

Communication in Medicine (DICOM). NEMA PS 3 Supplement 23 Structured 

Reporting. 1997 [accessed 2018 Apr 18]. https://ci.nii.ac.jp/naid/10003989193/ 

40. Feiweier T, Heubes P, Speckner T. Method and magnetic resonance system for 

adjustment of the field strength of RF pulses. Patent US20070145975A1, August 

2009. 

42. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, 

Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: Machine learning in Python. 

Journal of machine learning research. 2011;12(Oct):2825–2830. 

43. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning. 

2006;63(1):3–42. 

44. Cortes C, Vapnik V. Support-vector networks. Machine Learning. 

1995;20(3):273–297. 

45. Wu T-F, Lin C-J, Weng RC. Probability estimates for multi-class classification by 

pairwise coupling. Journal of Machine Learning Research. 2004;5(Aug):975–1005. 

46. Jones E, Oliphant T, Peterson P, others. SciPy: Open source scientific tools for 

Python. 2001. 

47. Le Y, Kroeker R, Kipfer HD, Lin C. Development and evaluation of TWIST Dixon 

for dynamic contrast-enhanced (DCE) MRI with improved acquisition efficiency 

and fat suppression. Journal of Magnetic Resonance Imaging. 2012;36(2):483–

491. 

48. Domingos P. A few useful things to know about machine learning. 

Communications of the ACM. 2012;55(10):78. 



49. Eggenschwiler F, O’Brien KR, Gallichan D, Gruetter R, Marques JP. 3D T 2-

weighted imaging at 7T using dynamic kT-points on single-transmit MRI systems. 

Magnetic Resonance Materials in Physics, Biology and Medicine. 2016;29(3):347–

358. 

50. Massire A, Vignaud A, Robert B, Le Bihan D, Boulant N, Amadon A. Parallel-

transmission-enabled three-dimensional T2-weighted imaging of the human brain 

at 7 Tesla: 3D T2-Weighted Brain Imaging at 7T. Magnetic Resonance in 

Medicine. 2015;73(6):2195–2203. 

51. Tomi-Tricot R, Gras V, Mauconduit F, Legou F, Boulant N, Gebhardt M, Ritter D, 

Kiefer B, Zerbib P, Rahmouni A, et al. B1 artifact reduction in abdominal DCE-MRI 

using kT-points: First clinical assessment of dynamic RF shimming at 3T. Journal 

of Magnetic Resonance Imaging. 2018;47(6):1562–1571. 

  



SUPPORTING INFORMATION 

 

SUPPORTING INFORMATION TABLE S1. Contribution of each feature in the 

classification, as reported by the random forest part of the classification algorithm 

after training (in decreasing order of importance). Given the dimension of the 

problem, feature selection should not be a concern. It can be interesting, however, to 

analyse the importance of features in the classification process. Not surprisingly, 

reference voltage stands out as the most important feature as it is supposed to 

summarize the amount of energy required to reach a given level of spin excitation. 

More surprising, gender turns out to be the next most important feature. Indeed, 

women tend to have a higher percentage of body fat than men, and fat distribution is 

sex-dependent (38). Since fat and water have different conductivities and dielectric 

constants, any information related to fat percentage and location is interesting to 

estimate RF behavior. Fat generally tends to alleviate B1 inhomogeneity contrary to 

muscle tissue. It was also shown (39) that not only gender but also age have an 

influence on fat percentage – and its relation to BMI. Apart from the reference voltage 

and the gender, which lie above the rest, features are quite balanced in terms of 

information provided. In an additional experiment, a “dummy” feature was added, 

consisting of a random permutation of the age over all training subjects, so as to 

evaluate the noise level. This was repeated 20 times (with different permutations): 

the importance of the lowest-ranking one, age, was 5% (SD: 0.1%), compared to 4% 

(SD: 1%) for the dummy one: all features were above noise level.  

 

Feature 
Importance 
(%) 

Reference voltage 19 

Gender 14 

Weight 11 

Localizer global SAR 11 

Height 10 

Abdominal height 8 

Abdominal width 8 

BMI 7 

Abdominal ratio 6 

Age 6 

 



 

 

SUPPORTING INFORMATION FIGURE S1. Typical off-resonance map (transverse 

slice) and associated histogram obtained in the abdomen (mostly liver). Next we 

describe how these were obtained. The assignment of a voxel to a Δf0 value was 

obtained from the phase evolution between two gradient echoes separated by ΔTE = 

0.95 ms. Resonance frequencies could then be distinguished in the [-530 Hz; +530 Hz] 

range without phase wrapping. Now from the raw phase difference, some overlap may 

occur between the lower-frequency tail of the fat peak and the higher-frequency tail of 

the water peak. Some basic unwrapping was then performed, exploiting the 

asymmetrical nature of the histogram, with the water peak centred around 0 Hz and 

the fat peak around -440 Hz. We considered it was very unlikely for a higher-tail water 

voxel to be misidentified as a lower-tail fat voxel. On the other hand, it was not rare to 

see the lower tail of fat wrapping up at the other end of the spectrum. We established 

a threshold, at about +400 Hz depending on individuals, above which all voxels were 

regarded as wrapped-up fat and therefore unwrapped. For each subject, we could then 

obtain a frequency offset histogram as depicted here. Then to exclude pure fat from 

the volume of interest retained for pulse design, we set a threshold at -250 Hz. 

Obviously, this may not perfectly discriminate fat from water voxels affected by 

susceptibility-induced frequency offsets, but this threshold was found conservative 

enough: simulations show that the loss of contrast between fat and water due to poor 

fat saturation is not rendered worse with kT-points excitation than with the TrueForm 

excitation. 

 

 

 

 



 

SUPPORTING INFORMATION FIGURE 

S2. Insertion of our sequences (light 

grey) within the routine liver MRI protocol 

(white). Injected sequences relevant to 

this study were acquired at the far end of 

the acquisition protocol to preserve 

diagnostics routine timing. Data from the 

breath-hold localizer was used for subject 

classification. 

✽ The order of our sequences was 

randomly assigned.  

† The calibration procedure was needed 

for flip angle simulations and for tailored 

pulse design, not for SmartPulse nor 

TrueForm. It included automated 

manufacturer B1+ mapping and a 

custom-made breath-hold Δf0 map for 

proper water fat resolution. 

Abbreviations: GRE = gradient-recalled 

echo; TSE = turbo spin-echo; SPACE = 

sampling perfection with application 

optimized contrasts using different flip 

angle evolutions; IVIM = intravoxel 

incoherent motion; DWI= diffusion-

weighted imaging; EPI = echo-planar 

imaging; SVS = single-voxel 

spectroscopy; STEAM = stimulated echo 

acquisition mode; DCE-MRI = dynamic 

contrast-enhanced MRI; TRA = 

transverse plane; COR = coronal plane. 

 

 

 

 

 



 

 

SUPPORTING INFORMATION FIGURE S3. Complementary to Figure 5a: 

comparison of all simulated pulse designs. Normalized root-mean-square error 

from the target flip angle (NRMSE) simulation results for all test subjects, sorted in 

increasing TrueForm inhomogeneity. For each subject, only the predicted 

SmartPulse is shown. The dashed line indicates 25% NRMSE. Notice how subjects 

with a high TrueForm NRMSE are brought towards more acceptable values with 

SmartPulse. 

 



 

 

SUPPORTING INFORMATION FIGURE S4. Additional in vivo acquisition results. 

From left to right: pre-injection, post-injection, calculated contrast enhancement (CE) 

and enhancement ratio (ER). pTF: TrueForm; pTSS: patient-tailored static RF 

shimming; pTKT: patient-tailored kT-points; pSP: SmartPulse attributed to the subject. 

See Table 1 for patient characteristics and Table 2 for performance metrics.  

a. “Difficult” subject (pTF NRMSE over 25%), complementing Figure 7. Notice the 

lack of ER in liver segment 5 (Couinaud's liver segment classification) with pTF 

(notched arrowhead) also visible on the CE image. pTSS results in a more 

homogeneous ER, but at the expense of overall enhancement (full arrowheads). ER 

is improved with pTKT, and even more with pSP. 



 

 

SUPPORTING INFORMATION FIGURE S4 (continued) : 

b. “Standard” subject (pTF NRMSE below 25%), complementing Figure 8. All 

techniques perform similarly, except for a slight CE and ER abnormality (arrowhead) 

with pTF. c. Example of a rare case where predicted pSP was not at all optimal, yielding 

23% NRMSE, compared to 14% for pTF and pSP,ideal. Homogeneity is the same for both 

pulses, but pSP overshoots the flip angle target, hence the overall excessive ER. 

 



 

 

SUPPORTING INFORMATION FIGURE S5. For all subjects shown in the different 

figures of this work: superposition of acquired post-injection images and simulated 

flip angle maps obtained with four pulse techniques: TrueForm (pTF), patient-tailored 

static RF shimming (pTSS), patient-tailored kT-points (pTKT) and SmartPulse (pSP). 

Note that Subject 115 (Sup. Fig. S4) was misclassified by the algorithm: the pulse 

attributed was not the best possible one, here resulting in a flip angle overshoot.  


