
SmartStream: Towards Byzantine Resilient Data Streaming

Johannes Köstler
Hans P. Reiser

jk@sec.uni-passau.de
hr@sec.uni-passau.de
University of Passau

Gerhard Habiger
Franz J. Hauck

gerhard.habiger@uni-ulm.de
franz.hauck@uni-ulm.de

Ulm University

ABSTRACT

Data streaming platforms connect heterogeneous services through

the publish-subscribe paradigm. Currently available platforms pro-

vide protection against crash faults, but are not resistant against

Byzantine faults like arbitrary hardware faults and intrusions. State

machine replication can provide this protection, but the higher

resource requirements and the more elaborated communication

primitives usually result in a higher overall complexity and a non-

negligible performance degradation. This is especially true for data

streaming if the default textbook approach of integrating the ser-

vice into a replicated state machine is followed without further

adaptions. The standard state management with state logs and

snapshots and without any partitioning scheme limits both per-

formance and scalability in a way those systems become unusable

in practice. That is why we propose SmartStream, a topic-based

Byzantine fault-tolerant data streaming platform that harmonizes

the competing concepts of both systems and leverages the speci�c

characteristics of data streaming, namely the append-only seman-

tics of the application state and its partitionable structure. We show

its e�ectiveness in a prototype implementation and evaluate its

performance. The evaluation results show a moderate drop in sys-

tem throughput when compared to state-of-the-art data streaming

platforms like Apache Kafka, but reasonable overall performance

considering the stronger resilience guarantees.

CCS CONCEPTS

• Computer systems organization → Reliability; • Comput-

ingmethodologies→ Distributed algorithms; • Software and its

engineering → Message oriented middleware;

KEYWORDS

Byzantine fault tolerance, streaming platform, publish-subscribe,

state machine, replication, message broker

ACM Reference Format:

Johannes Köstler, Hans P. Reiser, Gerhard Habiger, and Franz J. Hauck.

2021. SmartStream: Towards Byzantine Resilient Data Streaming. In The

36th ACM/SIGAPP Symposium on Applied Computing (SAC ’21), March 22–26,

2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3412841.3441904

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8104-8/21/03.
https://doi.org/10.1145/3412841.3441904

1 INTRODUCTION

Stream processing platforms are the backbone of many modern

applications. They operate at the heart of message-oriented middle-

ware components as well as enterprise messaging systems, service-

oriented architectures, distributed cloud applications and IoT sys-

tems. Such platforms utilize the publish-subscribe paradigm to

enable loosely coupled communication architectures and to achieve

a high degree of scalability. In contrast to classical client-server

communication where messages are passed directly, in publish-

subscribe communication the messages are mediated through bro-

ker components. Independent publishers can give information into

the message stream, and independent subscribers can extract infor-

mation from it for further processing. Since these platforms provide

a core functionality for so many systems, a reliable and scalable

execution is fundamentally important.

Available data streaming platforms have recently become in-

creasingly popular, e.g., Apache Kafka and Amazon Kinesis. Both

use passive replication and sharding to achieve reliability and scal-

ability. Backup nodes can take over for the main node of the same

shard. A single node is typically involved in multiple shards in

mostly di�erent roles. The system is centrally organized—there is a

central point where all subscriptions and assignments are managed.

This kind of architecture can usually be implemented at reasonable

resource costs and without substantial degradation of performance.

At the same time, however, the e�ectiveness of these measures in

terms of dependability falls short of what is possible, as only crash

faults can be tolerated and the delays introduced by fault detec-

tion and recovery remain high. With the help of active replication,

recovery times in the event of faults could be reduced. And, on

the basis of a Byzantine fault model, active replication can also

provide protection from corrupted messages and data introduced

by unreliable hardware components or by attackers controlling a

limited number of replicas.

Using a Byzantine fault model seems like a natural step, as data

streaming platforms are nowadays integrated into safety-critical

systems like supervisory control and data acquisition (SCADA)

systems [19], where the propagation of arbitrary faults can lead to

devastating e�ects. Although Byzantine fault models are not yet

considered within data centers and business environments, we see

a need of their adoption in classical data streaming applications like

monitoring and analytics systems, as the processing of incorrect or

modi�ed data can have serious consequences as well. Such corrup-

tions may delay necessary actions and decisions, which ultimately

will lead to much greater �nancial losses than a resilient operation

would have caused in the �rst place. The general motivation for

a resilient execution of IT systems manifests itself in temporally

213

This work is licensed under a Creative Commons Attribution International 4.0 License. 

https://doi.org/10.1145/3412841.3441904
https://doi.org/10.1145/3412841.3441904
https://creativecommons.org/licenses/by/4.0/


recurring reports of soft errors or arbitrary faults in data center

environments [1, 7].

We are not aware of any production-ready streaming platform

that o�ers protection against Byzantine faults. State-Machine Repli-

cation (SMR) middleware has already demonstrated its applicability

in providing this safeguard in various services such as distributed

�le systems [6], dependable tuple spaces [4], as well as replicated

databases [12] and directory services [26]. These implementations

claim reasonable performance results, even though SMR comes

with negative impacts on those system in terms of resource costs

and execution performance. This is because active replication in

the Byzantine fault model usually requires more replicas than for

crash faults and therefore more communication to reach agreement.

It also needs deterministic request execution compared to passive

replication to maintain data integrity.

A naive application of SMR concepts to data streaming platforms

leads to a drastic decay of the overall performance. This is mainly

due to the functional mechanics of the high-throughput-oriented

and disk-state-based service that interfere with SMR middleware

concepts. However, it turned out that these disadvantages can be

overcome by optimizations that re�ect the service characteristics

and integrate the service layer deeper into the fault tolerance layer.

These optimizations include (i) an e�cient state management which

utilizes the append-only semantics of the service state, (ii) a scal-

able clustering scheme that makes use of the highly partitionable

state structure as well as (iii) a harmonized batching strategy and

optimized request execution.

In this paper we provide a discussion of the limitations that

emerge when SMR is applied to a data streaming service. Based

on that, we propose a new approach for a resilient and scalable

SMR based data streaming platform that remedies those limitations.

The platform is resilient in the sense of its ability to withstand

Byzantine faults and scalable in the sense of its ability to e�ciently

process large amounts of data. We also contribute a prototype

implementation called SmartStream which is based on the data

streaming platform Apache Kafka and the SMR middleware BFT-

SMaRt. And we further demonstrate its e�ciency and e�ectiveness

in a detailed evaluation. All these evaluations contain comparisons

with the unmodi�ed Apache Kafka streaming platform and show

that the throughput experiences amoderate dropwhile latency rises

reasonably compared to the original implementation. However, we

consider these degradations to be acceptable for most services,

taking into consideration the increased resilience guarantees and

scaling possibilities.

The remainder of this paper is structured as follows. The next

section discusses the problems that arise when SMR is applied to

a data streaming platform. We then present our integrated data

streaming platform in Section 3. This is followed by Section 4 cov-

ering the prototype implementation, while Section 5 presents the

evaluation results. After that, Section 6 compares our approach

with related work, before the paper closes with a short conclusion.

2 LIMITATIONS OF DATA STREAMING

INSIDE STATE MACHINE REPLICATION

SMR is a way to actively replicate a service over multiple servers [16,

25]. Each replica runs a service instance that is implemented as a

�nite state machine, so that all replicas starting in the same state

and receiving the same inputs in the same order will eventually

reach the same state, having produced the same outputs. A total-

order broadcast ensures that client requests are received in the

same order at all replicas. In this paper, we focus on quorum-based

consensus algorithms like [3, 6, 17], which use a view abstraction

for group membership management and a sequencer for request

ordering, even if other approaches exist [10]. All participating repli-

cas advance through a sequence of views, each controlled by a

single leader replica, which is determined by a leader election pro-

tocol as part of the consensus algorithm. The leader replica de�nes

the actual order of the requests. The failures of normal replicas

are masked by the replica redundancy. A leader failure requires a

view-change, in which another replica is elected as the new leader

to continue execution. Redundant request execution enables the

comparison of results, to track down Byzantine faults. The state of

the state machine is abstracted in a state management component

that synchronizes the state between replicas, if new replicas join

the system or if a replica has fallen behind and needs to catch up.

Data Streaming platforms maintain a continuous stream of data

in order to create real-time data pipelines and high-level stream

processing applications [21, 27]. For this purpose, broker nodes

store data records in a distributed data log. In Apache Kafka data

records are key-value pairs identi�ed by a numerical increment-

ing o�set index. A log is divided into topics (see Figure 1), which

in turn are subdivided into one or several ordered sequences of

immutable records – so called partitions. Amazon Kinesis on the

other hand stores data blobs in streams, which are subdivided in

shards, but for this paper we will adhere to the Apache Kafka termi-

nology. Producers publish or produce records by sending them as

messages to the responsible brokers, where they will be appended

to the partitions. The o�set of a partition designates the last com-

mitted record. Consumers consume records by constantly polling

the brokers with their last received o�set of those partitions they

are subscribed to. The partitions are stored on the local disk. A

retention policy de�nes for how long records are stored before the

partition is truncated from the head.

In order to provide reliability, data streaming platforms use pas-

sive replication to replicate partitions over multiple broker nodes.

Each partition is assigned to one designated leader and can have

multiple followers. The leader commits the appended records to

its followers, so that they are able to replace the leader node if it

crashes. For scalability purposes, the partitions of one topic can

be scattered around multiple brokers and consumed by di�erent

consumers in parallel. The broker-partition distributions as well as

the leader-follower assignments are stored in a central con�gura-

tion. Apache Kafka maintains this information in a separate Apache

ZooKeeper cluster, which is a distributed hierarchical key-value

store.

Protecting services from arbitrary faults and Byzantine attackers

by wrapping those services into SMR middleware proved to be a

feasible approach with reasonable results for many kinds of ser-

vices [4, 6, 12, 26]. However, a naive �rst integration of data stream-

ing with an SMR middleware revealed very poor performance. This

is because several SMR concepts limit the abilities of data streaming.

These con�icts concern mainly the state management and scaling

capabilities.

214



Figure 1: Data Streaming Log Anatomy: New records are

appended by producers at the tail; existing records are re-

trieved by consumers from their last consumed o�set

2.1 State Management

In theory, SMR systems can operate with their protocol and service

state purely in volatile memory, as long as the number of faulty

replicas is bounded by some f out of a total ofn replicas, with typical

values of f ≤ (n − 1)/2 in crash fault tolerant and f ≤ (n − 1)/3

in Byzantine fault tolerant systems. Practical SMR middleware,

however, should also enable recovery from a larger number of

faults, including the temporary crash or shutdown of all replicas.

Recovery requires the integration of mechanisms for protocol state

logging, checkpointing, and state transfer [2].

In a crash-recovery fault model, algorithms such as Paxos pro-

vide strong consistency across any number of crashes by maintain-

ing a locally persistent log of all relevant protocol actions at each

replica [8]. To prevent the log from growing in�nitely and avoid

long time delays when processing log entries, the log is truncated

during periodic checkpoints, in which the current service state is

stored in a snapshot. These snapshots are exchanged in addition to

the information from the logs during state synchronization.

In the Byzantine fault model, Bessani et al. [2] describe a similar

approach for recovering from more than f crashes, also based on

persistent protocol state logging and checkpointing. Their approach

o�ers durability, de�ned as “the capability of a SMR system to sur-

vive the crash or shutdown of all its replicas, without losing any

operation acknowledged to the clients”. In addition to that, the BFT

model makes it necessary that the integrity of the exchanged log

entries and the snapshot is veri�ed during recovery. For this pur-

pose, the receiving replica re-evaluates the consensus decisions and

only accepts snapshots when it receives f + 1 matching snapshots

from di�erent authenticated replicas [6].

The textbook state handling approach is contrary to the charac-

teristics of data streaming, in which the service state consists of a

large, ever-growing data log. This data log is persisted on stable

storage, as it usually does not �t into main memory, and due to relia-

bility reasons. It is only modi�ed by produce requests, which consist

of log record batches that are appended to the data log during the

request execution. So, keeping a history of those requests in the

protocol log means that the data written to disk by the streaming

service is written to disk a second time for the log. Thus, applying

the default SMR state handling to the service state of data stream-

ing results in a massive waste of resources and the management of

those redundant state objects a�ects the overall performance. There

is also the risk of memory over�ows, if the state management does

not calculate the exact resource requirements and adapts the data

structures maintaining those state objects accordingly. Traditional

checkpointing makes this situation even worse. At recurring times,

the entire data log must be read from the application once again to

be stored as a checkpoint. It is therefore obvious that an e�cient

state handling must re�ect the request and state characteristics of

data streaming as well as its persistent storage.

2.2 Scalability

Quorum-based SMR su�ers from limited scalability. Horizontal

scaling (which usually means adding new machines to the system)

is not an option, as the strong consistency property requires all

correct replicas to agree on a global request order and to execute

all requests. During the agreement phase, the voting steps of the

protocol often require a quadratic number of message exchanges,

so that the communication overhead grows rapidly with each ad-

ditional replica. The execution phase does also not bene�t from

additional replicas, since all replicas have to execute every request.

Vertical scaling can provide some performance improvements [13],

but is also limited by the maximum resources per replica.

Data streaming platforms, however, utilize their highly parti-

tioned service state to implement e�cient horizontal scaling. There-

fore, the partitions of large topics are distributed over di�erent

broker nodes and processed in parallel. When data streaming is

combined with SMR this bene�t can be maintained and the scal-

ing limitations of SMR can be circumvented as long as the scaling

is applied on a cluster level. Therefore, the disjoint partitions of

large topics are distributed over multiple replica groups, which en-

ables parallel processing of those topics. In this case, however, the

distribution and synchronization of the assignments between parti-

tions and replica groups must be ensured by the system through

additional means.

3 SMARTSTREAM

In this section we propose our solution for a resilient and scal-

able data streaming platform – SmartStream. We �rst state our

assumptions on the system model and de�ne the provided service

guarantees, before we give an architectural overview of the compo-

nents and explain their interaction. After that, we discuss the core

concepts in more detail.

3.1 System Model and De�nitions

SmartStream is a distributed system with an unbounded number of

client nodes C = {c1, c2, ...} and a �xed number n of server nodes

S = {s1, ..., sn }. Clients and servers are connected by an unreliable

network and communicate with each other by message passing.

The network may drop, duplicate or deliver messages out of order,

but common techniques like message authentication and packet

retransmission may mask this unreliability. The system is partially

215



synchronous, so there are bounds on message delays or relative

processing speed, but they are not known and hold only after some

time.

Nodes can be either correct or faulty. Correct nodes determinis-

tically follow the algorithm speci�cation. Faulty nodes can either

crash, or act in an arbitrary or maliciously Byzantine way. The sys-

tem maintains safety and liveness as long as only f = ⌊ n−1
3

⌋ nodes

are faulty. The system can maintain state consistency even if more

than f nodes crash, but liveness can only be maintained as long as

the number of faulty (including crashed) nodes is not greater than f

or as soon as it not more than f again. In the presence of malicious

Byzantine faults, we assume a strong attacker that has full control

over the faulty nodes and is able to impersonate them. The attacker

is able to access the key material of controlled nodes but is not able

to break the cryptography primitives of correct nodes.

3.2 System Architecture

SmartStream follows the modular approach illustrated in Figure 2.

Dashed arrows showmessage-based communication �ows between

components, whereas solid arrows depict direct component inter-

action. The foundation is a communication module that provides

reliable and authenticated communication channels between nodes

using a reliable transport protocol and message authentication

based on message authentication codes (MACs) or signatures. A

modular SMR protocol is built on top of the communication module.

The SMR protocol uses a consensus algorithm to implement the

atomic broadcast. We assume a quorum-based consensus algorithm

with a view-reigning sequencer like [6]. This algorithm produces

veri�able and therefore reproducible decisions. A view manager is

managing the replica group membership, and a state manager is

maintaining the state.

On top of the SMR protocol operates the data streaming service.

The data log manager maintains a stream of data log entries and

provides interfaces for producing and consuming these records.

The cluster manager maintains the distribution of the data log

over the replica groups. In traditional SMR libraries, the service

layer is usually conceptually separated from the SMR protocol, but

in order to overcome the limitations mentioned in Section 2 we

had to introduce several dependencies in the form of component

interaction between cluster and view manager as well as data log

and state manager.

3.3 Data Streaming Service

Figure 3 displays a SmartStream cluster during producing and con-

suming. The view and cluster managers are omitted for better

readability. The service is actively replicated over multiple broker

replicas using the state machine approach. Clients are either pro-

ducers that publish data into topics, or consumers that consume

data from subscribed topics. Data is stored as records in the dis-

tributed data log, managed by the log manager and structured in

topics and partitions. The producers and consumers are not repli-

cated. Therefore their fault tolerance needs to be handled by the

application using the data streaming platform.

For producing records, producers send a list of records in a

produce request to all broker replicas. Records carry the target topic

and partition as well as the actual data as key-value pairs. The leader

Reliable and authenticated communication channels

Data
Streaming

Service

Service Replica

Verifiable
Consensus

View 
Manager

Cluster 
Manager

Data Log
Manager

State
Manager

Modular State
Machine Repli-
cation Protocol

Interaction Communication

Figure 2: SmartStream Modules: Introduced adaptions re-

quire interaction between the service and middleware layer

replica then orders the requests by initiating the consensus protocol.

As soon as the consensus protocol decides the proposed order, the

log manager can execute the request by appending the records

to the respective partitions. The updated o�sets of the involved

partitions are stored in the o�set log of the state manager and also

sent as response to the producer. The producer will consider the

records committed as soon as it receives f + 1 matching responses.

For consuming, consumers can subscribe themselves to one or

multiple partitions. The subscription process starts a consume ses-

sion. With the poll operation the consumers query the brokers

for unread records. Therefore, the consumers send along their last

consumed o�set for every subscribed partition. As those fetch re-

quests do not alter the service state, those requests do not need

to be ordered at the brokers, but can be answered directly with

the matching records. Consumers accept these records as soon as

they receive f + 1 matching responses. During a consume session,

SmartStream ensures that consumers consume each log record only

once.

3.4 State Management

To avoid the disadvantages stated in Section 2 and to exploit the

append-only semantics of data streaming, SmartStream uses a light-

weight but sophisticated state management. The general idea is to

get rid of the protocol log for executed requests in order to prevent

redundant storage of data log records, and to support incremental

state updates for e�cient state handling.

To avoid having to maintain the protocol log, we simply generate

a new checkpoint after the execution of the requests decided in the

216



Figure 3: SmartStream Message Flow: Producers send records to the replicated brokers; consumers fetch records from them

particular consensus instance. Usually the creation and persistence

of a state snapshot is a costly operation, but the persisted data log

already carries the snapshot contents and there is no need for fur-

ther persistence. From that follows that the protocol messages are

only needed within the currently running consensus instances and

must only be kept until the respective requests have been executed.

The ability of view changes is not in�uenced by immediate check-

points. During a view change, the responsibility of a new leader

is to synchronize the cluster to the most recently executed con-

sensus, �nish already started consensus instances and to propose

any unanswered client request. The latter two tasks concern the

protocol before request execution and are therefore not a�ected

by our optimization. The synchronization to the latest executed

consensus can also be performed by exchanging the snapshot of the

respective consensus instance. At least f + 1 correct replicas must

be able to provide this snapshot, as a checkpoint is only created if

a quorum of 2f + 1 replicas have committed themselves to execute

the corresponding requests. With that simpli�cation we ful�ll our

�rst goal.

Relying on a full state exchange during each state transfer is not

a practical assumption. Therefore, we further need to optimize our

state transfer in a way to support incremental state updates. This

service state partitioning is inspired by prior work [6, 20], but also

leverages the append-only semantics and data log storage charac-

teristics to simplify the process. For this purpose the state manager

keeps a history of the checkpoints and stores for every consensus

instance i the o�set list of its n partitions oi := (op1,op2, ...,opn )

(see Figure 4). If a replica queries the state starting from its last

known consensus instance up to the current consensus instance,

the other replicas can fetch exactly those records from the data

log. The state manager of SmartStream is hereby aware of the data

log structure and is able to interact with the data log through its

application interface. With this functionality we satisfy our second

objective.

The checkpoint log is implemented as a ring bu�er, to prevent

it from growing in�nitely. If a replica requests a state transfer and

submits a last known checkpoint that is no longer in the bu�er

Figure 4: SmartStream O�set Log: Each checkpoint stores

the current data log o�sets

or there is no last known checkpoint at all, a full state transfer

is needed. In this case the complete log is transferred using the

segment �les stored on disk. To satisfy the durability property, the

log manager keeps books about the responses sent to the client. In

case of a disaster recovery it has to synchronize its persistent state

with the other replicas to make sure that all replies that have been

received by clients are re�ected in the replica state.

3.5 Cluster Con�guration

In order to utilize the partitionable state structure of data streaming

and to provide scalability as described in Section 2, SmartStream

has to solve three challenges: (i) managing multiple replica groups

in one cluster, (ii) the dynamic assignment of partitions to replica

groups, and (iii) the transfer of partitions during reassignments.

Therefore, SmartStream makes use of a special view management

client that is trusted by all replicas and can be used to dynamically

recon�gure the cluster at runtime, as described in [3].

In general, the extended SmartStream cluster consists of one or

more replica groups G = {д1, ...,дm }, each forming its own and

independent SMR group. The service state is divided into a set of

partitions P = {p1, ...,pp }. Each partition is always assigned to ex-

actly one replica group using a list of assignments A = {a1, ...,aa }.

To solve the �rst two problems, an extension of the view component

is necessary. The view usually holds information about the current

217



regency r as well as its current members д and is numbered consec-

utively vi = (r j ,дk ). In order to re�ect the other replica groups and

the global assignments, the view component is transformed into a

tuple, which still holds the local regency information r but also the

current set of replica groups as well as the currently valid set of

assignmentsvi = (r j ,Gk ,Al ), and is identi�ed by the vector (j,k, l).

An example of the extended view component for a cluster with

multiple replica groups is illustrated in Figure 5. Changes in the

regency are triggered by the view-change protocol of the consensus

algorithm and a�ect only the local replica group, whereas changes

in the cluster or assignment con�guration are carried out by the

trusted client and a�ect all replica groups.

Figure 5: SmartStream Replica Groups: Clients are directed

by means of the extended view components

The client can carry out operations to add or remove replicas and

replica groups as well as to add, delete or transfer partitions. Those

operations are sent to each replica group and are internally ordered.

Changes to the cluster or assignment con�gurations increment

their respective identi�ers, so that the current view identi�er can

ensure view freshness at the clients. Clients store local copies of the

views and send their last known identi�ers with every request, so

that all replicas can signal outdated view information to them. The

local view copies can be used to lookup the replicas responsible for

a partition whenever they initiate a request (lookup : P → G).

For the last issue, we make use of a partition transfer protocol for

replicated state machines that also uses a trusted view management

client, as described in [22]. The slightly modi�ed protocol is exe-

cuted as follows: (i) the trusted client c contacts the replica group дo
responsible for the partition p and indicates the new replica group

дn . (ii) group дo stores the current o�set i of the partition p and

invokes an inter-group partition transfer that is a variation of the

state transfer and therefore resistant against malicious replicas. (iii)

as soon as the transfer is acknowledge by group дn , group дo starts

another incremental partition transfer with the records starting

from o�set i and starts redirecting all requests for partition p to

group дn . (iv) as soon as group дn informs the client c about the �n-

ished transfer, client c commits the new assignment a at all replica

groups of the cluster G . дo then stops answering the requests for p.

3.6 Optimizations

The following optimizations are used to further improve the per-

formance of SmartStream.

3.6.1 Batching. Batching multiple client requests together helps

to reduce the overhead of the latency-intensive consensus protocol.

This is especially important in the case of data streaming, as every

consensus decision involves disk access, and sequential writes usu-

ally outperform random writes. Therefore SmartStream batches the

requests already in the producers before aggregating those requests

again within the SMR protocol. The producers sort the requests

by responsible replica groups. When request forwarding between

replica groups is active in case of a partition transfer, there is a risk

that themessages are delayed and time out. The impact is dependent

on the exact timeout intervals and the frequency of such transfer

operations. However, we consider the expected disturbances to be

tolerable, since partition transfers should be a rather rare operation.

3.6.2 Unsynchronized reads. In SMR systems, read requests, which

do not alter the service state, do not need to be ordered but can

be answered directly. A client accepts a read response as soon as

it received the same response f + 1 times. Thus it can rule out

the presence of f wrong answers. However, whenever the request

processing of the servers is not exactly synchronous – which can

easily happen in wide-area setups – the quorummay not be reached,

as the answers may refer to di�erent service states even if they are

correct. To resolve the situation, the client retransmits the message

and explicitly insists on the request to be ordered to ensure that

the response quorum is met.

This latency intense retransmission can be avoided with the

append-only data log in the case of data streaming. Hereby, the

client is actually able to resolve such con�icts on its own by accept-

ing as valid all successive records that appear f + 1 times in the

responses. All records that do not satisfy this condition need to be

fetched again with the next poll operation. It has to be noted that

clients �rst check the validity of the entire message. If that fails,

they need to validate each of the individual records successively.

Thus, the additional record veri�cation places an additional burden

on the client. However, if the sequential ordering represents the

bottleneck of the SMR system, this optimization can improve the

overall performance.

4 IMPLEMENTATION

This section describes the implementation of our SmartStream pro-

totype. As the implementation from scratch is very time-consuming,

we decided to make use of existing solutions. This way we adapted

some Apache Kafka components to be able to run on top of the BFT-

SMaRt middleware [3]. Our implementation is based on Apache

Kafka 2.13.2 and BFT-SMaRt 1.2. We tried to leave the main func-

tionality of Apache Kafka untouched. The log anatomy as well as

the message formats are the same as in the original version. Instead

218



of implementing the full Kafka API, we limited ourselves to pro-

ducing and consuming of records as well as exchanging metadata.

Higher-level APIs such as the management of access restrictions or

the rebalancing of consumer groups have been omitted. The cur-

rent prototype does not satisfy the durability property to survive

concurrent crashes of more than f replicas.

For the client side we implemented custom SmartStream pro-

ducers and consumers that extend the given Kafka producers and

consumers. The original producers and consumers are equipped

with sender and fetcher components, which communicate with the

remote brokers via a network client using non-blocking IO. We

created our own implementations for the sender and fetcher, which

utilize BFT-SMaRt clients to communicate with the BFT-SMaRt

servers inside the SmartStream brokers. Those components also

use non-blocking IO, carried out through the Netty communication

framework.

For the server side we implemented custom SmartStream brokers,

which are in fact BFT-SMaRt servers that mimic the Kafka API calls.

Each broker controls one original data log manager component

that writes and reads records from and to disk during producing

and consuming. We further provided a custom state manager that

is able to handle the optimized state management. The direct com-

munication between the replicas eliminates the ZooKeeper cluster

completely. As the topic metadata is also stored in the ZooKeeper

cluster we needed to transfer this information back into the view

management. We extended the Kafka node implementation to �t

our BFT-SMaRt clusters into this data object and adapted the meta-

data mechanics, which are used for the Kafka cluster con�guration.

A BFT-SMaRt cluster is now represented as a Kafka node, which

allows the assignment of partitions to replica groups. The discov-

ery of the servers by clients is done with the default BFT-SMaRt

con�guration �les. However, the con�guration is now done on a

group-level in order to support multiple replica groups inside the

cluster.

5 EVALUATION

This section presents the evaluation of our prototype implemen-

tation. We start with the de�nition of suitable reference measure-

ments and the description of our test environment, before we il-

lustrate and discuss the results of our performance evaluation. We

executed microbenchmarks that mimic the o�cial performance

benchmarks shipping with Apache Kafka.

5.1 Evaluation Setup

All tests were executed in the Amazon EC2 cloud on M5ad general

purpose instances. The broker nodes are placed in xlarge instances,

which each have four virtual CPU cores and 16 GB of RAM as well

as a 150 GB local NVMe SSD with an average sequential write

performance for a 1GB large �le around 144 MB/s. The network

performance is limited to 10 GBit/s. The write performance is a

limitation of the speci�c instance type. There are other instance

types with higher disk throughput available – even the network-

attached elastic block store volumes can reach higher throughput

rates – however, with the selected instance type the maximum

throughput reachable during the evaluation is limited by the local

disk and not by network performance. Producer nodes are placed

Name Fault Mode Nodes Faults

KafkaCft0 CFT n = 1 (+1) f = 0

KafkaCft1 CFT n = 3 (+3) f = 1

SmartStreamCft1 CFT n = 3 f = 1

SmartStreamBft1 BFT n = 4 f = 1

KafkaCft2 CFT n = 5 (+5) f = 2

SmartStreamCft2 CFT n = 5 f = 2

SmartStreamBft2 BFT n = 7 f = 2

Table 1: SystemVariants: Cluster con�gurations used during

performance evaluation

in 4xlarge instances, which have 16 virtual CPU cores and 64 GB of

RAM. We choose this instance type as we place multiple producers

in one VM. The workload is carried out using a central coordinator

component to activate and deactivate the producers.

Table 1 shows the di�erent clusters’ con�gurations, which dif-

fer in the con�gured fault mode, the number of broker nodes and

the resulting number of tolerated faults. In order to asses the ef-

fectiveness of our approach we included reference measurements

with the original Apache Kafka implementation — one base mea-

surement with an unreplicated broker and two measurements for

each number of tolerated faults respectively. We con�gured Apache

Kafka to provide crash fault protection similar to that provided by

SmartStream. This means the cluster only replies if records have

been fully committed at the backup nodes and that there are always

enough synchronized backup nodes to take over in the presence of

faults. This results in a cluster size of 2f + 1 nodes. The original

Kafka needs an additional ZooKeeper Cluster of 2f + 1 nodes. We

placed those nodes in dedicated servers, even if they might be co-

located with the broker nodes in practice. Since SmartStream can be

used in both CFT and BFT mode, we performed the measurements

in both fault modes to see what e�ects cluster and quorum sizes

have on performance.

It has to be noted that apart from the additional hardware costs

introduced by the additional f replicas, the BFT variant of Smart-

Stream also has a signi�cantly higher bandwidth usage, as during

producing the records are sent to all replicas and during consum-

ing all records are received from all replicas. This means that the

bandwidth costs rise from n for producing and 1 for consuming

in the original Kafka to 2n for producing and n for consuming in

SmartStream.

5.2 Performance Evaluation

The performance evaluation measures the performance of the dif-

ferent system variants in the form of throughput and latency. From

the average disk throughput of the producer instances we derived

the following producer workload. We place 128 producers in one in-

stance. Each of those 128 producers produces up to 1000 records per

second, each consisting of an empty key and a 1024 Byte long ran-

dom value as well as an 8 byte long timestamp. The records are sent

with an intermediate delay of 1 ms, without blocking while wait-

ing for the response. Not considering additional storage overhead

219



0

40

80

120

0 50 100 150

Time (s)

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Kafka 1.0

Kafka 3.1 (CFT)

SmartStream 3.1 (CFT)

SmartStream 4.1 (BFT)

Figure 6: Throughput Performance: Peak throughput per-

formance for system variants tolerating one fault

and processing times, this results in a theoretical peak producer

throughput of 126 MB/s, which is enough to keep the brokers busy.

The actual workload starts with one producer and doubles the

number of active producers every �ve seconds, resulting in 128

active producers per VM after 40 seconds. We then keep these pro-

ducers active for 90 seconds, before we stop all producers from

sending for further ten seconds to �nish queued up requests. Fig-

ure 6 shows the actual throughput results over time. As expected,

the unreplicated variant performs best with a maximum throughput

of nearly 120 MB/s. This ideal rate drops for the replicated Kafka

variant by 20 MB/s and �uctuates around 100 MB/s. The Smart-

Stream variants then lose another 20 (CFT) or 30 (BFT) percent

in performance. Figure 7 draws a similar picture for the variants

with two tolerated faults. All variants (except for the reference

measurement) experience a throughput drop by roughly 10 MB/s.

Those measurements show the maximum throughput rates, pos-

sible during request peaks. However, if the loads would be kept at

those rates for long times, produce requests would pile up at the

producers as well as inside the brokers and a noticeable amount

of requests would eventually time out. Handling those requests

would harm the overall system performance further. Therefore, we

also measured the request latency at the producers for the work-

loads from above. The results are shown in Figure 8. It can be seen

that latency rises at certain throughput rates. The Byzantine fault

tolerant SmartStream variant experiences rising latency values at

around 47 MB/s, the crash fault variant at around 50 MB/s. For the

replicated Kafka variant we see increased latencies at around 70

MB/s. Only the unreplicated Kafka stays responsible during the

whole experiment. The latency jumps are caused by the fact that

the messages are not processed fast enough and therefore remain

in queues for longer.

We also carried out one experiment with synchronous producers.

These producers only send requests if they received the response

0

40

80

120

0 50 100 150

Time (s)

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Kafka 1.0 

Kafka 5.2 (CFT)

SmartStream 5.2 (CFT)

SmartStream 7.2 (BFT)

Figure 7: Throughput Performance: Peak throughput per-

formance for system variants tolerating two faults

0

10000

20000

0 40 80 120

Throughput (MB/s)

L
a

te
n

c
y
 (

m
s
)

Kafka 1.0

Kafka 3.1 (CFT)

SmartStream 3.1 (CFT)

SmartStream 4.1 (BFT)

Figure 8: Latency Performance: Rising graphs show the

times at which the system performance saturates

for the previous request. We placed 90 producers in four producer

VMs, resulting in a total of 360 producers. The workload starts

with 20 producers and adds an additional 20 producers every �ve

seconds, running for a total time of 90 seconds. The latency to

throughput comparison is shown in Figure 9. With this harmonized

sending behavior, all variants can maintain a low latency at least

until throughput reaches 60 MB/s. This underlines the in�uence of

proper workload shaping on the overall system performance.

In general it can be concluded that SmartStream su�ers a mod-

erate performance drop. While there is no signi�cant di�erence in

delay during periods of moderate workloads, the drop in through-

put can be up to 30 percent at peak loads. This overhead can be

220



0

100

200

300

400

500

0 20 40 60 80

Throughput (MB/s)

L
a

te
n

c
y
 (

m
s
)

Kafka 3.1 (CFT)

SmartStream 3.1 (CFT)

SmartStream 4.1 (BFT)

Figure 9: Latency Performance: Synchronously sending pro-

ducers utilize system capacities more e�ciently

explained by the increased complexity of the algorithm and the

extended communication of the additional nodes. The scalability

properties of SmartStream ensure that the proven performance can

be maintained even with increasing demands.

6 RELATEDWORK

This section presents related work in the context of Byzantine fault-

tolerant publish-subscribe concepts and scalable SMR approaches.

6.1 Byzantine Fault-Tolerant Publish-Subscribe

The preliminarywork in the area of Byzantine fault-tolerant publish-

subscribe appears to be limited. The authors of [9] identify the

tradeo� between reliability and scalability as the hardest challenge

and sketch two possible approaches to provide a BFT broker system.

The �rst is a single centralized broker, which is replicated using

SMR, and the second is a network of brokers, which meets the

reliability requirements by replicating nodes and connections in

an application-speci�c overlay network. In general, the authors

attribute to the former a simpler structure and to the latter better

scalability. However, they do not provide a system description or

protocol speci�cation for either of their approaches.

A �rst real solution using an overlay of replicated brokers is

PubliyPrime, which exploits the overlay network to identify and

exclude Byzantine brokers [15]. The tree-based overlay network

stores multiple intermediate brokers as a path from the publisher

to the subscriber. Messages are sent redundantly over multiple of

these paths. In case one of those broker nodes is suspected to act

Byzantine, its successor nodes are directly consulted for message

dissemination. By verifying the message digests of received mes-

sages and by constantly checking whether all obligated brokers

forwarded the required messages, suspicious nodes are identi�ed. A

similar approach sketches the organization of brokers in chains on

a tree-based overlay network [14]. Publications are forwarded fol-

lowing the chains until a quorum of brokers accepts the publication

and sends it to the respective subscriber. In order to minimize the

number of forwarded messages the protocol runs a weak consensus

in fault-free execution, whose history is veri�ed with a reliable

consensus in periodic veri�cation rounds.

Other approaches implement a centralized replicated broker us-

ing the SMR paradigm. Trinity is a more recent approach with a

centralized broker [24]. It combines multiple pluggable blockchain

platforms (Tendermint, HyperLedgerFabric, IOTA, Ethereum) for

message ordering and storage with an MQTT broker for publish-

subscribe message dissemination. The use of public blockchains

results in high message delays of several seconds, which are ar-

guably only usable in select use cases. The permissioned blockchain

variants also leave a lot of room for improvement, as the message

delay varies between 30 and 140 ms at 30 transactions per second –

which we consider very high for a local area network. Real-world

challenges like log retention or state management are not covered

at all.

6.2 State Management in State Machine

Replication

For services with large states, state management very quickly be-

comes a limiting factor. More e�ciency can be achieved by either

optimizing the state transfer or by partitioning and distributing the

state over multiple groups. In order to support incremental state

transfers, various approaches organize the state in Merkle trees or

custom tree-based data structures that are inspired by them [6, 20].

Other approaches leverage their application-speci�c characteristics.

The authors of [28] (re-)integrate new or outdated replicas into the

view without performing a complete state update. Replicas know

which state objects are needed for executing certain requests and

fetch only exactly those state objects on-demand during request

execution. The remaining state is fetched by those replicas in the

background eventually. [11] exploits the capabilities of hypervisors

in order to rapidly get the current application state as a snapshot

volume. One volume copy of the snapshot can be used for the state

transfer, whereas a second copy-on-write volume can be directly

used to continue request processing.

Other approaches utilize state partitioning to improve scalabil-

ity. Augustus is a scalable BFT key-value store that distributes the

application state over multiple replica groups [23]. The keys are dis-

tributed over the partitions using a deterministic range partitioning

scheme or deterministic hashing, which allows clients to address

the responsible replica groups. Single-partition commands can be

executed directly, whereas multi-partition commands are executed

using an atomic commit protocol with locking. Main drawbacks are

the transaction overhead and the in�exibility of the static partition-

ing scheme. A similar approach for CFT replicated state machines

is proposed in S-SMR [5]. In this approach the whole state is dis-

sected in state objects that are assigned to various partitions. The

assignment is administrated by a user-de�ned oracle, which can be

consulted to learn the responsible replica groups of the state objects

a�ected by client commands. Single-partition commands are again

trivial. During multi-partition commands, the state objects are for-

warded from the responsible replica groups to the involved replica

groups, so that all replica groups are provided with local copies

of state objects that are not maintained by their partitions. The

221



approach requires a static assignment between state objects and

partitions as well as additional code for exchanging or incremen-

tally updating the local state object copies. The static assignment

drawback is addressed in DS-SMR [18] with a dynamically adapting

partitioning scheme that takes the individual partition workload

into account. During multi-partition commands, the re�ned scheme

always migrates all state objects of one command to a new par-

tition in order to leverage data locality and improve the overall

performance. A partition transfer protocol that allows the transfer

of state partitions between replica groups is proposed in [22]. It

evaluates the transfer of large state partitions and provides a mod-

ular protocol that can be applied to BFT SMR protocols. In fact we

integrated a variant of this protocol into our approach.

7 CONCLUSION

This paper presented a Byzantine fault tolerant data streaming plat-

form based on SMR. It can be concluded that data streaming can be

ideally combined with SMR due to the partitionable state structure

and the strictly monotonously growing system state, if certain ad-

justments are applied. With the optimized state management and

scalable cluster scheme we proposed simple but e�ective solutions

that exploit these optimization potentials and can be adapted to

other systems with similar characteristics. The provided implemen-

tation reaches good performance in the Byzantine fault model, even

though throughput is reduced by up to 30 percent at peak loads.

However, the also introduced horizontal scaling capabilities can

mitigate this weakness through the use of additional computing

resources. In addition, performance losses as a consequence of in-

creased resilience can arguably be tolerated. In fact, to the best of

our knowledge, SmartStream represents the �rst practically usable

Byzantine fault tolerant data streaming platform that goes beyond

early research prototypes, which are not considering important

functionalities like state management and log maintenance. We

are certain that there is still further potential for performance im-

provements in the implementation, even if we showed that the

platform can be of practical relevance and does not need to hide

behind its crash fault tolerant counterparts. Also, the detailed par-

tition distribution and batch tuning, which are important factors

for reaching good performance, would bene�t from an automated

and self-adjusting approach, as the request characteristics and en-

vironmental conditions may change over time. We leave this open

as future work.

ACKNOWLEDGMENTS

This work has been funded by the Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) – 268730775 (OptSCORE).

REFERENCES
[1] Amazon Web Services LLC. 2008 (accessed Sep 28, 2020). Amazon S3 Availability

Event: July 20, 2008. https://status.aws.amazon.com/s3-20080720.html
[2] Alysson Bessani, Marcel Santos, João Felix, Nuno Neves, and Miguel Correia.

2013. On the E�ciency of Durable State Machine Replication. In 2013 USENIX
Annual Technical Conference (USENIX ATC 13). 169–180.

[3] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. 2014. State machine
replication for the masses with BFT-SMaRt. In Dependable Systems and Networks
(DSN), 2014 44th Annual IEEE/IFIP International Conference on. IEEE, 355–362.

[4] Alysson Neves Bessani, Eduardo Pelison Alchieri, Miguel Correia, and Joni Silva
Fraga. 2008. DepSpace: a Byzantine fault-tolerant coordination service. In Proceed-
ings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems

2008. 163–176.
[5] Carlos Eduardo Bezerra, Fernando Pedone, and Robbert Van Renesse. 2014. Scal-

able state-machine replication. In 2014 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks. IEEE, 331–342.

[6] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems (TOCS) 20, 4 (2002),
398–461.

[7] Frederico Cerveira, Raul Barbosa, Henrique Madeira, and Filipe Araújo. 2020.
The E�ects of Soft Errors and Mitigation Strategies for Virtualization Servers.
IEEE Transactions on Cloud Computing (2020).

[8] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos Made
Live: An Engineering Perspective. In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Principles of Distributed Computing (PODC ’07). ACM, 398–407.
https://doi.org/10.1145/1281100.1281103

[9] Tiancheng Chang and Hein Meling. 2012. Byzantine fault-tolerant publish/sub-
scribe: A cloud computing infrastructure. In 2012 IEEE 31st Symposium on Reliable
Distributed Systems. IEEE, 454–456.

[10] Xavier Défago, André Schiper, and Péter Urbán. 2004. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR)
36, 4 (2004), 372–421.

[11] Tobias Distler, Rüdiger Kapitza, and Hans P. Reiser. 2008. E�cient state transfer
for hypervisor-based proactive recovery. In Proceedings of the 2nd workshop on
Recent advances on intrusiton-tolerant systems. 1–6.

[12] Rui Garcia, Rodrigo Rodrigues, and Nuno Preguiça. 2011. E�cient middleware for
Byzantine fault tolerant database replication. In Proceedings of the sixth Conference
on Computer systems (EuroSys’2011). 107–122.

[13] Gerhard Habiger, Franz J. Hauck, Johannes Köstler, and Hans P. Reiser. 2018.
Resource-E�cient State-Machine Replication with Multithreading and Vertical
Scaling. In 2018 14th European Dependable Computing Conference (EDCC). IEEE,
87–94.

[14] Leander Jehl and Hein Meling. 2013. Towards Byzantine fault tolerant publish/-
subscribe: A state machine approach. In Proceedings of the 9th Workshop on Hot
Topics in Dependable Systems. ACM, 5.

[15] Reza Sherafat Kazemzadeh andHans-Arno Jacobsen. 2013. PubliyPrime: Exploiting
Overlay Neighborhoods to Defeat Byzantine Publish/Subscribe Brokers. Technical
Report. TR University of Toronto.

[16] Leslie Lamport. 1978. The implementation of reliable distributed multiprocess
systems. Computer Networks (1976) 2, 2 (1978), 95–114.

[17] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2
(May 1998), 133–169.

[18] Long Hoang Le, Carlos Eduardo Bezerra, and Fernando Pedone. 2016. Dynamic
scalable state machine replication. In 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 13–24.

[19] Adrien Ledeul, Alexandru Savulescu, Gustavo Segura Millan, and Bartlomiej
Styczen. 2019. Data StreamingWith Apache Kafka for CERN Supervision, Control
and Data Acquisition System for Radiation and Environmental Protection. In 17th
International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’19).

[20] Barbara Liskov and James Cowling. 2012. Viewstamped replication revisited.
Technical Report MIT-CSAIL-TR-2012-021. MIT.

[21] Dung Nguyen, Andre Luckow, Edward Du�y, Ken Kennedy, and Amy Apon.
2018. Evaluation of highly available cloud streaming systems for performance
and price. In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, 360–363.

[22] Andre Nogueira, Antonio Casimiro, and Alysson Bessani. 2017. Elastic state
machine replication. IEEE Transactions on Parallel and Distributed Systems 28, 9
(2017), 2486–2499.

[23] Ricardo Padilha and Fernando Pedone. 2013. Augustus: Scalable and robust
storage for cloud applications. In Proceedings of the 8th ACM European Conference
on Computer Systems. 99–112.

[24] Gowri Sankar Ramachandran, Kwame-Lante Wright, Licheng Zheng, Pavas Na-
vaney, Muhammad Naveed, Bhaskar Krishnamachari, and Jagjit Dhaliwal. 2019.
Trinity: A Byzantine Fault-Tolerant Distributed Publish-Subscribe System with
Immutable Blockchain-based Persistence. In 2019 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC). IEEE, 227–235.

[25] Fred B Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR) 22, 4 (1990),
299–319.

[26] Ali Shoker and Jean-Paul Bahsoun. 2012. Towards Byzantine resilient directories.
In 2012 IEEE 11th International Symposium onNetwork Computing andApplications.
IEEE, 52–60.

[27] GuozhangWang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam,Mammad
Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. 2015. Building a
replicated logging systemwithApache Kafka. Proceedings of the VLDB Endowment
8, 12 (2015), 1654–1655.

[28] Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and Em-
manuel Cecchet. 2011. ZZ and the art of practical BFT execution. In Proceedings
of the sixth conference on Computer systems. ACM, 123–138.

222

https://status.aws.amazon.com/s3-20080720.html
https://doi.org/10.1145/1281100.1281103

